
Sysquake Pro
User Manual

2 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Copyright 1999-2019, Calerga Sàrl.

No part of this publication may be reproduced, transmitted or stored in
any form or by any means including electronic, mechanical, recording or oth-
erwise, without the express written permission of Calerga Sàrl.

The information provided in this manual is for reference and information
use only, and Calerga assumes no responsibility or liability for any inaccu-
racies or errors that may appear in this documentation. Improvements to
Sysquake brought by minor releases are described in the electronic documen-
tation; please read the file ReadMe for a summary.

Sysquake, Calerga, the Calerga logo, and icons are copyrighted and are
protected under the Swiss and international laws. Copying this software for
any reason beyond archival purposes is a violation of copyright, and violators
may be subject to civil and criminal penalties.

Sysquake, LME, and Calerga are trademarks of Calerga Sàrl. All other
trademarks are the property of their respective owners.

Sysquake Pro User Manual, Dec. 2019.
Calerga Sàrl, Vevey, Switzerland.

Most of the material in Sysquake Pro User Manual has first been written as
a set of XHTML files, with lots of cross-reference links. Since (X)HTML is not
very well suited for printing, it has been converted to LATEX with the help of a
home-made conversion utility. Additional XML tags have been used to benefit
from LATEX features: e.g. raster images have been replaced with EPS images,
equations have been converted from text to real mathematic notation, and a
table of contents and an index have been added. The same method has been
used to create the material for the help command. Thanks to the make utility,
the whole process is completely automatic. This system has proved to be very
flexible to maintain three useful formats in parallel: two for on-line help, and
one for high-quality printing.

World Wide Web: https://calerga.com
E-mail: sysquake@calerga.com
Mail: Calerga Sàrl

Bd Saint-Martin 21
1800 Vevey
Switzerland

Typesetting: 2019-12-14

https://calerga.com
mailto:sysquake@calerga.com

Contents

1 Introduction 9
1.1 Introduction . 9
1.2 How Sysquake can be used 10

2 Registration 15
2.1 Where SQ_Reg.key is located 15
2.2 Remark . 16
2.3 What’s in the Serial Number 16

3 Getting Started with Sysquake 19
3.1 First steps . 19
3.2 Files . 20
3.3 Manipulation modes . 21
3.4 Menus . 23
3.5 Command-Line Interface . 34
3.6 Interruption Key . 34
3.7 Memory . 34
3.8 Extensions . 35
3.9 Preference Files . 35
3.10 Environment Variables . 36

4 SQ Files 37
4.1 PID_ct.sq . 37
4.2 PID_dt.sq . 40
4.3 RST_ct.sq . 42
4.4 RST_dt.sq . 49
4.5 LQR_ct.sq . 55
4.6 filter.sq . 57
4.7 id_par.sq . 60
4.8 id_npar.sq . 62

5 Introduction to LME 65
5.1 Simple operations . 67
5.2 Complex Numbers . 68
5.3 Vectors and Matrices . 70

4 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

5.4 Polynomials . 73
5.5 Strings . 74
5.6 Variables . 75
5.7 Loops and Conditional Execution 75
5.8 Functions . 76
5.9 Local and Global Variables . 78

6 SQ Script Tutorial 81
6.1 Displaying a Plot . 81
6.2 Adding Interactivity . 83

7 SQ Script Reference 85

8 SQ File Tutorial 89
8.1 Displaying a Plot . 90
8.2 Adding Interactivity . 95
8.3 Menu Entries . 97
8.4 More about graphic ID . 100
8.5 Saving Data . 103

9 SQ File Reference 105
9.1 SQ Files . 105
9.2 SQ Data Files and Input/Output Handlers 129
9.3 Error Messages . 132
9.4 Advanced Features of SQ Files 134

10LME Reference 145
10.1 Program format . 145
10.2 Function Call . 147
10.3 Named input arguments . 147
10.4 Command syntax . 148
10.5 Libraries . 148
10.6 Types . 149
10.7 Input and Output . 159
10.8 Error Messages . 160
10.9 Character Set . 165
10.10Formatted text . 166
10.11List of Commands, Functions, and Operators 171
10.12Variable Assignment and Subscripting 185
10.13Programming Constructs . 192
10.14Debugging Commands . 209
10.15Profiler . 216
10.16Miscellaneous Functions . 218
10.17Sandbox Function . 247
10.18Help Function . 249
10.19Operators . 252
10.20Mathematical Functions . 282

Contents 5

10.21Linear Algebra . 339
10.22Array Functions . 386
10.23Triangulation Functions . 425
10.24 Integer Functions . 432
10.25Non-Linear Numerical Functions 435
10.26String Functions . 458
10.27Quaternions . 486
10.28List Functions . 496
10.29Structure Functions . 500
10.30Object Functions . 507
10.31Logical Functions . 512
10.32Dynamical System Functions 522
10.33 Input/Output Functions . 531
10.34File System Functions . 548
10.35Path Manipulation Functions 550
10.36XML Functions . 552
10.37Search Path Function . 561
10.38Time Functions . 562
10.39Date Functions . 565
10.40Threads . 566
10.41Parallel . 572
10.42Sysquake Graphics . 584
10.43Remarks on graphics . 586
10.44Base Graphical Functions . 591
10.453D Graphics . 627
10.46Graphics for Dynamical Systems 641
10.47Sysquake Graphical Functions 675
10.48Dialog Functions . 696
10.49Sysquake Miscellaneous Functions 701

11Libraries 707
11.1 stdlib . 708
11.2 stat . 719
11.3 probdist . 729
11.4 polynom . 734
11.5 ratio . 744
11.6 bitfield . 747
11.7 filter . 753
11.8 lti . 763
11.9 lti (graphics) . 794
11.10sigenc . 801
11.11wav . 807
11.12date . 809
11.13constants . 812
11.14colormaps . 813
11.15polyhedra . 821

6 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

11.16solids . 826
11.17bench . 831
11.18parbench . 833

12Extensions 837
12.1 Lapack . 839
12.2 Long Integers . 856
12.3 Memory Mapping . 857
12.4 Data Compression . 859
12.5 Image Files . 863
12.6 MAT-files . 867
12.7 JSON . 869
12.8 SQLite . 870
12.9 Compiling the extension . 871
12.10Sockets . 877
12.11System Log . 882
12.12Launch URL . 883
12.13Download URL . 884
12.14Open Script Architecture . 885
12.15Web Services . 887
12.16Power Management . 901
12.17Shell . 902
12.18Signal . 907
12.19Serial port . 910
12.20 I2C . 913
12.21 Joystick . 915
12.22Audio output . 917
12.23Audio Input . 919
12.24Speech . 920

13External Code 925
13.1 Implementation . 925
13.2 Callbacks . 926
13.3 Start up and shut down . 931
13.4 Examples . 933
13.5 Remarks . 940

14Remote Procedure Calls 941
14.1 General Description . 942
14.2 OLE Automation on Windows 942
14.3 XML-RPC on Unix . 944
14.4 SysquakeLink Java Package 945

15Sysquake Application Builder 953
15.1 Extensions . 954
15.2 Debugging . 954
15.3 Batch conversion . 955

Contents 7

Index 957

Chapter 1

Introduction

This chapter introduces to the application Sysquake, the interactive
design CAD tool for getting insight into complicated scientific problems
and designing advanced technical devices. You should read it to know
more about what Sysquake is, what it may be used for, and how to
use it for simple tasks.

1.1 Introduction

To design technical devices, or to understand the physical and math-
ematical laws which describe their behavior, engineers and scientists
frequently use computers to calculate and represent graphically dif-
ferent quantities, such as the sample sequence and the frequency
response of a digital audio filter, or the trajectory and the mass of
a rocket flying to Mars. Usually, these quantities are related to each
other; they are different views of the same reality. Understanding
these relationships is the key to a good design. In some cases, espe-
cially for simple systems, an intuitive understanding can be acquired.
For more complicated systems, it is often difficult or impossible to
"guess", for instance, whether increasing the thickness of a robot arm
will increase or decrease the frequency of the oscillations.

Traditionally, the design of a complicated system is performed in
several iterations. Specifications can seldom be used directly to cal-
culate the value of the parameters of the system, because there is
no explicit formula to link them. Hence each iteration is made of two
phases. The first one, often called synthesis, consists in calculating
the unknown parameters of the system based on a set of design vari-
ables. The design variables are more or less loosely related to the
specifications. During the second phase, called analysis, the perfor-
mance of the system is evaluated and compared to the specifications.
If it does not match them, the design variables are modified and a new
iteration is carried out.

10 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

When the relationship between the criteria used for evaluating the
performance and the design parameters is not very well known, mod-
ifications of the design parameters might lead as well to poorer per-
formance as to better one. Manual trial and error may work but is
cumbersome. This is where interactive design may help. Instead of
splitting each iteration between synthesis and analysis, both phases
are merged into a single one where the effect of modifying a param-
eter results immediately in the update of graphics. The whole design
procedure becomes really dynamic; the engineer perceives the gra-
dient of the change of performance criteria with respect to what he
manipulates, and the compromises which can be obtained are easily
identified.

Sysquake’s purpose is to support this kind of design in fields such
as automatic control and signal processing. Several graphics are dis-
played simultaneously, and some of them contain elements which can
be manipulated with the mouse. During the manipulation, all the
graphics are updated to reflect the change. What the graphics show
and how their update is performed are not fixed, but depend on pro-
grams written in an easy-to-learn language specialized for numeric
computation. Several programs are included with Sysquake for com-
mon tasks, such as the design of PID controllers; but you are free to
modify them to better suit your needs and to write new ones for other
design methods or new applications.

Another area where Sysquake shines is teaching. Replacing the
static figures you find in books or the animations you see on the Web
with interactive graphics, where the student can manipulate himself
the curves to acquire an intuitive understanding of the theory they rep-
resent, accelerates and improves the learning process tremendously.

1.2 How Sysquake can be used

Sysquake is expected to be used mainly for three different purposes.

Understanding basic concepts In science as well as in engineer-
ing, theory is often not very intuitive at first, because it relates
quantities from different domains: energies and positions, time
and frequency, temperatures and entropies. In automatic control,
where feedback is used to improve performance of any kind of sys-
tem, transient behavior, such as settling time, overshoot, and risk
of actuator saturation, is typically analyzed in the time domain;
while the stability, noise rejection, and different kinds of robust-
ness are more easily expressed in the frequency domain. The basic
mechanisms which relate these quantities can be illustrated very
effectively with Sysquake.

Introduction 11

Designing systems The quality of a device is always the result
of a compromise. Multiple objectives, such as the speed, the ac-
curacy and the cost, must be taken into account simultaneously
and have contradictory requirements. Sysquake helps a lot to find
which compromises are feasible, how to push the design in the de-
sired direction, and how to modify the specifications in case they
do not permit a satisfying solution.

Developing and testing new design methods Some design
methods still in use were developed at the time when computers
were either nonexistent or too expensive, or too slow for interac-
tion. While they can also benefit from Sysquake, they are better
complemented or replaced by approaches which offer more de-
grees of freedom for better performances. A lot of work can un-
doubtedly be done in this field.

There is more or less a one-to-one correspondence between these ap-
plication fields and the ways Sysquake can be used.

Ready-to-use interactive figures A static figure which
illustrates a basic concept in a book or a course on the World Wide
Web can be replaced with a dynamic figure, where the reader
manipulates an element and sees its effect. For instance, to show
how the height of a building influences the amplitude of its
oscillations during an earthquake, the student is invited to
change the building height with the mouse and see how the
earthquake simulation is modified. To support this (and much
more complicated interactive figures), Sysquake loads an SQ file,
a text file which contains the description of the figures and the
code necessary to support the interaction. SQ files do not have to
handle advanced features provided automatically by Sysquake,
like multiple undo, zoom, and scale options. They rely on built-in
functions for graphics related to linear dynamic systems, but can
also compute and display arbitrary data with a complete
language.

Set of programs for different design or analysis methods SQ
files are not limited to a fixed set of figures and interaction. They
can implement all that is needed for a given design or analysis ap-
proach. Then the user chooses what he wants to display, may enter
numeric parameters which characterize the problem, and manipu-
lates the graphics until he obtains the desired results. He can also
save the parameters of his design in an SQD file (Sysquake Data
file) and load them later.

Programs written from scratch The applications described
above are based on SQ files, which either come from those
distributed with Sysquake or are contributed by other users, or are

12 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 1.1 Sysquake on Windows XP

written from scratch. Developing an SQ file is not difficult;
however, it requires some programming knowledge and
experience. For small problems, a simpler programming model is
available, SQ scripts.

These purposes are the raison-d’être of Sysquake which make it
different from any other general-purpose math software. However,
Sysquake can also be used as a powerful calculator for quick
interactive evaluation of expressions.

Another advantage of Sysquake is that it runs on both Windows
(see Fig. 1.1) and Mac OS X (see Fig. 1.2), with a polished user in-
terface. Other Calerga products share the programming language of
Sysquake. For example Sysquake Remote provides scientific comput-
ing and graphics for Web applications (more informations can be found
on the Web site of Calerga, https://calerga.com). The part of the appli-
cation which does not rely on Sysquake-specific features (interactive
graphics) can be easily reused in these products.

Introduction 13

Figure 1.2 Sysquake on Mac OS X

Chapter 2

Registration

Sysquake Pro and Sysquake Application Builder require a registration
key file in order to run. Please follow the instructions you have re-
ceived with Sysquake.

Licenses for multiple computers and site licenses do not require
separate registration for each computer; the same registration file is
used on each computer. If your company or university has acquired
such a license, a single person should be responsible for the regis-
tration file deployment; Calerga cannot easily accept and validate re-
quests from multiple persons for the same license.

2.1 Where SQ_Reg.key is located

The registration information is stored in the file SQ_Reg.key on the
hard disk. Its location depends on the operating system.

Windows

On Windows computers, SQ_Reg.key is located in the same folder as
Sysquake.exe, typically in the directory C:\Program Files\Sysquake.

If the installer application finds the file SQ_Reg.key in the same
directory where it is located, it copies it automatically to its final loca-
tion.

macOS

On macOS computers, SQ_Reg.key can be located in three different
places:

– in the same folder as the Sysquake application;

– in /̃Library/Calerga, where ˜ stands for your home folder;

16 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

– in /Library/Calerga (starting in the boot volume).

If Sysquake Pro or Sysquake Application Builder cannot find a
valid registration file at startup, it will request one and copy it to
/̃Library/Calerga. If Sysquake is used by different users on the
same computer, you can move it to /Library/Calerga (you need
administrator privileges to do that).

The folder of Sysquake is usually not recommended to reduce clut-
ter in the Applications folder and to avoid deleting it when you replace
Sysquake with a newer version.

Linux

On Linux computers, SQ_Reg.key is located in the base directory of
Sysquake, typically /usr/local/sysquake.

2.2 Remark

The serial number is linked to your name and your company’s name.
The protection system is designed to permit you to reinstall the serial
number easily, on the same or a different computer. You may even
copy the registration file onto different computers if you have a multi-
ple license for the same software, or to your private laptop computer.
License files for Windows and Mac OS are compatible. Simply make
sure you comply with the license terms.

When you perform a minor upgrade of Sysquake, you can keep the
same registration file without running the registration application or
contacting Calerga again.

2.3 What’s in the Serial Number

The serial number is not a random string of letters and digits. It can
be decoded as follows. A typical serial number looks like

500549a-999999-0a20.a392

To decode it, split it into six parts:

vvvwwwf-yyyymm-ssss.ssss

Each group of characters has the following meaning:

– vvv, a group of three digits, is the first version number for which
the license is valid; 500 means 5.0.

Registration 17

– www, a group of three digits, is the last version number for which
the license is valid; 549 means 5.4.9. Note that this is not a
commitment to offer free upgrades, or any upgrade at all.

– f, a single letter, identifies additional capabilities of Sysquake; a
means none. It is not used in current releases.

– yyyy, a group of four digits, is the last year of the validity of the
license; 9999 means no expiration.

– mm, a group of two digits, is the last month for which the license
is valid; 99 means no expiration.

– ssss.ssss, a group of eight hexadecimal digits, is an encrypted
checksum which binds the serial number to other bits of registra-
tion information.

Chapter 3

Getting Started with
Sysquake

This chapter describes the user interface of Sysquake, i.e. how you
manipulate its windows and what you can find in its menus.

3.1 First steps

Launch Sysquake, then choose File/Open (i.e. click the File menu, then
the Open item) and select the file sampling.sq, which should be lo-
cated in the "SQ_Files" folder, to learn basic manipulations. The pur-
pose of this SQ file is to show the effect of sampling (and other method
for converting systems from continuous time to discrete time) on the
frequency response and step response.

In the figure window, two graphics should be displayed (see
Fig. 3.1). At the top, the frequency response amplitude of a
continuous-time third-order system is represented as a black line.
The red curve represents the frequency response amplitude of the
same system, but sampled. The sampling frequency is represented
by the blue vertical line, and the Nyquist frequency (half of the
sampling frequency) in green. The discrete-time curve has a
periodicity equal to the sampling frequency. The bottom figure
represents the step response of the system, again both in the
continuous-time domain and in the discrete-time domain (red circles).

If you click one of the vertical lines and hold down the mouse but-
ton, you can move the line to the right to increase the sampling fre-
quency or to the left to decrease it. More interesting is the effect on
the discrete-time responses. Both the frequency responses and the
step responses are updated during the move. If you decrease enough
the sampling frequency, the frequency response matches more and
more loosely the continuous-time response. In the time domain, you

20 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 3.1 SQ file sampling.sq

can see that the samples do not follow the oscillations. You can also
click and move (or drag) one of the samples in the step response plot.

A very useful feature of Sysquake is the Undo command. You can
undo and redo any interactive manipulation, change of settings, zoom,
and choice of figures to display, as many times as memory permits.
These commands can be found in the Edit menu. They are your
friends; learn to use them frequently!

3.2 Files

Sysquake uses several kinds of files: SQ files, SQD (or SQ Data) files, li-
braries, and files created by programs. SQ files are kinds of programs,
or scripts, which implement figures, menus and computation code for
a given topic. Several SQ files are provided with Sysquake. Some of
them are suitable for many problems in the same area and can be
customized with your own data, for example for the design of a digital
filter, while others have more narrow applications.

You can also write your own SQ files with an external text editor.
If you use a word processor, make sure that you save SQ files as text
only, or ASCII; many word processors add formatting information (such
as margins or character style) which is not understood by Sysquake.
On Macintosh, SQ files are associated with Sysquake and get an SQ
file icon when you open them with Sysquake for the first time, either

Getting Started 21

Figure 3.2 Toolbar (Windows Vista)

Figure 3.3 Toolbar (Windows Vista)

from Sysquake (menu File/Open) or by dragging the document icon
onto Sysquake’s; then you can simply double-click the SQ file icon in
the Finder to open it in Sysquake.

SQD files store the state of a session with Sysquake. They are al-
ways associated with an SQ file. They only contain the data necessary
to load back the SQ file and restore the parameters, settings and fig-
ures which were defined when they were saved. Typically, they are
written and read by Sysquake; but since they are also text files, you
can easily create them by hand, read the values, or use them to ex-
change data with other applications.

Libraries are collections of functions which complement the built-in
functions of Sysquake’s language. They are made available explicitly
to SQ files or other libraries which request them.

With its rich built-in language, Sysquake can also read and write
arbitrary text and binary files. What they contain and when they are
created and read depend only on the programmer. For example, an
image processing SQ file could read TIFF files (a popular file format for
raster images) by adding a custom entry in the Settings menu. This
is actually what image.sq, one of the SQ files provided with Sysquake,
does.

3.3 Manipulation modes

There are five manipulation modes, which can be chosen in the Figure
menu or in the toolbar (toolbars differ slightly on Mac OS (see Fig. 3.2),
Windows (see Fig. 3.3) and Linux).

Manipulate You can drag graphical elements in one of the sub-
plots and see the effect this has on other figures. Depending on
the figure, you can drag graphical elements horizontally, vertically,
or in any direction. Not all the elements can be dragged; the shape
of the cursor usually indicates whether dragging is enabled (hand
with index finger) or disabled (standard arrow cursor). For some

22 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

figures, holding down the Shift key modifies the action performed
by the drag.

In automatic control and filtering, the dynamic of linear systems
is often represented by poles and zeros symmetric with respect to
the horizontal axis (real axis). To enforce this symmetry, dragging
a complex pole or zero (a pole or zero not on the real axis) also
moves the symmetric one; attempting to drag a complex pole or
zero to the other side of the real axis makes it stick to the real axis;
and dragging a pole or zero from the real axis can be done only
upward if there is at least one other pole or zero on the real axis,
which becomes its symmetric.

Zoom You can click in a subplot to double the scale in both x
and y directions, or select the area you want to display by hold-
ing down the mouse button. To zoom out, hold down the Shift key
and click. To revert to the default scale, select the subplot (see
below) and select Figure/Automatic Scale. Many figures have auto-
matic scaling by default; to fix the scale without zooming, unselect
Figure/Automatic Scale.

In 3D figures, a click zooms in, or zooms out if the Shift key is held
down.

Zoom X Axis The zoom is constrained to the x axis. The scale
remains automatic for the y axis if it already was before the zoom.
Note that figures where the scale for both axis is constrained to be
the same cannot be zoomed in or out in this mode.

In 3D figures, a click zooms in or out with orthographic projection.
With perspective projection, a mouse drag toward the center of the
figure moves the point of view closer to the target point, keeping
the zoom factor such that the image size is preserved. A mouse
drag from the center of the figure has the opposite effect, moving
the point of view further from the target point.

Drag You can click and drag a figure to move it in its subplot region.
The limits of the displayed area of the plot are changed such that
the point under the mouse cursor moves with it. Hold down the
Shift key to drag along the x axis.

In 3D figures, a mouse drag moves the point of view around the
target point, as if the mouse cursor dragged a sphere around the
object. If the Shift key is held down, both the point of view and
the target point are moved (i.e. the camera dollies parallel to the
image).

Select You can select a subplot by clicking it (this is necessary only
if several subplots are displayed simultaneously), and change what
is displayed by choosing an entry of the Plot menu or some options

Getting Started 23

in the Figure menu. By holding down the Shift key, you can select
more than one subplot. You can also drag a figure from one subplot
slot to another one. The figure which was in the target subplot
replaces the dragged figure. The zoom factor and scale options
are preserved. Some commands are available from a contextual
menu (click in the figure with the right button, or hold down the
Control key and click in a figure on Macintosh with a single-button
mouse); you do not need to select a subplot before using it.

It is sometimes useful to synchronize the area displayed in two sub-
plots. For instance, if you display simultaneously the amplitude and
the phase of a frequency response, you may want to zoom along the X
axis to display a smaller frequency range, identical for both figures. To
do that, first select both subplots (switch to Select mode, click the first
subplot, hold down the Shift key, and click the second subplot). Then
switch to Zoom, Zoom X, or Shift mode, and change the scale of one
of the selected subplot. All the selected subplots will follow, provided
that their scale was already the same before the change.

Remark: with some versions of Sysquake, the middle button of
mouses with three buttons has the same effect as holding down the
Shift key and clicking with the left button.

3.4 Menus

This section describes the commands you can find in the menus. The
most important ones have keyboard shortcuts which are more efficient
for the experienced user.

Note that some menu entries are enabled or disabled by the con-
tents of the SQ file currently loaded. For example, in many figures,
such as those with negative values, the logarithmic scale is disabled.

File

The File menu (see Fig. 3.4) contains the commands which handle SQ
files as a whole (file operations and reset to the default values) and
quit Sysquake itself.

New Opens a new text editor window, where you can type the
source code of an SQ file or the contents of any text file. This
is used mainly to develop new Sysquake applications, but can be
convenient as a general-purpose text editor.

Open and Run Opens either an SQ file or an SQD file, i.e. a file
which contains customized values and settings as well as a refer-
ence to the related SQ file. When you open an SQD file, Sysquake

24 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 3.4 File menu

loads its related SQ file first, then restores the state of the data and
the figures which prevailed when the SQD file was saved.

Open and Edit Opens a text file in the editor window without at-
tempting to running it as an SQ file. You can then inspect it, edit it,
save it, and (if it is an SQ file) run it.

Command Window Displays the command window. The com-
mand window is a window where you can type commands and
evaluate expressions, as well as see the textual output (if any) of
the execution of SQ files. This is especially useful when you de-
velop your own SQ files. On Macintosh, Command Window is in the
Window menu.

Figure Window Displays the figure window. The figure window
is the window where graphics created by SQ scripts or from the
Command window are displayed. On Macintosh, Figure Window is
in the Window menu.

Close Closes the active window. The Figure window and the Com-
mand window are only hidden and can be shown again with the
menu entries described above.

Getting Started 25

Save Saves the current values and settings with a reference to the
SQ file in the current SQD file. For an SQD file to be considered as
"current", it must have been opened, or already saved with Save
As. Otherwise, you must select Save As to provide a file name for
the new SQD file.

Save As Same as Save, but a file name and location is requested.

Save As SQ File Same as Save As, except that an SQ file is written
instead of an SQD file. The SQ file has the advantage of being self-
contained and independent from the original SQ file, and the dis-
advantage of requiring more disk storage and not benefiting from
improvements made to the original SQ file. If the SQ file contains
a help text, the mention Saved as SQ file (default values are new)
is appended to make clear that the SQ file has been modified. You
can edit the SQ file to change the help message (as well as other
elements) if the SQ file author permits you to do so. On Windows,
Save As SQ File is an option of the Save As dialog.

Export Graphics As The contents of the figure window are saved
as an EPS (encapsulated PostScript) or PDF (Portable Document
Format) file, i.e. a high-quality graphics file which can be imported
in many programs.

Reload Reloads the current SQ file. This is especially useful when
developing your own SQ files with an external text editor.

Reset Data Reverts to the default values of the SQ file or the
values of the SQD file.

Dump Data Writes what would be saved in an SQD file by the Save
command to the Command window or panel. Usually, the result
corresponds to the variables used by the SQ file and contains the
numeric values the figures are based on.

Edit SQ File When the figure window of an SQ file is frontmost,
Edit SQ File switches to its source code in a text editor window. You
can inspect the code, modify it and reload it.

Print Prints the contents of the figure window. Depending on the
operating system, it may also be possible to print the command
window or panel, to specify printing options, and to preview what
would be printed.

Recent files The most recent files can be opened without having
to find them with the Open menu entry.

Quit or Exit Quits Sysquake. On macOS, the Quit entry is located
in the Sysquake menu.

26 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Edit

The Edit menu contains the commands which manipulate the clip-
board for data exchange within Sysquake and with other programs,
and the Undo/Redo commands. Note that the command-line interface
(the text window where you can type direct commands) may support
only Undo or no Undo at all, depending on the platform.

Undo Reverts to the situation which prevailed before the last user
action. Most figure interactive manipulation and setting in the Set-
tings menu can be undone. Undo can be used as many times as
memory permits.

Redo Undoes the last undo.

Cut, Copy, Paste, and Clear Standard editing operations. In the
figure window, only Copy is supported; it makes a copy of the se-
lected subplot, or of all the subplots, as graphics (the exact format
depends on the operating system).

Select All Selects all the subplots.

Copy As For SQ files which can export data by copying it to the
clipboard, the submenu items show what can be exported. Once
copied, data can be pasted in another SQ file or another applica-
tion. For example, an SQ file for identifying the parameters of a
model based on experiments performed on a real process may be
copied to the clipboard and pasted into another SQ file for the de-
sign of a feedback controller.

Paste As For SQ files which can import data by pasting it from the
clipboard, the submenu items show what can be imported. Data
which can be imported have typically been copied in another SQ
file, but can also come from another application.

Preferences

Depending on the platform, preferences are grouped in a single dialog
window or available separately from a submenu. On macOS, prefer-
ences are found in the Sysquake menu. Settings are saved and re-
stored the next time Sysquake is launched.

Set SQ file path When an SQD file is opened, Sysquake looks for
the name of the SQ file associated with it. Then it looks first in the
folder of the SQD file, then in prespecified folders to load the SQ file
and set the variables based on the contents of the SQD file. With
Set SQ File Path, you can check and change where Sysquake looks
for SQ files. By default, this is in the folder "SQ_files", itself located

Getting Started 27

Figure 3.5 Preferences submenu

at the same place as Sysquake; but you can change it, or add your
personal folders. Paths also specify where libraries and help files
are searched. Each path is relative to Sysquake, and folders are
separated with new lines.

A path can be:

– The directory which contains the files; the path of the file is
obtained by concatenating this directory and the file name,
with a separator such as / or \ if it is missing.

– A string with character sequences %b, %s and/or %f which are
replaced respectively by the file base name without suffix, the
suffix (extension such as sq for SQ files or lml for libraries),
and the file name with suffix.

The syntax of paths depends on the operating system. On Win-
dows, relative paths begin with a backslash (’\’), and absolute
paths begin with the volume letter followed by a colon (e.g. ’C:’);
each element is separated with a backslash. On macOS, folders
are selected in a dialog window.

On most platforms, Sysquake also supports URL. SQ files and func-
tions defined in libraries obtained with a URL path are executed in
a sandbox. See function path for more details.

Startup commands Startup commands are LME commands exe-
cuted every time Sysquake is launched. Some global settings can
be changed by calling functions: for instance, format sets the way
results are displayed, and defaultstyle sets the default style of
new figures.

Another use is to import libraries at startup. If you often call
functions from the same libraries (such as stdlib for basic

28 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

function which extend the built-in functions of Sysquake or stat
for advanced functions related to statistics), you can add use
statements as startup commands to make them always available:
use stdlib, stat. Functions are imported only for usage in the
command-line interface, not in SQ files which must specify
explicitly the libraries they use.

Memory The memory usage is adjusted automatically when re-
quired. However, depending on your needs, it may be better to
allocate a large amount of memory at startup or to limit the maxi-
mum amount of memory. We recommend that you keep the default
values, except for the minimum memory which can be increased
but should be kept lower than your physical memory for best per-
formances.

Handle SQ files (Windows only) Windows stores information
about which application should be invoked when a document icon
is double-clicked in a central location called the Registry. If you
move Sysquake, or if you install a new version (e.g. by upgrading
from Sysquake to Sysquake Pro), you should tell Windows if you
want the Sysquake which is currently running to open and print SQ
files. You do so by choosing Handle SQ Files. Then the menu entry
is checked and disabled, because you cannot revert your action.
To select another version of Sysquake, run it and select Handle SQ
Files from it.

Interactive figure hilight When selected, the frame around in-
teractive figures (subplots where there are elements which can be
manipulated with the mouse) is displayed in red instead of black.
In many cases, the mouse cursor also changes when the mouse is
over an element which can be manipulated.

Thick lines When selected, all lines in graphics are displayed with
thicker lines. This may be useful for demonstrations.

Figure font A dialog box offers the choice of font for the figures.

Background color A dialog box is displayed to change the back-
ground of figures, between subplots.

Ignore assert In Sysquake programs, the assert function can
help in reporting errors during development. If Ignore Assert is
on, the evaluation of assert is skipped, which can provide slightly
improved performance. Usually, you should switch it on during de-
velopment, and off when using SQ files whose you trust the quality.

Ignore private and hideimplementation attributes of
functions Functions stored in library files can be public, i.e.
accessible from other libraries and SQ files, or private, i.e.

Getting Started 29

available only to other functions in the same library. Their
implementation can be hidden, so that error messages are the
same as for native functions and do not contain information about
the error location; and debugging cannot step into them. If Ignore
private and hideimplementation attributes is on, private functions
can be executed as if they were public and hideimplementation is
ignored. This can be useful for development, to debug functions
from the Command window.

Code Optimization Programming code of SQ files is converted
to an intermediate code for faster execution. Code optimization
further speeds up its execution by replacing some sequences of
code with faster alternatives. Most of the time, you should keep
this option set.

Rate Limit to Mouse Drag and Move Handlers Sysquake pro-
grams often perform repeated computation when the mouse is
moved. When Rate Limit is on, the rate of these computations
is limited to 25 times per second; otherwise, it is limited only by
the processing power of the computer. Limiting the rate can re-
duce the power consumption, with increased battery autonomy on
laptop computers and less fan noise on desktop computers.

SQ File Possible Error Warnings When you develop new SQ
files, Sysquake can help you to find potential problems. In addition
to errors which prevent the SQ file to run at all, which are always
reported, Sysquake can analyze your code and find programming
patterns which are often not intended and cause errors difficult to
find. You should leave this option off for SQ files which are known
to be correct, because warnings do not always correspond to errors
and do not mean that the SQ file has a lower quality.

Default Sandbox Mode for SQ Files SQ files can not only per-
form mathematical calculation, but also access files, network, or
other devices. This makes the execution of SQ files obtained from
trusted sources potentially dangerous. The sandbox is a secure
environment where all commands which could be harmful are dis-
abled. It can be accessed by code with the sandbox function, or
enforced globally for SQ files. The Default Sandbox Mode speci-
fies whether the sandbox mode is enabled when new SQ files are
opened.

Ask Before Closing If you have change the state of an SQ file
(typically by manipulating the graphics interactively) and Ask Be-
fore Closing is on, Sysquake will ask you if you want to save it to
an SQD file when you close the window.

30 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Settings

The Settings menu, available only for some SQ files, contains actions
defined in the current SQ file. These actions typically modify the sys-
tem in a noninteractive way, for example to enter numeric values for
the coefficients of a model or to change the structure of a controller.
SQ files can also redefine the menu name and define several menus.

When a dialog box is displayed, the edit field contains the current
values of one or several parameters, separated by commas. Values
can be real or complex, scalar, vector, matrices, lists, structures, or
inline or anonymous functions. Polynomials are represented by their
coefficients, in decreasing power, in a row vector. Here are some ex-
amples:

Type Example
Real scalar 1, 2.3, -3.2e5
Complex scalar 3i, 1.2-5.4j
Row vector [4,2,6]
Column vector [4;2;6]
Polynomial [1,2,5]
Matrix [1,3;2,8]
Set of polynomials [1,4.9,3.1;1,6.2,2.6]
Identity matrix eye(3)
Range 1:10
List {1,2:5,’abc’}
Structure struct(’A’,[1,2;3,-1],’B’,[3;5])
Anonymous function @(t,tau) 2*exp(-t/tau)

Plots

The Plots menu, available for most SQ files, contains the list of fig-
ures which can be displayed. General-purpose SQ files usually define
figures for everything you might want to observe, but only display a
few of them by default. More specialized SQ files can have one or two
plots which are displayed by default; in this case, the Plots menu is
less useful.

To change one of the figures, first select it (click the selection button
in the toolbar or choose Select in the Figure menu), then choose one
of the entries of the Plots menu. You can change the number of figures
which are displayed simultaneously with the Layout menu (see below).

Figure

The Figure menu (see Fig. 3.6) permits to select one of the five modes
of operation on the figures, as described above, and to change display
options for the selected subplot(s). A subplot is selected either if it has

Getting Started 31

Figure 3.6 Figure menu

been clicked in Select mode, or if it is alone. Depending on the figure,
some options may be disabled.

Manipulate, Zoom, Zoom X, Drag, and Select Selects one of
the modes of operation.

Locked Scale SQ files typically define a default scale for each fig-
ure. The scale may adapt to the figure contents. When you zoom
or drag the figure, the scale is locked. You can unlock the scale of
the selected subplot and revert to the default scale by unselect-
ing Locked Scale; you can also lock an unlocked figure, e.g. if you
want to better observe small amplitude changes when you manip-
ulate another figure. Note that the figure which is manipulated has
always its scale locked during the manipulation.

Log X, Log Y, and dB Y With Log X, the horizontal scale becomes
logarithmic, and negative values are discarded. With Log Y, the
vertical scale becomes logarithmic. dB Y is the same as Log Y as
far as the contents of the figure are concerned; however, the axis
is labeled in dB’s, i.e. a linear scale where a difference of 20 rep-
resents a factor 10 for the data: y’[dB] = 20 log10(y) (decibels
are defined with 10 instead of 20 for powers; the definition used
by Sysquake is valid for voltages, currents, mechanical displace-
ments, etc. which are proportional to the square root of powers).

32 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 3.7 Layout menu

Options The Options submenu has three items which may be en-
abled or disabled. Frame displays a rectangular frame around the
graphics with ticks and a white background. Margin leaves room
around the frame for the title and axis labels. Label displays the
title of the figure. Legend displays the meaning of symbols and col-
ors in figures, provided the feature is implemented in the SQ file.
Legends are located in one of the four corners of figures; they can
be moved with the mouse.

Grid The Grid submenu sets the level of detail of the grid which
is displayed in the back of the selected subplot(s). The availability
and the kind of grid depend on the figure.

Sandbox Mode Sandbox Mode specifies whether potentially
harmful commands (commands which give access to files,
network and devices) are disabled (see above).

Idle Processing Some SQ files perform computations even when
you do not interact with them, for example for animated simula-
tions. The computation may slow down the whole computer. To
suspend it, unselect Idle Processing. Note that the menu entry is
disabled if the SQ file does not implement idle processing.

Layout

The Layout menu (see Fig. 3.7) permits to choose the number of sub-
plots to be displayed simultaneously.

1x1, 1x2, 2x1, 2x2, 2x3, 2x4, 3x2, 3x4, 3x4, 4x4 The corre-
sponding number of subplots is displayed. If some subplots were

Getting Started 33

selected, they are preserved in the new layout; otherwise, the sub-
plots remain at the same position.

Free Instead of being constrained on a regular grid, the subplots
can be freely moved and resized with the mouse (in Select mode).
When the window is resized, all subplots are scaled the same way.

Fixed Size The subplots can be freely moved and resized with the
mouse like with Free layout, but their size and position remain fixed
when the window is resized.

View (Windows)

On Windows, the View menu permits to show or hide toolbars and
panels.

Command Panel The command line interface is available in a sub-
panel of the main window. You can show it or hide it with the menu
entry View/Command Panel. When is it shown, you can resize it by
dragging the separation with the mouse.

Toolbar The toolbar can be hidden or shown. It can also been torn
off or docked with the mouse.

Status Bar The status bar (the region at the bottom of the main
window where status messages are displayed) can be shown or
hidden.

Help

The Help menu provides information about Sysquake with access to
the online version of its user manual and a simple integrated SQ file;
and about the SQ file in the front window. The entry "About Sysquake"
is located in the Sysquake menu on macOS. Selecting it displays infor-
mation about the version of Sysquake and whom it is registered to.

Contextual menu

Some commands which are related to the currently selected figure(s)
are available from a contextual menu, obtained by clicking with the
right button of the mouse (on Macintosh with a single-button mouse,
hold down the Control key and click). The figure becomes selected,
and a contextual menu appears right under the mouse cursor with
commands for choosing the figure and changing the scale and the
grid. This is very convenient to avoid switching to and from the Select
mode.

34 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

3.5 Command-Line Interface

The command-line interface is useful for two purposes:

– as a powerful calculator, where you can type expressions and get
answers;

– as an help for developing, testing and debugging new SQ files.

You can ignore it if you use existing SQ files. Note also that you cannot
add interactivity from the command line; interactivity requires SQ files
(or SQ scripts, which are very close to the commands you can type in
the command-line interface).

The command-line interface, SQ scripts, and SQ files are detailed
in other chapters.

3.6 Interruption Key

The goal of Sysquake is to be as interactive as possible. However,
nothing in its design prevents it from doing long computations, from
the command line as well as in SQ files. You can interrupt it by pressing
the following keys:

On Windows: Break (Control-Pause).

On macOS: Esc or Command-dot (hold down the Command (Ap-
ple) key, then type a dot).

On Linux: Shift-Esc.

When the computations take more than half a second in an SQ file, a
mark is displayed at the bottom left of the window.

3.7 Memory

LME uses a block of memory of fixed size. If a function call requires
more space than the current size of the block allows, e.g. magic(500)
for a 500x500 magic array, an error occurs. However, after the error,
an attempt is made to increase the available memory. If you typed the
command in the command-line interface (see below), you can retry
(use the Up arrow key to retrieve the previous command from the his-
tory buffer). But if the error occurred during the execution of a handler
(a function defined in an SQ file), Sysquake will retry automatically.
This procedure is usually transparent for the user, unless a dialog box
has been presented; in that case, it may be displayed several times
before either enough space is allocated or the maximum amount of
memory is reached.

Getting Started 35

3.8 Extensions

Sysquake is an self-contained application which does not rely on other
files to run, except for the registration file SQ_Reg.key for versions
which require it.

With Sysquake Pro, it is possible to add optional functionality with
the help of extension files. For instance, additional high-quality nu-
meric functions are provided by the file "LMELapack".

At startup, Sysquake scans the folder "LMEExt" located in the same
folder as Sysquake Pro itself and loads all extensions it finds there.
Other files are ignored. Extensions may be removed without harm;
note however that some libraries and SQ files may require them to
run correctly.

3.9 Preference Files

Sysquake retains information about the user preferences between in-
vocations. The location where this information is stored depends on
the platform.

Windows

Preferences are stored in the system registry, in HKEY_CLASSES_ROOT
for information related to the association between Sysquake, its files
and icons (preference "Handle SQ Files" as described above) and in
HKEY_CURRENT_USER/Software/Calerga for other preferences.

macOS

Preferences are stored in the file "com.calerga.sysquake.plist" located
in the preference folder, "̃ /Library/Preferences". The file has the struc-
ture of standard preference files on macOS and can be edited with the
application Property List Editor which comes with the Apple developer
tools.

Linux

Preferences are stored in the home directory in the following files:

.sysquakeprefs Main preferences (text file with pairs
name="value")

.sysquakehistory Past commands, as they can be retrieved with
the up arrow key in the command window, as a text file. Entries
are separated with lines containing two exclamation marks.

36 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

.sysquakestartupcmd Startup commands (text file)

Preferences of other applications of the Sysquake software suite
are stored in ".sqappbuilderprefs", ".sqruntimeprefs", and
".sysquakeleprefs".

3.10 Environment Variables

Environment variables are named strings which can be specified for
each running application. They are supported on many platforms, in-
cluding Windows, macOS and Linux. How they are used and which
name is meaningful depend on the application, its libraries and the
operating system.

In Sysquake, environment variable values are obtained with the
function getenv defined in the Shell extension. In addition, Sysquake
for Linux uses the following environment variables:

HOME Home directory, where preference files are found. This vari-
able is set automatically by Linux.

SYSQUAKEDIR Base directory of Sysquake, where the standard
directories "SQ_files", "Lib" and "LMEExt" are located. If this
variable is not defined, Sysquake attempts to use its own name as
it is provided by the operating system (this works only if Sysquake
is launched by specifying a relative or absolute path, not if the
path is implicitly found in the PATH environment variable); or
as a last resort, the fixed directory "/usr/local/sysquake" or
"/usr/local/sysquakepro".

SYSQUAKEKEY Path of the registration file, whose name
is usually "SQ_Reg.key" or "SQ.key". If this variable is not
defined, the registration file is searched successively in
"SYSQUAKEDIR/SQ_Reg.key", "HOME/.Sysquake/SQ_Reg.key",
"HOME/SQ_Reg.key", and "./SQ_Reg.key", where SYSQUAKEDIR
and HOME are the values of environment variables SYSQUAKEDIR
and HOME respectively, and "." is the current working directory.

X11BROWSER or BROWSER Path of the HTML application to use
to display the documentation. If neither of these variables is
defined, Sysquake tries to execute htmlview, firefox, mozilla,
netscape, opera, and finally konqueror. In versions of Sysquake
which support it, the launchurl command uses the same browser.

Chapter 4

SQ Files

This chapter describes the main SQ files provided with Sysquake. For
other SQ files with a more limited scope, please consult the on-line
documentation.

Automatic Control

PID_ct.sq Continuous-time PID controller.

PID_dt.sq Discrete-time PID controller

RST_ct.sq Continuous-time two-degrees-of-freedom linear
controller.

RST_dt.sq Discrete-time two-degrees-of-freedom linear controller.

LQR_ct.sq Continuous-time two-degrees-of-freedom
linear-quadratic regulator.

Signal Processing

filter.sq Design of analog and digital filters.

id_p.sq Parametric identification.

id_np.sq Non-parametric identification.

4.1 PID_ct.sq

Continuous-time PID controller
PID controllers, or proportional-integral-derivative controllers, are

probably the most popular kind of linear single-input single-output

38 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

controllers. This is justified by their simplicity and their effective-
ness for a large class of systems. Taking as input the difference be-
tween the desired set-point r(t) and the measured system output
y(t) ("error" e(t) = r(t) − y(t)), they have three terms with easy-to-
understand effects which are added up, and three parameters to ad-
just their weights:

– a proportional term (the larger the error, the larger the control
signal to reduce it);

– an integral term (if a nonzero control signal is required to can-
cel out the error, the control signal is increased until the error
vanishes);

– a derivative term (the evolution of the error is anticipated to in-
crease damping).

Weights can be specified either separately for the three terms, or as
a global gain kP and two time values T and TD which do not depend
on the gain of the system. PID_ct.sq uses the latter parameterization.
The control signal (t) is

(t) = kP

�

e(t) +
1

T

∫ t

0
e(t)dt + TD

de

dt
(t)

�

The transfer function of the controller K(s) = U(s)/E(s), where U(s)
and E(s) are the Laplace transforms of y(t) and e(t), respectively, is

K(s) = kP

�

1 +
1

Ts
+ TDs

�

Translating the conceptual simplicity of the PID into an effective
design is not always straightforward. PID_ct.sq displays the graphics
where common specifications can be checked (see Fig. 4.1); you can
manipulate the PID parameters, the controller gain kP in the Bode,
Nyquist, or root locus diagram, or the time values of the integrator
and the derivator in the Bode, root locus, or open-loop poles diagram.

For set-point tracking, filtering the same way the measured out-
put and the set-point by considering only the error e(t) = y(t) − r(t)
does not give a good transient behavior when the set-point is discon-
tinuous. The set-point is usually not differentiated. In addition, the
proportional term of the controller kP applied to the set-point can be
reduced by a factor b smaller than 1. A third common improvement
is to filter the derivative term to limit the amplification of noise at
high frequencies (this is actually required to have a causal controller);
the filter is parameterized with a number N, typically between 10 and
20, which is the bandwidth of the effect of the derivator term. In the
Laplace domain, the control signal is

SQ Files — continuous-time PID 39

Figure 4.1 PID_ct.sq

U(s) = kP

�

bR(s) − Y(s) +
1

Ts
E(s) −

TDs

1 + TDs/N
Y(s)

�

Figures

The figures are the same as those defined for RST_ct.sq, except for
the Open-Loop Zeros and Poles and the Closed-Loop Poles which are
not defined.

Settings

The System, Sampling Period, method for converting to digital con-
troller, and Damping Specification have the same effect as the cor-
responding menu entries defined in RST_ct.sq. Two new entries are
defined.

PID Coefficients
The three parameters of the PID (kP, T and TD) can be edited in
a dialog box. For P, PI, or PD controllers, set the parameter of the
missing component to the empty matrix [].

40 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

No Derivator On Reference

When the input of the PID controller is the error between the set-point
and the measured output, discontinuities of the set-point are differen-
tiated by the derivator component of the PID and yield infinite values
for the control signal (see above).

When No Derivator On Reference is checked, the set-point is not
differentiated.

Display Frequency Line

When selected, moving the mouse above a frequency response (Bode
or sensitivity) will display a corresponding line in other frequency re-
sponses, Nyquist diagrams, and zero/pole diagrams.

4.2 PID_dt.sq

Discrete-time PID controller
The PID controller is fundamentally a continuous-time controller.

However, it is often implemented with digital electronic devices (such
as microcomputers, microcontrollers, or FPGA). Sampling effects may
change performance in subtle ways, especially when the sampling fre-
quency is not very high with respect to the bandwidth of the controlled
system. Instead of converting a continuous-time PID controller, it is
possible to design a PID directly in the discrete-time domain, approx-
imating the integration and derivation by sums and differences, re-
spectively. The parameters of the PID keep their standard meaning.
PID_dt.sq does for discrete-time PID controllers what PID_ct.sq does
for continuous-time PID controllers (see Fig. 4.2). In its simplest form,
the transfer function K(z) of the PID is

K(z) = kP

�

1 +
Ts

T(z − 1)
+ TD

z − 1

Tsz

�

where Ts is the sampling period.
Like the continuous-time PID controller, the discrete-time controller

is usually not implemented like this: the derivative term is not applied
to the set-point, the proportional gain is reduced for the set-point,
and the derivative action is filtered. The transfer function used for
feedback is

K(z) = kP

�

1 +
Ts

T(z − 1)
+

NTD

TD + NTs
·

z − 1

z − TD/(TD + NTs)

�

SQ Files — discrete-time PID 41

Figure 4.2 PID_dt.sq

Figures

The figures are the same as those defined for RST_dt.sq, except for
the Open-Loop Zeros and Poles and the Closed-Loop Poles which are
not defined.

Settings

The System (continuous-time model), System (discrete-time model),
Sampling Period, and Damping Specification have the same effect as
the corresponding menu entries defined in RST_dt.sq. Two new entries
are defined.

PID Coefficients
The three parameters of the PID (kP, T and TD) can be edited in
a dialog box. For P, PI, or PD controllers, set the parameter of the
missing component to the empty matrix [].

No Derivator On Reference
When the input of the PID controller is the error between the set-point
and the measured output, discontinuities of the set-point are differen-
tiated by the derivator component of the PID and yield infinite values

42 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

(or very large values in the case of a discrete-time PID controller) for
the control signal. To avoid that, the set-point is usually not differenti-
ated. The control signal is

(k) = kP

e(k) +
Ts

T

k
∑

=0

e() −
TD

Ts
(y(k) − y(k − 1))

!

Display Frequency Line
When selected, moving the mouse above a frequency response (Bode
or sensitivity) will display a corresponding line in other frequency re-
sponses, Nyquist diagrams, and zero/pole diagrams.

4.3 RST_ct.sq

Continuous-time two-degrees-of-freedom linear controller
RST controllers, or two-degrees-of-freedom linear single-input

single-output controllers, are a more general form of linear controller
than the popular PID controller. Their name comes from the three
polynomials which characterize them. In addition to the feedback
S/R, which permits to reduce the sensitivity to model uncertainties
and to disturbances, the reference signal is filtered by T/R, which
permits better tracking. The two degrees of freedom refer to the
independence between those two filters (their common denominator
does not constitute a constraint). While many linear single-input
single-output controllers (including PID) can be expressed as RST, the
SQ file RST_ct.sq preferred design method is the direct manipulation
of closed-loop poles. Taking into account other quantities, such as
step responses and sensitivities, enables easy and robust design.

First contact

When you open RST_ct.sq from Sysquake (menu File/Open), four fig-
ures are displayed: the closed-loop poles, the Bode magnitude, the
step response, and the Nyquist diagram (see Fig. 4.3). They corre-
spond to a first-order system and a second-order controller with a
scalar feedforward calculated to remove steady-state error. You can
move the closed-loop poles by dragging them with the mouse. You
can also change the gain and the cut-off frequency of the feedback
by dragging the Bode magnitude. Observe what happens when you
drag the poles to the left of the imaginary axis: the closed-loop sys-
tem becomes unstable, the step response becomes very large, and
the Nyquist diagram crosses the critical point -1.

SQ Files — continuous-time RST 43

Figure 4.3 RST_ct.sq

Figures

Step Response Y/U
Open-loop step response, useful to get an idea of the dynamics of the
system.

Impulse Response Y/U
Open-loop impulse response. Depending on the system and the pref-
erences of the user, the impulse response may be better to represent
the dynamics of the system. The presence of an integrator, for in-
stance, may make the step response more difficult to understand.

Step Response Y/R
Tracking closed-loop step response. This step response shows impor-
tant transient behavior of the controlled system, such as the over-
shoot, the rise time, the settling time. The tracking steady-state error
(or lack of it) is also visible. The input/output stability is usually im-
mediately visible, unless a very slow unstable mode is hidden by the
limited range of time. Beware of potential internal unstable modes.

Step Response U/R
Tracking closed-loop step response between the reference signal and
the system input. Risks of saturation, high-frequency modes (ringing),

44 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

and slow or unstable internal modes are clearly visible and complete
the time-domain information obtained with the step response of Y/R.

Step Response Y/W
Input disturbance rejection step response. The disturbance step is
added to the input of the system. This response may be very dif-
ferent from the tracking step response, especially with two-degrees-
of-freedom controllers where the prefilter polynomial T(z) is tuned to
cancel closed-loop poles or to make the tracking faster.

Step Response Y/D
Output disturbance rejection step response. The disturbance step is
added to the output of the system. This response may be very dif-
ferent from the tracking step response, especially with two-degrees-
of-freedom controllers where the prefilter polynomial T(z) is tuned to
cancel closed-loop poles or to make the tracking faster.

Step Response U/D
Step response between an output disturbance and the system input.

Ramp Response Y/R
Tracking closed-loop ramp response. This response may be better
suited to the study of transient behavior and permanent error than
the step response if the real set-point changes with a fixed rate.

Ramp Response Y/D
Tracking closed-loop ramp response between a disturbance and the
system output.

Bode Magnitude and Phase
Open-loop frequency response, displayed as functions of the
frequency expressed in radians per time unit. The cross-over slope of
the magnitude, and the low- and high-frequency open-loop gains give
important insights about the robustness of the controller.

The Bode magnitude can be dragged up and down to change the
gain of the controller.

Nyquist
Open-loop frequency response, displayed in the complex plane. The
phase is expressed in radians. The gain and phase margins are clearly
visible. With high-order systems and controllers, make sure that the
system is stable by inspecting the closed-loop poles, the robustness
margins (where the stability is explicitly checked) or at least a time-
domain response.

SQ Files — continuous-time RST 45

Nichols
Logarithm of the frequency response, displayed in the complex plane.
The phase is expressed in radians. The gain and phase margins are
clearly visible.

The Nichols diagram can be dragged up and down to change the
gain of the controller.

Sensitivity
Closed-loop frequency response between an output disturbance and
the output. Only the amplitude is displayed, which is enough to give
important information about the robustness of the design. Its supre-
mum is the inverse of the modulus margin, which is defined as the
distance between the Nyquist diagram and the critical point -1 in the
complex plane. Peaks and large values of the sensitivity should be
avoided. The sensitivity should be small at low frequency, to make
the behavior of the system insensitive with respect to model uncer-
tainties in the bandwidth.

Clicking in any sensitivity diagram highlights the corresponding
frequency in all the sensitivity diagrams, the Nyquist diagram, the
Nichols diagram, the Bode diagrams, and the open-loop and
close-loop poles plots.

Complementary Sensitivity
Closed-loop frequency response between measurement noise and the
output. Its name comes from the fact that the sum of the sensitivity
and the complementary sensitivity is 1 for any frequency (however,
this does not apply to their amplitude). In the case of a one-degree-
of-freedom controller, the complementary sensitivity is also the fre-
quency response between the set-point and the output. It should be
close to 1 at low frequency, and small at high frequency.

Clicking in any sensitivity diagram highlights the corresponding
frequency in all the sensitivity diagrams, the Nyquist diagram, the
Nichols diagram, the Bode diagrams, and the open-loop and
close-loop poles plots.

Perturbation-Input Sensitivity
Closed-loop frequency response between output disturbance and the
system input. Small values at high frequency reduce the excitation of
the actuators in presence of measurement noise.

Clicking in any sensitivity diagram highlights the corresponding
frequency in all the sensitivity diagrams, the Nyquist diagram, the
Nichols diagram, the Bode diagrams, and the open-loop and
close-loop poles plots.

46 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Open-Loop Zeros/Poles
All the open-loop zeros and poles are represented. The zeros and poles
of the system are represented by black circles and crosses, respec-
tively. The zeros and poles of the free part of the feedback are repre-
sented by red circles and crosses; the zeros and poles of the fixed part
of the feedback are represented by green circles and crosses; the fixed
part of the feedforward polynomial is represented by green squares.
All the zeros and poles of the controller can be manipulated with the
mouse. The system cannot be changed. As an help to cancel some
of the dynamic of the closed-loop system with the feedforward zeros,
the closed-loop poles are displayed as magenta (pink) dots.

Closed-Loop Poles
The closed-loop poles are displayed as black crosses. If there are as
many closed-loop poles as free coefficients in the feedback, they can
be moved; a new controller is calculated by pole placement.

Root Locus
The root locus is the locus of the closed-loop poles when the gain of
the feedback is a positive real number. The zeros and poles of the
feedback are preserved. The open-loop zeros and poles are repre-
sented by black circles and crosses for the system, and red circles and
crosses for the feedback. Feedback zeros and poles can be dragged
to change the controller. The closed-loop poles are represented by tri-
angles. They can be moved on the root locus to change the feedback
gain. If they move beyond open-loop zeros and poles, the sign of the
feedback changes, and the root locus is inverted.

Robustness Margins
The gain margin (in dB) and phase margin (in degrees) are displayed
with the corresponding frequencies (in radians per time unit). For un-
stable open-loop systems, the gain margin can be negative and is a
lower stability limit for the feedback gain. If the closed-loop system is
unstable, no margin is displayed. If the open-loop gain is smaller or
larger than 1 at all frequencies, the phase margin is not displayed.

Discrete-Time Step Resp. Y/R and Y/D
Comparison between the step responses of the closed-loop system
with an analog controller (in light blue) and with a digital controller (in
black). The sampling period can be set by choosing "Sampling Period"
in the Settings menu, or adjusted interactively in the figure "Nyquist
Frequency" (see below).

SQ Files — continuous-time RST 47

Nyquist Frequency
Once an analog RST controller has been designed, it is possible to
choose a sampling frequency for a digital implementation. Then the
dynamic behavior of the closed-loop system will differ from the initial
design. The figure "Nyquist Frequency" displays a Bode diagram of
various transfer functions: the continuous-time system is displayed
in blue, the continuous-time open-loop response in black, and the
discrete-time response of the sampled system (obtained with a zero-
order hold) in red. The Nyquist frequency is displayed as a vertical line
in red, and can be manipulated interactively. If the closed-loop system
is stable, the cross-over frequency is displayed in light blue. Typically,
the Nyquist frequency should be 5-10 times larger.

Settings

System
A continuous-time model can be given as two row vectors which con-
tain the numerator and denominator of a transfer function. Multiple
models can be provided; each model corresponds to a row.

Feedback Coefficients
The coefficients of the numerator and denominator of the feedback
are given as two row vectors. If they are not factors of the feedback
fixed parts (see below), the user is asked whether he wants to modify
them.

Feedback Fixed Parts
The coefficients of the fixed parts of the numerator and denomina-
tor of the feedback are given as two row vectors. The fixed parts
can be used to impose some poles and zeros in the feedback (for in-
stance an integrator with [1,0] in the denominator); they are enforced
during pole placement. The gain is meaningless; only the zeros are
used. When the fixed parts are changed, a new controller is computed
such that the closed-loop poles are preserved. If this is not possible
because there are not enough closed-loop poles to permit pole place-
ment, the variable part of the controller is preserved. If the resulting
controller (product of fixed and variable parts) is non-causal, fast poles
are added.

Two DOFs
The Two DOFs setting is a binary value which enables an arbitrary
feedforward polynomial. Otherwise, the feedforward is set to the same
value as the feedback numerator; this means that the error between

48 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

the system output and the set-point is used as a whole to compute the
system input. When Two DOFs is enabled, the feedforward contains
the zeros of its fixed part (see below), and its gain is calculated to
have a unit gain between the set-point and the system output.

Feedforward Fixed Part
The feedforward fixed part is given as a row vector. It provides all the
zeros of the feedforward; its gain is ignored. The Feedforward Fixed
Part setting is enabled only for two-degrees-of-freedom controllers.

Characteristic Polynomial
The controller can be calculated by specifying directly the character-
istic polynomial, i.e. the denominator of all the closed-loop trans-
fer functions which can be defined, whose roots are the closed-loop
poles. To enter the closed-loop poles, use the poly function (e.g.
poly([-0.8,-1.3+0.3j,-1.3-0.3j])).

In order to obtain a solution for any value of the coefficients, the de-
gree of the characteristic polynomial must be larger than or equal to 2
deg A + deg Rf + deg Sf - 1, where A, Rf and Sf are respectively
the system denominator, the fixed part of the feedback denominator
and the fixed part of its numerator. This lower limit is displayed in
the dialog box. There is no upper limit (from a mathematical point of
view).

Sampling Period
The sampling period is given as a positive pure number. It is used for
the discrete-time step response to show the difference between the
responses with purely continuous-time elements and a digital imple-
mentation with a zero-order hold D/A converter.

Bilinear/Back Rect/For Rect Method
Method used for converting the controller from continuous time to dis-
crete time. Usually, the bilinear method is the best one and permits
lower sampling frequencies.

Damping Specifications
Absolute and relative damping can be specified; they are represented
in the complex plane of the closed-loop poles and the root locus by
red lines. For a stable system, the absolute damping is the time con-
stant of the envelope of the slowest mode; the relative damping is the
absolute damping divided by the oscillation time.

SQ Files — discrete-time RST 49

Display Frequency Line
When selected, moving the mouse above a frequency response (Bode
or sensitivity) will display a corresponding line in other frequency re-
sponses, Nyquist diagrams, and zero/pole diagrams.

4.4 RST_dt.sq

Discrete-time two-degrees-of-freedom linear controller
RST_dt.sq implements the basic tools for the design of classical

controllers for linear SISO discrete-time systems. As a useful exten-
sion to design more robust controllers, the system can be modeled by
several transfer functions. Even if only one nominal model is used, a
very robust controller may be easily obtained with pole placement if
the sensitivity functions are taken into account during the design.

The user can provide either a continuous-time model or a discrete-
time model. In the second case, the discrete-time model is used as is;
the sampling period is used only to scale the times and the frequencies
on the display. In the first case, the continuous-time model is sampled
with a zero-order hold at the sampling frequency. The continuous-
time model is used for the hybrid time responses "Continuous-Time
Step Resp. Y/R" and "Continuous-Time Step Resp. Y/D", which bet-
ter reflects the reality, especially when the sampling period is large
with respect to the system; the curve displayed represents the out-
put of the continuous-time system when the controller is digital and
interfaced with the system through a zero-order hold and a sampler.

First contact

When you open RST_dt.sq from Sysquake (menu File/Open), four fig-
ures are displayed: the closed-loop poles, the Bode magnitude, the
step response, and the Nyquist diagram (see Fig. 4.4). They corre-
spond to a first-order system and a second-order controller with a
scalar feedforward calculated to remove steady-state error. You can
move the closed-loop poles by dragging them with the mouse. You
can also change the gain of the feedback by dragging the Bode mag-
nitude up and down. Observe what happens when you drag the poles
outside the unit circle: the closed-loop system becomes unstable, the
step response becomes very large, and the Nyquist diagram crosses
the critical point -1.

How to use it

Many standard graphics are implemented. Among the possible de-
signs, the easiest to use is pole placement, where the closed-loop

50 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 4.4 RST_dt.sq

poles are moved into the desired region inside the unit circle, the
stability region which plays the same role for discrete-time systems
as the left half-plane for continuous-time systems. Caution must be
exercised about the robustness of the controller, because pole place-
ment itself can lead to extremely unrobust designs. Fortunately, by
observing simultaneously robustness indicators such as the sensitiv-
ity function, the Nyquist diagram or robustness margins, it is easy to
avoid this pitfall.

Figures

Step Response Y/U

Open-loop step response, useful to get an idea of the dynamics of the
system.

Impulse Response Y/U

Open-loop impulse response. Depending on the system and the pref-
erences of the user, the impulse response may be better to represent
the dynamics of the system. The presence of an integrator, for in-
stance, may make the step response more difficult to understand.

SQ Files — discrete-time RST 51

Step Response Y/R
Tracking closed-loop step response. This step response shows impor-
tant transient effects of the controlled system, such as the overshoot,
the rise time, the settling time. The tracking steady-state error (or
lack of it) is also visible. The input/output stability is usually immedi-
ately visible, unless a very slow unstable mode is hidden by the limited
range of time. Beware of potential internal unstable modes.

Step Response U/R
Tracking closed-loop step response between the reference signal and
the system input. Risks of saturation, high-frequency modes (ringing),
and slow or unstable internal modes are clearly visible and complete
the time-domain information obtained with the step response of Y/R.

Step Response Y/D
Disturbance rejection step response. The disturbance step is applied
to the output of the system. This response may be very different from
the tracking step response, especially with two-degrees-of-freedom
controllers where the prefilter polynomial T(z) is tuned to cancel
closed-loop poles or to make the tracking faster.

Step Response U/D
Step response between a disturbance and the system input.

Ramp Response Y/R
Tracking closed-loop ramp response. This response may be better
suited to the study of transient effects and permanent error than the
step response if the real set-point changes with a fixed rate.

Ramp Response Y/D
Tracking closed-loop ramp response between a disturbance and the
system output.

Continuous-Time Step Response Y/R and Y/D
If a continuous-time model of the system is provided, what happens
between the samples can be displayed by the continuous-time step re-
sponses. The continuous-time system input is obtained by converting
the discrete-time samples with zero-order hold. The discrete-time step
responses representing the output is displayed with straight lines join-
ing each samples. This approximates correctly the continuous-time
responses if the sampling period is small enough with respect to the
dynamics of the open-loop system. Otherwise, the continuous-time
responses should be used.

52 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Bode Magnitude and Phase
Open-loop frequency response, displayed as functions of the
frequency expressed in radians per time unit. The cross-over slope of
the magnitude, and the low- and high-frequency open-loop gains give
important insights about the robustness of the controller.

The Bode magnitude can be dragged up and down to change the
gain of the controller.

Nyquist
Open-loop frequency response, displayed in the complex plane. The
phase is expressed in radians. The gain and phase margins are clearly
visible. With high-order systems and controllers, make sure that the
system is stable by inspecting the closed-loop poles, the robustness
margins (where the stability is explicitly checked) or at least a time-
domain response.

Nichols
Logarithm of the frequency response, displayed in the complex plane.
The phase is expressed in radians. The gain and phase margins are
clearly visible.

The Nichols diagram can be dragged up and down to change the
gain of the controller.

Sensitivity
Closed-loop frequency response between an output disturbance and
the output. Only the amplitude is displayed, which is enough to give
important information about the robustness of the design. Its supre-
mum is the inverse of the modulus margin, which is defined as the
distance between the Nyquist diagram and the critical point -1 in the
complex plane. Peaks and large values of the sensitivity should be
avoided. The sensitivity should be small at low frequency, to make
the behavior of the system insensitive with respect to model uncer-
tainties in the bandwidth.

Complementary Sensitivity
Closed-loop frequency response between measurement noise and the
output. Its name comes from the fact that the sum of the sensitivity
and the complementary sensitivity is 1 for any frequency (however,
this does not apply to their amplitude). In the case of a one-degree-
of-freedom controller, the complementary sensitivity is also the fre-
quency response between the set-point and the output. It should be
close to 1 at low frequency, and small at high frequency.

SQ Files — discrete-time RST 53

Perturbation-Input Sensitivity

Closed-loop frequency response between output disturbance and the
system input. Small values at high frequency reduce the excitation of
the actuators in presence of measurement noise.

Open-Loop Zeros/Poles

All the open-loop zeros and poles are represented. The zeros and poles
of the system are represented by black circles and crosses, respec-
tively. The zeros and poles of the free part of the feedback are repre-
sented by red circles and crosses; the zeros and poles of the fixed part
of the feedback are represented by green circles and crosses; the fixed
part of the feedforward polynomial is represented by green squares.
All the zeros and poles of the controller can be manipulated with the
mouse. The system cannot be changed. As an help to cancel some
of the dynamic of the closed-loop system with the feedforward zeros,
the closed-loop poles are displayed as magenta (pink) dots.

Closed-Loop Poles

The closed-loop poles are displayed as black crosses. If there are as
many closed-loop poles as free coefficients in the feedback, they can
be moved; a new controller is calculated by pole placement.

Root Locus

The root locus is the locus of the closed-loop poles when the gain of
the feedback is a positive real number. The zeros and poles of the
feedback are preserved. The open-loop zeros and poles are repre-
sented by black circles and crosses for the system, and red circles and
crosses for the feedback. Feedback zeros and poles can be dragged
to change the controller. The closed-loop poles are represented by tri-
angles. They can be moved on the root locus to change the feedback
gain. If they move beyond open-loop zeros and poles, the sign of the
feedback changes, and the root locus is inverted.

Robustness Margins

The gain margin (in dB) and phase margin (in degrees) are displayed
with the corresponding frequencies (in radians per time unit). For un-
stable open-loop systems, the gain margin can be negative and is a
lower stability limit for the feedback gain. If the closed-loop system is
unstable, no margin is displayed. If the open-loop gain is smaller or
larger than 1 at all frequencies, the phase margin is not displayed.

54 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Settings

System (Continuous-Time Model)
A continuous-time model can be given as two row vectors which con-
tain the numerator and denominator of a transfer function. Multi-
ple models can be provided; each model corresponds to a row. The
continuous-time model is converted to a discrete-time model sam-
pled at the sampling period given in the setting Sampling Period using
a zero-order hold. The continuous-time model is used only by the
continuous-time step responses; all the other figures are based on the
discrete-time models.

System (Discrete-Time Model)
A discrete-time model is given as two row vectors which contain the
numerator and denominator of a transfer function. Multiple models
can be provided; each model corresponds to a row. If a discrete-
time model is provided, the continuous-time model is ignored and the
continuous-time step responses cannot be displayed.

Sampling Period
The sampling period is given as a positive pure number. It is used
for the scale of time- and frequency-domain responses. The unit is
implicit and could be seconds or anything else (minutes, hours, days,
etc.)

Feedback Coefficients
The coefficients of the numerator and denominator of the feedback
are given as two row vectors. If they are not factors of the feedback
fixed parts (see below), the user is asked whether he wants to modify
them.

Feedback Fixed Parts
The coefficients of the fixed parts of the numerator and denominator
of the feedback are given as two row vectors. The fixed parts can be
used to impose some poles and zeros in the feedback (for instance an
integrator with [1,-1] in the denominator); they are enforced during
pole placement. The gain is meaningless; only the zeros are used.
When the fixed parts are changed, a new controller is computed such
that the closed-loop poles are preserved. If this is not possible because
there are not enough closed-loop poles to permit pole placement, the
variable part of the controller is preserved. If the resulting controller
(product of fixed and variable parts) is non-causal, it is delayed with
additional poles at 0.

SQ Files — continuous-time LQR 55

Two DOFs
The Two DOFs setting is a binary value which enables an arbitrary
feedforward polynomial. Otherwise, the feedforward is set to the same
value as the feedback numerator; this means that the error between
the system output and the set-point is used as a whole to compute the
system input. When Two DOFs is enabled, the feedforward contains
the zeros of its fixed part (see below), and its gain is calculated to
have a unit gain between the set-point and the system output.

Feedforward Fixed Part
The feedforward fixed part is given as a row vector. It provides all the
zeros of the feedforward; its gain is ignored. The Feedforward Fixed
Part setting is enabled only for two-degrees-of-freedom controllers.

Characteristic Polynomial
The controller can be calculated by specifying directly the character-
istic polynomial, i.e. the denominator of all the closed-loop trans-
fer functions which can be defined, whose roots are the closed-loop
poles. To enter the closed-loop poles, use the poly function (e.g.
poly([0.8,0.6+0.3j,0.6-0.3j])).

In order to obtain a solution for any value of the coefficients, the de-
gree of the characteristic polynomial must be larger than or equal to 2
deg A + deg Rf + deg Sf - 1, where A, Rf and Sf are respectively
the system denominator, the fixed part of the feedback denominator
and the fixed part of the numerator. This lower limit is displayed in
the dialog box. There is no upper limit (from a mathematical point of
view).

Damping Specifications
Absolute and relative damping can be specified; they are represented
in the complex plane of the closed-loop poles and the root locus by
red lines. For a stable system, the absolute damping is the absolute
value of the slowest pole; the relative damping is the absolute damp-
ing divided by the oscillation time expressed in sampling periods.

Display Frequency Line
When selected, moving the mouse above a frequency response (Bode
or sensitivity) will display a corresponding line in other frequency re-
sponses, Nyquist diagrams, and zero/pole diagrams.

4.5 LQR_ct.sq

Continuous-time linear-quadratic regulator

56 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 4.5 LQR_ct.sq

For linear (or linearized) systems described by a state-space model,
state-feedback controllers can be designed by minimizing a quadratic
cost function which takes into account the error and the input. The
problem with arbitrary fixed weights can be written as an algebraic
Riccati equation; the function care gives its solution if it exists.

First contact

When you open LQR_ct.sq from Sysquake (menu File/Open), four fig-
ures are displayed: the closed-loop eigenvalues, the weights on the
state and the input as sliders, and the time responses of the output
and input of the controlled system with one of the state initial values
set to 1 and the others to 0 (see Fig. 4.5). You can change the weights
with the mouse. To change the state whose initial value is 1, double-
click its figure; a dialog box will be displayed where you can enter the
state number. The state number is associated to the figure; you can
display different responses if you add other time response figures.

Figures

State and Input Weights
The diagonal elements of the state and input weights are displayed as
sliders. You can change them with the mouse. Non-diagonal weights

SQ Files — filter design 57

are zero.

Time Response to Initial Condition y(t)

Output time response of the controlled system. The initial value of
all states is zero, except for one of them which is 1. You can change
which one is 1 by double-clicking the figure.

Time Response to Initial Condition u(t)

Input time response of the controlled system. The initial value of all
states is zero, except for one of them which is 1. You can change which
one is 1 by double-clicking the figure.

Sensitivity

Closed-loop frequency response between a state disturbance and the
output, as a singular value plot. The singular value plot is the equiva-
lent of the Bode diagram for single-input single-output systems.

Settings

Model

A continuous-time model can be given as four matrices A, B, C, and D:

sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s)

Display Frequency Line

When selected, moving the mouse above a sensitivity plot will display
a corresponding line in other sensitivity and eigenvalue plots.

4.6 filter.sq

Design of analog and digital filters
Different filters, defined in continuous time or discrete time. Low-

pass, high-pass, band-pass and band-stop can be adjusted interac-
tively in the frequency magnitude diagram.

58 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 4.6 filter.sq

First contact

A two-by-two array of figures is displayed (see Fig. 4.6). The top row
represents a continuous-time filter, while the bottom row represents
the same filter converted with the bilinear transform. The left col-
umn shows the magnitude of the frequency response of the filter; the
right column shows the zeros (as circles) and the poles (as crosses)
of the filters in the complex plane of the Laplace transform for the
continuous-time filter and of the z transform for the discrete-time fil-
ter. Initially, the filter is a Chebyshev filter, whose bandwidth (vertical
blue line) and bandwidth ripples (horizontal red line) can be manipu-
lated.

Figures

Frequency Response Magnitude
The magnitude of the frequency response of the continuous-time filter
is displayed in black. The limits of the bandwidth (lower and/or higher,
depending on the kind of filter) are displayed as vertical blue lines and
can be manipulated; if the Shift key is held down, both lines are moved
together to keep their ratio constant. If the upper limit is moved to the
left of the lower limit, or if the lower limit is moved to the right of the
upper limit, bandwidth filters become bandstop and vice-versa. For

SQ Files — filter design 59

Chebyshev filters, the lower or upper limit of the ripples is displayed
as a horizontal red line and can be manipulated.

Frequency Response Phase
The phase of the frequency response of the continuous-time filter is
displayed in black.

Poles
In the complex plane of the Laplace transform, the poles of the
continuous-time filter are displayed as crosses, and the zeros as
circles.

Frequency Response Magnitude (discrete-time)
The magnitude of the frequency response of the discrete-time filter is
displayed in black. The limits of the bandwidth (lower and/or higher,
depending on the kind of filter) are displayed as vertical blue lines
and can be manipulated. For Chebyshev filters, the lower or upper
limit of the ripples is displayed as a horizontal red line and can be
manipulated.

Frequency Response Phase (discrete-time)
The phase of the frequency response of the discrete-time filter is dis-
played in black.

Poles (discrete-time)
In the complex plane of the z transform, the poles of the discrete-time
filter are displayed as crosses, and the zeros as circles.

Settings

Kind of filter
The kind of filter can be chosen between Butterworth, Chebyshev (rip-
ples of the magnitude in the bandwidth), or Inverse Chebyshev (ripples
of the magnitude outside the bandwidth).

Lowpass Filter
High frequencies are filtered out.

Highpass Filter
Low frequencies are filtered out.

60 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Bandpass Filter
Low and high frequencies are filtered out, leaving medium frequen-
cies.

Bandstop Filter
Medium frequencies are filtered out, leaving low and high frequencies.

Filter Order
The order of the filter can be entered in a dialog box. Note that large
orders (>10) often result in inaccurate figures, because of numeric
problems.

Transition Frequencies
The lower and upper limits of the bandwidth can be entered in a dialog
box as a vector of two elements. If the lower limit is 0, the filter is low-
pass; if the upper limit is inf, the filter is high-pass. If the lower limit
is larger than the upper limit, the filter is bandstop.

Sampling Period
The sampling period can be entered in a dialog box.

4.7 id_par.sq

Parametric identification

First contact

SQ file id_p.sq provides the identification methods to obtain an ARX
parametric model based on the measured input and output of an un-
known system (see Fig. 4.7). The data can be retrieved from a file
(typically created by an external real-time acquisition program) or gen-
erated by the SQ file.

For didactic purposes, synthetic data can be created for input (t)
and output y(k). Data are obtained by simulating system G(s) =
1/(s2 + 2s + 3) sampled at Ts = 0.1 with a square input and noise
filtered by the model denominator (ARX model). For applications to
real systems, experimental data can be read from files.

The parameters of the following model are identified:

y(t) = q−d
B(q−1)

A(q−1)
(t) +

1

A(q−1)
n(t)

SQ Files — parametric identification 61

Figure 4.7 id_p.sq

where A(q−1) = 1 + 1q−1 + ... + nq−n and B(q−1) = b0 + b1q−1 +
... + bm−1q−m+1. The order of polynomials m and n, and the delay d,
must be specified.

Settings

Create Synthetic Data
Synthetic data are created from scratch. A dialog box allows to choose
the number of samples.

Read Data File
The measurements are read from a text file, typically created by an
acquisition program. This file should contain an array of two column
(separated by spaces or tabulators) by n row (separated by carriage
returns and/or line feeds). The first column corresponds to the sys-
tem input, and the second column to the system output. Each row
corresponds to a sample.

Model Degree
Samples Used For Identification
Not all samples are used for identifications. Remaining samples are
useful for validating the model (cross-validation). The number of sam-

62 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Figure 4.8 id_np.sq

ples used for identification can also be set by manipulating the red
vertical line in figure "Output".

4.8 id_npar.sq

Non-parametric identification

First contact

SQ file id_np.sq provides the identification methods to obtain a non-
parametric model based on the measured input and output of an un-
known system (see Fig. 4.8). Identification can be performed in the
time domain or the frequency domain. The data can be retrieved from
a file (typically created by an external real-time acquisition program)
or generated by the SQ file.

For didactic purposes, synthetic data can be created for input (k)
and output y(k). The input is either white noise (each sample is a
pseudo-random number chosen from a normal distribution), a pseudo-
random binary sequence (each sample is 1 or -1 with a probability of
0.5), or a pseudo-random binary sequence where the probability to
switch at each sample is 0.2 or 0.05 (colored noise). The output is
y(k) = g(k) ? (k) + n(k), where g(k) is the impulse response of a

SQ Files — non-parametric identification 63

transfer function specified by the user (0.1/(z − 0.9) by default) and
n(k) some white noise whose level can be adjusted.

Time-domain identification with correlation analysis

The covariance of the input R and the cross covariance between the
input and the output Ry are calculated. If the input is white, Ry is an
approximation of the impulse response of the system, times a scalar
factor. The input can be whitened with a finite-impulse response (FIR)
filter.

Frequency-domain identification with spectral analysis

The spectrum of the system can be approximated either by dividing
the output’s discrete Fourier transform (FFT) by the input’s, or (bet-
ter if the output is disturbed by noise) by dividing Ry’s FFT (cross
spectrum) by R’s (input’s spectrum). The data can be split, so that
the average of the FFT of each block of data is used. A time window
is applied to each block to reduce the effect of the finite number of
samples.

Remark: the splitting in n sequences is used only by the spectral
analysis. The time window is used for all frequency-domain analysis
methods, while the whitening filter is used only for correlation analy-
sis.

Settings

System

The system used to create synthetic sampled data is given as the nu-
merator and denominator of a discrete-time transfer function in posi-
tive powers of z.

Number of samples

Total number of samples which should be created.

White Noise or Pseudo-Random Binary Sequence

For synthetic data, the system input can be chosen among white noise,
where each sample is the result of a normally distributed pseudo-
random generator, or a pseudo-random binary sequence where the
probability to switch the level at each sample is 50%, 20% or 5%.
With 20% or 5%, the signal is significantly different from white noise.

64 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Whitening Filter
For the correlation analysis, a whitening filter should be used if the
system input is significantly different from white noise. The whitening
filter is a finite-impulse response (FIR) filter whose inverse is the auto-
regressive (AR) model which gives the non-white input. The whitening
filter is not used for frequency-domain identification.

Rectangular/Triangular/Hann/Hamming Window
To reduce the effect of the finite number of samples (aliasing), a non-
rectangular window can be applied to the input and output samples.
The Hann and Hamming windows have a sinusoidal shape. The win-
dows are not used for time-domain identification.

Multiple Sequences
For frequency-domain identification, it may be better to split the avail-
able data and use the different sequences to reduce the variance of
the estimation. The price to pay is the lower resolution of the esti-
mate. The number of sequences is set by moving the green vertical
lines in the input or output figure.

Read Data File
The measurements are read from a text file, typically created by an
acquisition program. This file should contain an array of two column
(separated by spaces or tabulators) by n row (separated by carriage
returns and/or line feeds). The first column corresponds to the sys-
tem input, and the second column to the system output. Each row
corresponds to a sample.

Chapter 5

Introduction to LME

This chapter describes the command-line interface, where you can
type expressions and commands expressed in LME, the language of
Sysquake, and observe the results immediately.

In Sysquake, the Command window offers an alternate user inter-
face which complements interactive graphics programmed with SQ
files. Here are some of the tasks you can perform:

– evaluate expressions;

– store intermediate results in variables;

– call functions defined in libraries or SQ files to debug them, or
simply check their syntax;

– have a quick access to online help.

You can type commands, cut to or paste from the clipboard after the
prompt, and copy from anywhere. When you hit the Return key, ev-
erything after the last prompt is interpreted. The following keys have
a special meaning:

Return Interprets everything from the last prompt.

Shift-Return (Option-Return on macOS) Line break (e.g. for
i=1:10<shift-return> i<shift-return> end<return> to display the
integer numbers from 1 to 10)

Esc Clears the current command.

Up Retrieves the previous command.

Down Retrieves the next command.

Commands you can type in the Command window or panel include:

66 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

– Simple expressions. The result is displayed unless they end with a
semicolon. It is assigned automatically to variable ans (answer),
which lets you reuse it in the next expression.

– Assignments to variables (new variables are created as required,
and are local to the command-line interface).

– Complete loops and conditional constructs.

– Calls to user functions.

The commands you can type are described in the chapter LME Refer-
ence (LME is the name of the language used by Sysquake). You can
also type expressions; LME evaluates them and displays their result
unless you add a semicolon. When you evaluate an expression, its
result is assigned to the variable ans, so that you can reuse it easily.
Here is a simple example which displays four times the sine of three
radians, and then adds 5 to the result (type what is in bold; the plain
characters correspond to what Sysquake displays itself when you hit
the Return key):

> 4*sin(3)
ans =
0.5645

> ans+5
ans =
5.5645

Calls to graphical functions are permitted. On platforms where a single
graphics window is displayed, if an SQ file is already loaded, you can
clear the figures first with the clf command:

> clf
> plot(sin(0:0.1:2*pi))

Functions and constants are usually defined in SQ files or libraries. You
can also do it directly in the command-line interface:

> define g = 9.81;
> t = 3;
> g * t̂ 2
ans =
88.29

You must type the whole definition before evaluating it with the Return
key. Separate the statements either with semicolons or with Shift-
Return (Option-Return on macOS).

> function r=range(x); r=max(x)-min(x);
> range(1:10)
ans =
9

Introduction to LME 67

Functions defined in the command-line interface are in the scope of
library _cli:

> which range
ans =
_cli/range

If you import the definitions in library stat, your definition of range
will be hidden:

> use stat
> which range
ans =
stat/range

Sysquake always use the definition in the library which was imported
the most recently. The order can be checked with info u:

> info u
_cli
stat

To let Sysquake search in _cli before stat, type use _cli:

> use _cli
> info u
stat
_cli

This chapter introduces LME(TM) (Lightweight Math Engine), the inter-
preter for numeric computing used by Sysquake, and shows you how
to perform basic computations. It supposes you can type commands
to a command-line interface. You are invited to type the examples as
you read this tutorial and to experiment on your own. For a more sys-
tematic description of LME, please consult the LME Reference chapter.

In the examples below, we assume that LME displays a prompt >.
This is not the case for all applications. You should never type it your-
self. Enter what follows the prompt on the same line, hit the Return
key (or tap the Eval or Execute button), and observe the result.

5.1 Simple operations

LME interprets what you type at the command prompt and displays
the result unless you end the command with a semicolon. Simple ex-
pressions follow the syntactic rules of many programming languages.

> 2+3*4
ans =

68 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

14
> 2+3/4
ans =
2.75

As you can see, the evaluation order follows the usual rules which
state that the multiplication (denoted with a star) and division (slash)
have a higher priority than the addition and subtraction. You can
change this order with parenthesis:

> (2+3)*4
ans =
20

The result of expressions is automatically assigned to variable ans
(more about variables later), which you can reuse in the next expres-
sion:

> 3*ans
ans =
60

Power is represented by the ˆ symbol:

> 2̂ 5
ans =
32

LME has many mathematical functions. Trigonometric functions as-
sume that angles are expressed in radians, and sqrt denotes the
square root.

> sin(pi/4) * sqrt(2)
ans =
1

5.2 Complex Numbers

In many computer languages, the square root is defined only for non-
negative arguments. However, it is extremely useful to extend the set
of numbers to remove this limitation. One defines  such that 2 = −1,
and applies all the usual algebraic rules. For instance,

p
−1 =

p

2 = ,
and

p
−4 =

p
4
p
−1 = 2. Complex numbers of the form  + b are the

sum of a real part  and an imaginary part b. It should be mentioned
that , the symbol used by mathematicians, is called j by engineers.
LME accepts both symbols as input, but it always writes it j. You can
use it like any function, or stick an i or j after a number:

Introduction to LME 69

> 2+3*j
ans =
2+3j
> 3j+2
ans =
2+3j

Many functions accept complex numbers as argument, and return a
complex result when the input requires it even if it is real:

> sqrt(-2)
ans =
0+1.4142i
> exp(3+2j)
ans =
-8.3585+18.2637j
> log(-8.3585+18.2637j)
ans =
3+2j

To get the real or imaginary part of a complex number, use the func-
tions real or imag, respectively:

> real(2+3j)
ans =
2
> imag(2+3j)
ans =
3

Complex numbers can be seen as vectors in a plane. Then addition
and subtraction of complex numbers correspond to the same opera-
tions applied to the vectors. The absolute value of a complex number,
also called its magnitude, is the length of the vector:

> abs(3+4j)
ans =
5
> sqrt(3̂ 2+4̂ 2)
ans =
5

The argument of a complex number is the angle between the x axis
("real axis") and the vector, counterclockwise. It is calculated by the
angle function.

> angle(2+3j)
ans =
0.9828

70 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

The last function specific to complex numbers we will mention here is
conj, which calculates the conjugate of a complex number. The con-
jugate is simply the original number where the sign of the imaginary
part is changed.

> conj(2+3j)
ans =
2-3j

Real numbers are also complex numbers, with a null imaginary part;
hence

> abs(3)
ans =
3
> conj(3)
ans =
3
> angle(3)
ans =
0
> angle(-3)
ans =
3.1416

5.3 Vectors and Matrices

LME manipulates vectors and matrices as easily as scalars. To define
a matrix, enclose its contents in square brackets and use commas to
separate elements on the same row and semicolons to separate the
rows themselves:

> [1,2;5,3]
ans =
1 2
5 3

Column vectors are matrices with one column, and row vectors are
matrices with one row. You can also use the colon operator to build a
row vector by specifying the start and end values, and optionally the
step value. Note that the end value is included only if the range is a
multiple of the step. Negative steps are allowed.

> 1:5
ans =
1 2 3 4 5
> 0:0.2:1
ans =

Introduction to LME 71

0 0.2 0.4 0.6 0.8 1
> 0:-0.3:1
ans =
0 -0.3 -0.6 -0.9

There are functions to create special matrices. The zeros, ones, rand,
and randn functions create matrices full of zeros, ones, random num-
bers uniformly distributed between 0 and 1, and random numbers nor-
mally distributed with a mean of 0 and a standard deviation of 1, re-
spectively. The eye function creates an identity matrix, i.e. a matrix
with ones on the main diagonal and zeros elsewhere. All of these func-
tions can take one scalar argument n to create a square n-by-n matrix,
or two arguments m and n to create an m-by-n matrix.

> zeros(3)
ans =
0 0 0
0 0 0
0 0 0
> ones(2,3)
ans =
1 1 1
1 1 1
> rand(2)
ans =
0.1386 0.9274
0.3912 0.8219
> randn(2)
ans =
0.2931 1.2931
-2.3011 0.9841
> eye(3)
ans =
1 0 0
0 1 0
0 0 1
> eye(2,3)
ans =
1 0 0
0 1 0

You can use most scalar functions with matrices; functions are applied
to each element.

> sin([1;2])
ans =
0.8415
0.9093

There are also functions which are specific to matrices. For example,
det calculates the determinant of a square matrix:

72 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

> det([1,2;5,3])
ans =
-7

Arithmetic operations can also be applied to matrices, with their usual
mathematical behavior. Additions and subtractions are performed on
each element. The multiplication symbol * is used for the product of
two matrices or a scalar and a matrix.

> [1,2;3,4] * [2;7]
ans =
16
34

The division symbol / denotes the multiplication by the inverse of the
right argument (which must be a square matrix). To multiply by the
inverse of the left argument, use the symbol \. This is handy to solve
a set of linear equations. For example, to find the values of  and y
such that  + 2y = 2 and 3 + 4y = 7, type

> [1,2;3,4] \ [2;7]
ans =
3
-0.5

Hence  = 3 and y = −0.5. Another way to solve this problem is
to use the inv function, which return the inverse of its argument. It is
sometimes useful to multiply or divide matrices element-wise. The .*,
./ and .\ operators do exactly that. Note that the + and - operators
do not need special dot versions, because they perform element-wise
anyway.

> [1,2;3,4] * [2,1;5,3]
ans =
12 7
26 15
> [1,2;3,4] .* [2,1;5,3]
ans =
2 2
15 12

Some functions change the order of elements. The transpose operator
(tick) reverses the columns and the rows:

> [1,2;3,4;5,6]’
ans =
1 3 5
2 4 6

Introduction to LME 73

When applied to complex matrices, the complex conjugate transpose
is obtained. Use dot-tick if you just want to reverse the rows and
columns. The flipud function flips a matrix upside-down, and fliplr
flips a matrix left-right.

> flipud([1,2;3,4])
ans =
3 4
1 2
> fliplr([1,2;3,4])
ans =
2 1
4 3

To sort the elements of each column of a matrix, or the elements of a
row vector, use the sort function:

> sort([2,4,8,7,1,3])
ans =
1 2 3 4 7 8

To get the size of a matrix, you can use the size function, which gives
you both the number of rows and the number of columns unless you
specify which of them you want in the optional second argument:

> size(rand(13,17))
ans =
13 17
> size(rand(13,17), 1)
ans =
13
> size(rand(13,17), 2)
ans =
17

5.4 Polynomials

LME handles mostly numeric values. Therefore, it cannot differenti-
ate functions like ƒ () = sn(e). However, a class of functions has a
paramount importance in numeric computing, the polynomials. Poly-
nomials are weighted sums of powers of a variable, such as 22+ 3−
5. LME stores the coefficients of polynomials in row vectors; i.e. 22+
3 − 5 is represented as [2,3,-5], and 25 + 3 as [2,0,0,0,3,0].

Adding two polynomials would be like adding the coefficient vectors
if they had the same size; in the general case, however, you had better
use the function addpol, which can also be used for subtraction:

74 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

> addpol([1,2],[3,7])
ans =
4 9
> addpol([1,2],[2,4,5])
ans =
2 5 7
> addpol([1,2],-[2,4,5])
ans =
-2 -3 -3

Multiplication of polynomials corresponds to convolution (no need to
understand what it means here) of the coefficient vectors.

> conv([1,2],[2,4,5])
ans =
2 8 13 10

Hence ( + 2)(22 + 4 + 5) = 23 + 82 + 13 + 10.

5.5 Strings

You type strings by delimiting them with single quotes:

> ’Hello, World!’
ans =
Hello, World!

If you want single quotes in a string, double them:

> ’Easy, isn’’t it?’
ans =
Easy, isn’t it?

Some control characters have a special representation. For example,
the line feed, used in LME as an end-of-line character, is \n:

> ’Hello,\nWorld!’
ans =
Hello,
World!

Strings are actually matrices of characters. You can use commas and
semicolons to build larger strings:

> [’a’,’bc’;’de’,’f’]
ans =
abc
def

Introduction to LME 75

5.6 Variables

You can store the result of an expression into what is called a variable.
You can have as many variables as you want and the memory permits.
Each variable has a name to retrieve the value it contains. You can
change the value of a variable as often as you want.

> a = 3;
> a + 5
ans =
8
> a = 4;
> a + 5
ans =
9

Note that a command terminated by a semicolon does not display its
result. To see the result, remove the semicolon, or use a comma if
you have several commands on the same line. Implicit assignment to
variable ans is not performed when you assign to another variable or
when you just display the contents of a variable.

> a = 3
a =
3

> a = 7, b = 3 + 2 * a
a =
7

b =
17

5.7 Loops and Conditional Execution

To repeat the execution of some commands, you can use either a
for/end block or a while/end block. With for, you use a variable
as a counter:

> for i=1:3;i,end
i =
1

i =
2

i =
3

With while, the commands are repeated as long as some expression
is true:

76 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

> i = 1; while i < 10; i = 2 * i, end
i =
2

i =
4

i =
8

You can choose to execute some commands only if a condition holds
true :

> if 2 < 3;’ok’,else;’amazing...’,end
ans =
ok

5.8 Functions

LME permits you to extend its set of functions with your own. This is
convenient not only when you want to perform the same computation
on different values, but also to make you code clearer by dividing the
whole task in smaller blocks and giving names to them. To define a
new function, you have to write its code in a file; you cannot do it from
the command line. In Sysquake, put them in a function block.

Functions begin with a header which specifies its name, its input
arguments (parameters which are provided by the calling expression)
and its output arguments (result of the function). The input and out-
put arguments are optional. The function header is followed by the
code which is executed when the function is called. This code can use
arguments like any other variables.

We will first define a function without any argument, which just
displays a magic square, the sum of each line, and the sum of each
column:

function magicsum3
magic_3 = magic(3)
sum_of_each_line = sum(magic_3, 2)
sum_of_each_column = sum(magic_3, 1)

You can call the function just by typing its name in the command line:

> magicsum3
magic_3 =

8 1 6
3 5 7
4 9 2

sum_of_each_line =
15
15

Introduction to LME 77

15
sum_of_each_column =
15 15 15

This function is limited to a single size. For more generality, let us add
an input argument:

function magicsum(n)
magc = magic(n)
sum_of_each_line = sum(magc, 2)
sum_of_each_column = sum(magc, 1)

When you call this function, add an argument:

> magicsum(2)
magc =
1 3
4 2

sum_of_each_line =
4
6

sum_of_each_column =
5 5

Note that since there is no 2-by-2 magic square, magic(2) gives some-
thing else... Finally, let us define a function which returns the sum of
each line and the sum of each column:

function (sum_of_each_line, sum_of_each_column) = magicSum(n)
magc = magic(n);
sum_of_each_line = sum(magc, 2);
sum_of_each_column = sum(magc, 1);

Since we can obtain the result by other means, we have added semi-
colons after each statement to suppress any output. Note the upper-
case S in the function name: for LME, this function is different from
the previous one. To retrieve the results, use the same syntax:

> (sl, sc) = magicSum(3)
sl =
15
15
15

sc =
15 15 15

You do not have to retrieve all the output arguments. To get only the
first one, just type

78 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

> sl = magicSum(3)
sl =

15
15
15

When you retrieve only one output argument, you can use it directly
in an expression:

> magicSum(3) + 3
ans =

18
18
18

One of the important benefits of defining function is that the variables
have a limited scope. Using a variable inside the function does not
make it available from the outside; thus, you can use common names
(such as x and y) without worrying about whether they are used in
some other part of your whole program. For instance, let us use one
of the variables of magicSum:

> magc = 77
magc =

77
> magicSum(3) + magc
ans =

92
92
92

> magc
magc =

77

5.9 Local and Global Variables

When a value is assigned to a variable which has never been refer-
enced, a new variable is created. It is visible only in the current con-
text: the base workspace for assignments made from the command-
line interface, or the current function invocation for functions. The
variable is discarded when the function returns to its caller.

Variables can also be declared to be global, i.e. to survive the end of
the function and to support sharing among several functions and the
base workspace. Global variables are declared with keyword global:

global x
global y z

Introduction to LME 79

A global variable is unique if its name is unique, even if it is declared
in several functions.

In the following example, we define functions which implement a
queue which contains scalar numbers. The queue is stored in a global
variable named QUEUE. Elements are added at the front of the vector
with function queueput, and retrieved from the end of the vector with
function queueget.

function queueput(x)
global QUEUE;
QUEUE = [x, QUEUE];

function x = queueget
global QUEUE;
x = QUEUE(end);
QUEUE(end) = [];

Both functions must declare QUEUE as global; otherwise, the variable
would be local, even if there exists also a global variable defined else-
where. The first time a global variable is defined, its value is set to
the empty matrix []. In our case, there is no need to initialized it to
another value.

Here is how these functions can be used.

> queueput(1);
> queueget
ans =

1
> queueput(123);
> queueput(2+3j);
> queueget
ans =

123
> queueget
ans =

2 + 3j

To observe the value of QUEUE from the command-line interface, QUEUE
must be declared global there. If a local variable QUEUE already exists,
it is discarded.

> global QUEUE
> QUEUE
QUEUE =

[]
> queueput(25);
> queueput(17);
> QUEUE
QUEUE =

17 25

Chapter 6

SQ Script Tutorial

This chapter shows you how to develop a new SQ script for Sysquake.
SQ scripts are the simplest way to make interactive graphics you can
manipulate with the mouse for new problems. Basically, they are
made from the commands you would type in the command window
to create static graphics, with small changes to support interactive
manipulation.

In the remaining of this chapter, we will develop an SQ script which
displays the quadratic function 2 + b + c and its tangent at a point
the user can manipulate. In the next chapter, we will write an equiv-
alent SQ file, which will be more complicated but support undo/redo
and allow us to add menus.

6.1 Displaying a Plot

In this section, we will write what is necessary to display in the same
graphics the quadratic function, a vertical line which defines a value
for x0, and the straight line which is tangent to the quadratic function
at x0.

An SQ script is written as a text file using any text editor. If you
prefer a word processor, make sure that you save the SQ script as raw
text, or ASCII, and not as styled text. Sysquake handles end of lines
in a sensible fashion; do not worry about the different conventions
between Mac OS, Unix, Windows and other operating systems. For
cross-platform compatibility, restrict yourself to the ASCII character
set, and avoid two-bytes characters like Unicode and Japanese kanji
(depending on the platform, bytes are interpreted as the native en-
coding, such as Latin-1 or Shift-JIS, or UTF-8). Once you have written
and saved a file you want to test, simply open it in Sysquake. Make
sure that the Command window or panel is visible, so that you can see
error messages.

82 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

We can now begin to write the SQ script.

Step 1: Display the quadratic function

Type the following commands in the Command window or panel:

a = 1;
b = 2;
c = 4;
x = -10:0.1:10;
plot(x, a*x.̂ 2+b*x+c);

The assignments set variables a, b and c to the coefficients of the
quadratic function ax̂ 2+bx+c, and variable x to an array of values for
which the function is evaluated. Command plot displays the function.

Step 2: Calculate the tangent line

Let dx+ey=f be the tangent line at x0. Let us calculate d, e and f:

x0 = 1;
d = 2*a*x0+b;
e = -1;
f = (2*a*x0+b)*x0-(a*x0̂ 2+b*x0+c);

Step 3: Display the tangent line

To display the tangent line, we use command line. Note that the
quadratic function is not erased.

line([d,e], f);

Step 4: Write an SQ script

Now that we know how to display our graphics, we can store the com-
mands in an SQ script. We group at the beginning the statements
which initialize the variables we might want to manipulate interac-
tively, for reasons which will be explained in the next step.

a = 1;
b = 2;
c = 4;
x0 = 1;

x = -10:0.1:10;
plot(x, a*x.̂ 2+b*x+c);

SQ Script Tutorial 83

d = 2*a*x0+b;
e = -1;
f = (2*a*x0+b)*x0-(a*x0̂ 2+b*x0+c);

line([d,e], f);

Save this in a file named "tut_scf.sq" and open it in Sysquake. The
graphics will be displayed automatically. Note that you can zoom and
shift it interactively, something you could not do when you created the
graphics from the command line.

6.2 Adding Interactivity

Step 5: Initialize variables only once

Sysquake evaluates the SQ script each time it has to update the graph-
ics. However, there is no need to assign initial values to the variables.
While it does not matter much now, it will become problematic when
we add interactive manipulation of x0. Let us use function firstrun,
which tells whether the script is executed for the first time, to make
the initialization conditional:

if firstrun
a = 1;
b = 2;
c = 4;
x0 = 1;

end

...

Step 6: Add a vertical line at x0

To manipulate the tangency point, we add a vertical line at x0. We
draw it in red, and add an identifier (the last argument) to tell
Sysquake to display a hand when the cursor is near the line.

line([1,0], x0, ’r’, 1);

Step 7: Change x0 when the user manipulates the
line

Now comes the interesting part: interactivity. When the user clicks the
figure, Sysquake evaluates the SQ script continuously until the mouse
button is released. Functions are available to know which object the
mouse is over and where the mouse is. In our case, we will use _id,

84 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

which gives the identifier of the manipulated object (i.e. 1 for the
vertical line), and _x1, which gives the horizontal position of the mouse
in the coordinates of the graphics. We use a switch block to change
x0 only when the user manipulates the vertical line, and we change
x0 before we use it to calculate the tangent line.

The complete SQ script is now

if firstrun
a = 1;
b = 2;
c = 4;
x0 = 1;

end

switch _id
case 1
x0 = _x1;

end

x = -10:0.1:10;
plot(x, a*x.̂ 2+b*x+c);

d = 2*a*x0+b;
e = -1;
f = (2*a*x0+b)*x0-(a*x0̂ 2+b*x0+c);

line([d,e], f);

line([1,0], x0, ’r’, 1);

Click the red line and drag it to the right: the tangent line will follow.

Chapter 7

SQ Script Reference

There are two ways to program interactive graphics for Sysquake: SQ
scripts and SQ files. Both are text files based on LME, Sysquake’s
language. For small programs, SQ scripts are simpler than SQ files,
because they do not require the declarations of variables, figures and
functions; but they have limitations which make them less suitable for
large applications. They should be used only for interactive graphics
when no other form of user interface is necessary. The table below
summaries the differences.

SQ scripts SQ files
Interactive graphics x x
Sliders and buttons x x
Zoom and Shift x x
Multiple synchronized graphics x x
Easy access to variables x
Figure menu x
Settings menu x
Undo/Redo x
Save x
Functions libraries only x
Suitable for long computation x
Help x
Multiple instances on some platforms

Structure of an SQ script

An SQ script is a sequence of LME commands and expressions, very
similar to what could be typed in the command-line interface. The
single command

plot(sin(0:0.1:2*pi));

86 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

is enough to display a sine evaluated for angles between 0 and 2π and
let the user change the axis limits with the Zoom, Zoom-X, and Shift
interactive commands. When the user clicks in the figure window,
Sysquake interprets the mouse action and executes the whole script
again. The script may check whether a graphical element was manip-
ulated (clicked or dragged with the mouse) and react accordingly.

The typical structure of an SQ script which supports the interac-
tive manipulation of graphical element(s) is described below. Code
samples show a typical implementation for manipulating the vertical
position of points; but of course, many variants are possible.

Variable initialization Graphics depend on the value of one or
more variables. This dependence enables interaction. But before
any interaction occurs, the variables must be assigned initial val-
ues. Since the whole script is executed each time the user clicks
with the mouse in the graphics or when the window is resized,
the variable initialization must be performed only once, the first
time the SQ script is run, which can be determined with function
firstrun.

if firstrun
x = 1:10;
y = rand(2,10);

end

Interaction handling The script checks if is called as the result
of the manipulation of a graphical element. Graphical elements
which can be manipulated are usually associated with an identifier
(or ID), an arbitrary positive integer given in the command used
to draw the element. When the user manipulates this element,
the SQ script can retrieve its ID with function _id. When the click
occurs far away from any graphical element with an ID, _id returns
the empty array []. Typically, _id is used in a switch construct.
Other functions give more information about the click, such as its
coordinates:

SQ Script Reference 87

Name Description
_z initial position of the mouse as a complex number
_x initial horizontal position of the mouse
_y initial vertical position of the mouse
_z0 initial position of the clicked element as a complex number
_x0 initial horizontal position of the clicked element
_y0 initial vertical position of the clicked element
_p0 initial position of the clicked element as a 2D or 3D vector
_z1 current position of the mouse as a complex number
_x1 current horizontal position of the mouse
_y1 current vertical position of the mouse
_p1 current position of the mouse as a 2D or 3D vector
_str1 current string parameter
_kx factor the horizontal position is multiplied by (_x1/_x)
_ky factor the horizontal position is multiplied by (_y1/_y)
_kz complex factor the position is multiplied by in the complex plane (_z1/_z)
_q additional data specific to the plot
_m true if the modifier key (Shift key) is held down
_id ID of the manipulated object
_nb number of the manipulated trace (1-based)
_ix index of the manipulated point (1-based)

In our example, the vertical coordinate of the point being manipu-
lated in array y is replaced by the vertical position of the mouse.

switch _id
case 1
y(_nb,_ix) = _y1;

end

Computation The SQ script can call any of the functions and com-
mands of LME to compute the data required for drawing the graph-
ics.

Graphics display All graphics commands of Sysquake are avail-
able, such as plot, line, text, and image. The SQ script should
not call clf to clear the figure window; Sysquake will take care of
this.

Our example just displays in red the lines of matrix y with the plot
command, and it gives them an ID of 1.

plot(x, y, ’r’, 1);

Several subplots can be displayed with command subplot. Com-
mands label and title may be used to add labels.

Here is the complete program, which is probably not very useful but
shows the basic elements of an SQ script (see Fig. 7.1).

88 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

5 10

0.2

0.4

0.6

0.8

Figure 7.1
Basic SQ script. Each point can be moved up and down with the mouse.

if firstrun
x = 1:10;
y = rand(2,10);

end

switch _id
case 1
y(_nb,_ix) = _y1;

end

plot(x, y, ’r’, 1);

Chapter 8

SQ File Tutorial

This chapter shows you how to develop an SQ file for Sysquake. Like
SQ scripts we saw in the previous chapter, SQ files are programs for
Sysquake. But they are built in a stricter framework which provides
automatically undo/redo, save/restore, and subplot layout; it also sup-
ports menus, choice of plots, periodic processing, a mechanism to
compute the minimal amount of information required for the plots dis-
played at a given time, and an import/export system.

Follow each step of this tutorial, and starting from scratch, you will
end up with an SQ file which lets you move the tangent of a quadratic
function, and the knowledge to write your own SQ files. When you
will need more information, you can refer to the Sysquake Reference
chapter.

This tutorial assumes you have a basic knowledge of a procedural
programming language, such as C, Pascal, Fortran, a modern Basic
dialect, or MATLAB(R). The concepts of variable and function are sup-
posed to be well known.

Structure of an SQ file

This tutorial will describe each element when they are used. However,
it is important to notice an important difference between SQ scripts
and libraries, which contain LME code, and SQ files, which begin with
static declarations of the application components, such as data, fig-
ures and menus. In an SQ file, LME code is located in function blocks,
i.e. between the lines

functions
{@

and

@}

90 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Everything else consists of declarations and comments. Some of the
declarations refer to functions defined in function blocks; for instance,
a figure declaration includes the function called to draw it, together
with its arguments. Sysquake reads all the declarations when the SQ
file is loaded in memory; it uses them to reserve space for data, to set
up user interface elements, and execute LME functions when required,
for instance as a consequence of user actions.

8.1 Displaying a Plot

In this section, we will write what is necessary to display in the same
graphics the quadratic function, a vertical line which defines a value
for x0, and the straight line which is tangent to the quadratic function
at x0.

An SQ file is written as a text file using any text editor. If you prefer
a word processor, make sure that you save the SQ file as raw text, or
ASCII, and not as styled text. On some versions of Sysquake, a built-
in editor is available; check if there is a New item in the File menu
(Load lets Sysquake load or reload the text of the front window, while
Open reads an SQ file from a files). Sysquake handles end of lines
in a sensible fashion; do not worry about the different conventions
between Mac OS, Unix, Windows and other operating systems. For
cross-platform compatibility, restrict yourself to the ASCII character
set, and avoid two-bytes characters like Unicode and Japanese kanji
(depending on the platform, bytes are interpreted as the native en-
coding, such as Latin-1 or Shift-JIS, or UTF-8). Once you have written
and saved a file you want to test, simply open it in Sysquake. Make
sure that the Command window or panel is visible, so that you can see
error messages.

We can now begin to write the SQ file.

Step 1: Choosing variables

The most important concept in Sysquake is the set of variables. Vari-
ables define the state of the system (we use the word "system" in a
broad meaning as what the user perceives from the graphics). Every-
thing that can be changed, be it interactively, by specifying param-
eters in a dialog box, or by loading an SQ data file, must be stored
in variables. In addition, auxiliary variables can be used as a conve-
nience to avoid repetitive computations or to transmit values between
handler functions (more about them later). Each variable can contain
a real or complex array, a string, a list, or a structure. Variables are
identified by a name of up to 32 letters, digits, and the underscore
character "_" which begins with a letter (names beginning with the
underscore are reserved). As everything else in Sysquake, names are

SQ File Tutorial 91

case-sensitive; x and X are two different names and identify two sep-
arate variables.

You can declare as many variables as you need. Do not use a big
array to pack as many different things as you can; it is much more
efficient to have a clean set of variables, so that you can use them
and change them more easily.

Sysquake considers the values of the variables as a set. Each time
the user changes a variable (interactively or otherwise), Sysquake cre-
ates a new set and changes the new values. The value of unmodified
variables is retained. The command Undo reverts to the previous set.
This is why you should usually not use global variables, which exist
only in one copy.

For our example, we define variables a, b, and c for the coefficients
of the quadratic function; variables d, e, and f for the tangent d+ey =
ƒ ; and variable x0 for the horizontal position where the line is tangent
to the function.

To let Sysquake know about our choice, we write the following lines
at the beginning of the SQ file:

variable a b c // coefficients of the quadratic function
// y=ax̂ 2+bx+c

variable d e f // coefficients of the tangent dx+ey=f
variable x0 // value of x where the line is tangent

The keyword variable is required; it is followed on the same line by
one or more variable names, separated by spaces or tabulators. Ev-
erything following the two slashes // is a comment which is ignored
by Sysquake.

Step 2: Giving initial values

At the beginning, each variable is set to the empty matrix []. Drawing
functions could recognize them and not display anything, but it is nicer
for the user to start immediately with default values. In Sysquake,
variables are set and used by handler functions. Functions are written
in the LME language, and declared to Sysquake by a handler decla-
ration. Handler declarations and function definitions are very simi-
lar. They both use variables, which do not necessarily have matching
names. Variables in the handler declaration correspond to the set of
variables declared at the level of the SQ file; variables in the func-
tion definition are meaningful only in the function itself. The input
arguments in the handler declarations must be variables or integer
numbers; they cannot be expressions. The handler declaration begins
with a keyword, for example init to define default values. Here is an
init handler for our SQ file:

init (a,b,c,x0,d,e,f) = init

92 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

We will use parenthesis for functions with several output arguments.
You may use square brackets if you prefer. The function declared
above is defined in a function block. We also write a function
calcTangent to calculate the tangent of the quadratic function.

function
{@
function (a,b,c,x0,d,e,f) = init
// initial values for the function coefficients
// and the x0 value
a = 1;
b = 2;
c = 4;
x0 = 1;
(d,e,f) = calcTangent(a,b,c,x0);

function (d,e,f) = calcTangent(a,b,c,x0)
// tangent to y=f(x) at x0 is y-f(x0)=f’(x0)(x-x0),
// where f’ is der f
// derivative of ax̂ 2+bx+c is 2ax+b
d = 2*a*x0+b;
e = -1;
f = (2*a*x0+b)*x0-(a*x0̂ 2+b*x0+c);

@}

Notice the block in {@ @} (function block); now it contains only the
init and calcTangent functions, but we will add more functions in
the next sections. The function block does not need to follow a par-
ticular handler declaration; handlers are identified only by their name.
Usually, we will put the function block after all the declarations. In LME
code it contains (but not in declarations), the percent symbol can be
used instead of the two slashes to begin a comment.

Errors in an SQ file are detected when you open or load it in
Sysquake. To let Sysquake analyze your code and catch constructs
which might be errors, you can select SQ File Possible Error Warnings
in the Preferences. It would be the case if we do not provide initial
values for all variables, or if the order of variables in the init handler
declaration does not match the one in its implementation, here in
function init.

Step 3: Displaying a plot

Each figure is declared by a figure declaration line which contains a
name between quotes, and one or more lines declaring handlers for
drawing the plot and processing the manipulations with the mouse.
For now, we just declare a draw handler (outside the function block),
which needs to know the value of the seven variables.

SQ File Tutorial 93

-10 0 10

50

100

Quadratic Function

Figure 8.1 SQ file figure

figure "Quadratic Function"
draw drawFunc(a,b,c,x0,d,e,f)

The figure displays the quadratic function 2 + b + c. In addition,
the tangent line is displayed in blue, and a red vertical line represents
the position where the blue line is tangent to the function. Do not
worry about the mysterious fourth argument of line; it is an arbitrary
positive identifier which will be used for interactive manipulation.

function drawFunc(a,b,c,x0,d,e,f)
// values of x where the function is evaluated
x = -10:0.1:10;
// plot the function
plot(x, a*x.̂ 2+b*x+c);
// plot in red (’r’) a vertical line at x0
line([1,0],x0,’r’,1);
// plot in blue (’b’) the tangent at x0
line([d,e],f,’b’);

If you have typed all the code above, not forgetting to put the func-
tion drawFunc in the function block, you can open it in Sysquake and
observe your first graphics (see Fig. 8.1). Congratulations!

If you do not specify which figures you want to display when the
SQ file is opened, Sysquake displays the first one. With more than
one, you may want to specify explicitly which one(s) to show. Add a
command subplot to the init handler with the name of the figure:

subplots(’Quadratic Function’);

94 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Make sure that the string matches exactly the name of the figure. To
display several figures, you would separate their names with tabula-
tors (’\t’) for figures on the same row, and with line feeds (’\n’) for
separating each row. The complete SQ file is shown below.

variable a b c // coefficients of the quadratic function
// y=ax̂ 2+bx+c

variable d e f // coefficients of the tangent dx+ey=f
variable x0 // value of x where the line is tangent

init (a,b,c,x0,d,e,f) = init

figure "Quadratic Function"
draw drawFunc(a,b,c,x0,d,e,f)

function
{@
function (a,b,c,x0,d,e,f) = init
// initial values for the function coefficients
// and the x0 value
a = 1;
b = 2;
c = 4;
x0 = 1;
(d,e,f) = calcTangent(a,b,c,x0);
subplots(’Quadratic Function’);

function (d,e,f) = calcTangent(a,b,c,x0)
// tangent to y=f(x) at x0 is y-f(x0)=f’(x0)(x-x0),
// where f’ is der f
// derivative of ax̂ 2+bx+c is 2ax+b
d = 2*a*x0+b;
e = -1;
f = (2*a*x0+b)*x0-(a*x0̂ 2+b*x0+c);

function drawFunc(a,b,c,x0,d,e,f)
// values of x where the function is evaluated
x = -10:0.1:10;
// plot the function
plot(x, a*x.̂ 2+b*x+c);
// plot in red (’r’) a vertical line at x0
line([1,0],x0,’r’,1);
// plot in blue (’b’) the tangent at x0
line([d,e],f,’b’);

@}

SQ File Tutorial 95

8.2 Adding Interactivity

The plot of the previous section is static; until now, we have not seen
anything which makes Sysquake different, except for a slightly more
complicated set-up. We will now dip into interactivity by allowing the
user to move the tangent point and observe the tangent.

Step 4: Writing a mouse drag handler

To enable the manipulation of a graphical element, a mouse drag han-
dler must be declared under the same figure heading as the draw
handler. The mouse drag handler is also a function defined in the
function block. There is an important difference, however: it returns
new values for one or several variables (not necessarily the same as
the input).

Values related to the user interaction are obtained as special vari-
ables which begin with an underscore "_". We want to drag the vertical
red line at x0; hence we need the current x coordinate of the mouse,
and an indication about whether the user selected the line. The hori-
zontal position of the mouse during the drag is given by _x1. A graphic
ID is given by _id; it corresponds to the last argument of graphical
commands like line or plot. If the user clicks far away from any
object drawn by a command with an ID, _id is the empty matrix [].
Since we want the user to drag the vertical line, we expect to have
_id set to 1, the value passed to line in the draw handler.

Special variables can be passed to the handler as input arguments,
or used directly in the handler without any declaration. This is what
we shall do here to reduce the number of arguments to the minimum.

mousedrag (x0,d,e,f) = dragX0(a,b,c)

The mousedrag handler should calculate not only the new value of x0,
but also all other variables which depend on it, i.e. the coefficients of
the tangent. The update of the graphics is totally automatic, and you
get a multilevel Undo/Redo for free!

function (x0,d,e,f) = dragX0(a,b,c)
if isempty(_id)
cancel;

end
x0 = _x1;
(d,e,f) = calcTangent(a,b,c,x0);

In this definition (located in the function block), we note the check for
an empty id. If we do not click the red line, the handler should not
terminate normally; even if we kept the previous values, a new Undo
frame would be created, and the first execution of Undo would have
no visible effect.

96 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

If you type the code above, you have a figure where you can ma-
nipulate the vertical line with the mouse and see the tangent move.

Step 5: The final touch, a mouseover handler

Interactive manipulation is much easier if subtle hints about what can
be manipulated are displayed. Such hints include the shape of the
cursor, which should be a finger only if a click permits the manipu-
lation of an element, and messages in the status bar at the bottom
of the window. The mouseover handler, which is called in Manipulate
mode when the mouse is over a figure, gives this kind of information to
Sysquake. The input arguments are similar to the mousedrag handler.
The output arguments are special: they should be _msg, _cursor, or
both. _msg should be set to a string which is displayed in the status
bar. _cursor should be set to true to have a finger cursor, and to false
to have the plain arrow cursor. Canceling the mouseover handler is
like setting _msg to the empty string ’’ and _cursor to false. Note
also that if a figure has a mousedown, mousedrag, and/or mouseup
handler, but no mouseover handler, the cursor will be set to the fin-
ger.

In our case, the user can manipulate the only object with a non-
empty id. There is no need to define a function for such a simple task:

mouseover _cursor = ĩsempty(id)

Adding messages is not much more complicated, but now we must
define a function. To display the value of x0, we can use either the
position of the vertical line or the value of x0. The special variable
_x0 is the position of the line, not the position of the mouse as in
the declaration of the mousedrag handler. The early cancellation of
the execution of the handler is easier (and faster) to handle the case
where the mouse in not over an object. The handler definition is

function (_msg, _cursor) = overFunc
if isempty(_id)

cancel;
end
_msg = sprintf(’x0: %g’, _x0);
_cursor = true;

and its declaration is

mouseover (_msg, _cursor) = overFunc

There is still a problem: the message is not displayed when the user
actually drags the vertical line, because the mouseover handler is not
called when the mouse button is held down. For this, _msg must be
added to the mousedrag handler. One way to do this is to declare the
handler as

SQ File Tutorial 97

mousedrag (x0,d,e,f,_msg) = dragX0(a,b,c)

and to define it as

function (x0,d,e,f,msg) = dragX0(a,b,c)
if isempty(_id)
cancel;

end
x0 = _x1;
(d,e,f) = calcTangent(a,b,c,x0);
msg = sprintf(’x0: %g’, x0);

8.3 Menu Entries

It may be useful to set the value of some parameters with a menu
entry. In our case, it would be difficult to specify in a figure the coeffi-
cients of the quadratic function. An SQ file can define menu handlers;
new entries are installed in the Settings menu (which appears only if
it is not empty), and the corresponding handler is executed when the
entry is selected in the menu.

Let us add a menu entry which displays a dialog box where we can
change the coefficients. First, we declare it with

menu "Quadratic Function..."
(a,b,c,d,e,f) = menuFunc(a,b,c,x0)

The input arguments allow to display the current values and to calcu-
late the new tangent for the current value of x0. Note how lines can
be split between its components. Here is the handler definition:

function (a,b,c,d,e,f) = menuFunc(a,b,c,x0)
(a,b,c) ...
= dialog(’Coefficients a,b,c of ax̂ 2+bx+c:’,a,b,c);

(d,e,f) = calcTangent(a,b,c,x0);

The dialog function displays three kinds of alert or dialog boxes, de-
pending on the number of input and output arguments. As we use it
here, the first argument is a description, and the remaining input ar-
guments are initial values which are displayed in an edit field. They
can be modified by the user. When the OK button is clicked, the dialog
box is dismissed and the output arguments receive the new values. If
the Cancel button is clicked, the execution of the handler is aborted
exactly as if the cancel command had been executed.

Each menu entry can be decorated in two ways: a checkmark can
be displayed on the left, and the entry can be disabled (it cannot be
selected and the text is written in gray). It does not make sense to use
these possibilities with our first menu. Let us add support to choose

98 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

whether the position of x0 is displayed with a vertical line or a small
diamond. First, we add a variable whose value is true for a line and
false for a diamond.

variable x0Line

We initialize it to true in the init handler, whose declaration becomes

init (a,b,c,x0,d,e,f,x0Line) = init

and definition

function (a,b,c,x0,d,e,f,x0Line) = init
// initial values for the function coefficients
// and the x0 value
a = 1;
b = 2;
c = 4;
x0 = 1;
(d,e,f) = calcTangent(a,b,c,x0);
subplots(’Quadratic Function’);
// x0 is displayed as a line
x0Line = true;

The draw handler should get the new variable and act accordingly.
Here is the new drawFunc handler declaration:

draw drawFunc(a,b,c,x0,d,e,f,x0Line)

and its definition:

function drawFunc(a,b,c,x0,d,e,f,x0Line)
// values of x where the function is evaluated
x = -10:0.1:10;
// plot the function
plot(x, a*x.̂ 2+b*x+c);
if x0Line
// plot in red (’r’) a vertical line at x0
line([1,0],x0,’r’,1);

else
// plot in red (’r’) a diamond (’<’) at (x0,f(x0))
plot(x0,a*x0̂ 2+b*x0+c,’r<’,1);

end
// plot in blue (’b’) the tangent at x0
line([d,e],f,’b’);

The mousedrag handler needs no modification. Now the most inter-
esting part. We add two menu entries, declared as

separator
menu "Line" _checkmark(x0Line) x0Line = 1
menu "Diamond" _checkmark(̃ x0Line) x0Line = 0

SQ File Tutorial 99

The separator adds a horizontal line or a space between the first
menu entry and these two new elements. Between the entry title
and the handler declaration, the _checkmark keyword is used to tell
Sysquake to display a check mark if the expression is parenthesis is
true. This expression may be more complicated than a variable; for
the second entry, we use the not operator, so that depending on the
value of x0Line, either one or the other is checked. No handler defini-
tion is needed here, because we set x0Line to a constant. In handler
declarations, only integers are permitted; fortunately, setting x0Line
to 1 or 0 works fine.

Here is the complete SQ file:

variable a b c // coefficients of the quadratic function
// y=ax̂ 2+bx+c

variable d e f // coefficients of the tangent dx+ey=f
variable x0 // value of x where the line is tangent
variable x0Line

init (a,b,c,x0,d,e,f,x0Line) = init

menu "Quadratic Function..."
(a,b,c,d,e,f) = menuFunc(a,b,c,x0)

separator
menu "Line" _checkmark(x0Line) x0Line = 1
menu "Diamond" _checkmark(̃ x0Line) x0Line = 0

figure "Quadratic Function"
draw drawFunc(a,b,c,x0,d,e,f,x0Line)
mousedrag (x0,d,e,f,_msg) = dragX0(a,b,c)
mouseover (_msg,_cursor) = overFunc

function
{@
function (a,b,c,x0,d,e,f,x0Line) = init
// initial values for the function coefficients
// and the x0 value
a = 1;
b = 2;
c = 4;
x0 = 1;
(d,e,f) = calcTangent(a,b,c,x0);
subplots(’Quadratic Function’);
// x0 is displayed as a line
x0Line = true;

function (d,e,f) = calcTangent(a,b,c,x0)
// tangent to y=f(x) at x0 is y-f(x0)=f’(x0)(x-x0),
// where f’ is der f
// derivative of ax̂ 2+bx+c is 2ax+b
d = 2*a*x0+b;

100 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

e = -1;
f = (2*a*x0+b)*x0-(a*x0̂ 2+b*x0+c);

function (a,b,c,d,e,f) = menuFunc(a,b,c,x0)
(a,b,c) ...
= dialog(’Coefficients a,b,c of ax̂ 2+bx+c:’,a,b,c);

(d,e,f) = calcTangent(a,b,c,x0);

function drawFunc(a,b,c,x0,d,e,f,x0Line)
// values of x where the function is evaluated
x = -10:0.1:10;
// plot the function
plot(x, a*x.̂ 2+b*x+c);
if x0Line
// plot in red (’r’) a vertical line at x0
line([1,0],x0,’r’,1);

else
// plot in red (’r’) a diamond (’<’) at (x0,f(x0))
plot(x0,a*x0̂ 2+b*x0+c,’r<’,1);

end
// plot in blue (’b’) the tangent at x0
line([d,e],f,’b’);

function (x0,d,e,f,msg) = dragX0(a,b,c)
if isempty(_id)

cancel;
end
x0 = _x1;
(d,e,f) = calcTangent(a,b,c,x0);
msg = sprintf(’x0: %g’, x0);

function (_msg,_cursor) = overFunc
if isempty(_id)

cancel;
end
_msg = sprintf(’x0: %g’, _x0);
_cursor = true;

@}

8.4 More about graphic ID

Graphic ID have an important role: they permit to link drawing code
in the draw handler with the code which handles user interactions in
the mousedrag and mouseover handlers. Graphic are arbitrary posi-
tive integer numbers. Their value is not important, provided they are
unique in each figure and they are used in a consistent way.

SQ File Tutorial 101

Graphic ID in declarations

In the SQ file of the tutorial, the ID is used only to detect if the mouse
is located near the corresponding graphical object or not. In more
complicated cases where multiple graphical objects with different ID
are displayed in the same figure, mousedrag and mouseover handlers
would typically have a switch statement to react in a different way for
different objects. There is an alternative way to let Sysquake choose
which part of code to execute, which often leads to simpler SQ files:
specify the ID in the handler declaration, right after the mousedrag
or mouseover declaration. In our SQ file, the figure declaration would
become

figure "Quadratic Function"
draw drawFunc(a,b,c,x0,d,e,f,x0Line)
mousedrag 1 (x0,d,e,f,_msg) = dragX0(a,b,c,_x1)
mouseover 1 _msg = overFunc(_x0)

and the definition of function dragX0

function (x0,d,e,f) = dragX0(a,b,c,x1)
x0 = x1;
(d,e,f) = calcTangent(a,b,c,x0);

If there were multiple graphical objects with different ID, the figure
declaration would have multiple mousedrag handlers. It is also pos-
sible to keep a default mousedrag handler (without ID) for remaining
objects and for mouse clicks elsewhere in the figure.

Mouseover handlers can also have a specific ID. But there is an
additional benefit: the cursor is set automatically to the finger over
objects with an ID for which a mousedrag is declared, and to a plain
arrow elsewhere. This is why the declaration of the mouseover above
does not produce a _cursor output argument anymore.

Constant naming

In programs, a good practice is to give names to all significant con-
stants, especially if they are reused at different locations. LME pro-
vides the define programming construct to create named constants.
In SQ files, define can also be used outside any function block, so that
it has a scope in both declarations and LME code. The special value
_auto is set successively to 1, 2, etc.; its main purpose is to produce
unique values for constants used as graphic ID. For instance

define kLowId = _auto
define kHighId = _auto

defines kLowId as 1 and kHighId as 2. Here is again the complete
code of the tutorial SQ file.

102 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

variable a b c // coefficients of the quadratic function
// y=ax̂ 2+bx+c

variable d e f // coefficients of the tangent dx+ey=f
variable x0 // value of x where the line is tangent
variable x0Line

define kLineId = _auto

init (a,b,c,x0,d,e,f,x0Line) = init

menu "Quadratic Function..."
(a,b,c,d,e,f) = menuFunc(a,b,c,x0)

separator
menu "Line" _checkmark(x0Line) x0Line = 1
menu "Diamond" _checkmark(̃ x0Line) x0Line = 0

figure "Quadratic Function"
draw drawFunc(a,b,c,x0,d,e,f,x0Line)
mousedrag kLineId (x0,d,e,f,_msg) = dragX0(a,b,c)
mouseover kLineId _msg = overFunc(_x0)

function
{@
function (a,b,c,x0,d,e,f,x0Line) = init
// initial values for the function coefficients
// and the x0 value
a = 1;
b = 2;
c = 4;
x0 = 1;
(d,e,f) = calcTangent(a,b,c,x0);
// x0 is displayed as a line
x0Line = true;

function (d,e,f) = calcTangent(a,b,c,x0)
// tangent to y=f(x) at x0 is y-f(x0)=f’(x0)(x-x0),
// where f’ is der f
// derivative of ax̂ 2+bx+c is 2ax+b
d = 2*a*x0+b;
e = -1;
f = (2*a*x0+b)*x0-(a*x0̂ 2+b*x0+c);

function (a,b,c,d,e,f) = menuFunc(a,b,c,x0)
(a,b,c) ...
= dialog(’Coefficients a,b,c of ax̂ 2+bx+c:’,a,b,c);

(d,e,f) = calcTangent(a,b,c,x0);

function drawFunc(a,b,c,x0,d,e,f,x0Line)
// values of x where the function is evaluated
x = -10:0.1:10;

SQ File Tutorial 103

// plot the function
plot(x, a*x.̂ 2+b*x+c);
if x0Line
// plot in red (’r’) a vertical line at x0
line([1,0],x0,’r’,kLineId);

else
// plot in red (’r’) a diamond (’<’) at (x0,f(x0))
plot(x0,a*x0̂ 2+b*x0+c,’r<’,kLineId);

end
// plot in blue (’b’) the tangent at x0
line([d,e],f,’b’);

function (x0,d,e,f) = dragX0(a,b,c,x1)
x0 = x1;
(d,e,f) = calcTangent(a,b,c,x0);

function msg = overFunc(x0)
msg = sprintf(’x0: %g’, x0);

@}

8.5 Saving Data

Once the user has changed the tangent point, he might find conve-
nient to save it to a file and read it back later. In the SQ file, nothing
more is required; the contents of all the variables as well as the in-
formation necessary to restore the subplots are written to an SQ data
file with the Save command. Opening such a file reloads everything
provided that the original file is found. If more control is desired on
what is stored in the SQ data file and how it is read back, input and
output handlers can be added.

Chapter 9

SQ File Reference

This chapter describes the syntax of SQ files, the "programs" run by
Sysquake, and the contents of SQ Data files (files with a .sqd suffix),
which store the state of a session with an SQ file.

9.1 SQ Files

SQ files define the set of interactive plots which can be displayed.
Each SQ file corresponds to a specific kind of problem; for instance,
one could have SQ files for the design of a digital filter or a PID con-
troller for continuous-time systems, for the study of the effect of initial
conditions on a simulation, and so on.

SQ files are text files. You can write them using any text editor or
word processor. Make sure that you save them as plain ASCII files,
without any style or formatting information; depending on the appli-
cation, this option is called Text Document, Text Only, ASCII File, or
an equivalent expression. Also, do not rely on automatic word wrap-
ping; make sure that all lines end with an explicit end-of-line character.
Sysquake accepts carriage returns, line feeds, or both, to accommo-
date for the text file formats found on different operating systems.

SQ files contain different kinds of elements:

Declaration of variables Variables are used as parameters for
the figures, menu item actions, etc. Manipulating a figure changes
some of the variables, and all the figures currently displayed are
updated to reflect the changes. These variables, called Sysquake
variables, must not be confounded with LME variables (variables
used without declaration in LME functions).

Definition of constants Integer literal values can be given a
name to make the code clearer. These definitions are visible in
the declaration part of SQ files as well as in function definitions.

106 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Declaration of handlers Handlers are expressions executed to
perform different tasks managed by Sysquake, such as initializa-
tion, figure manipulation, menu selection, etc. They have the same
syntax as LME assignments, or expressions if no result is to be
used. As input and output, they use Sysquake variables as well as
values managed directly by Sysquake, such as the position of the
mouse. Variables in the left-hand side of assignments cannot use
indexing or structure field access. Values managed by Sysquake
are identified with a name beginning with an underscore; they can
be used either directly in the handler declaration, or indirectly in a
function called in a handler declaration.

Function definitions Handlers are implemented by functions
written in LME, an interpreted language well suited for numeric
computation.

Help A textual description can be provided in SQ files. Sysquake
displays it upon user request.

Syntax

SQ files contain declarations, blocks of text, and comments. Declara-
tions are always placed at the beginning of a line; they start with a
keyword, and are usually followed by other elements. Here is the list
of keywords:

beginmenu
beginsubmenu
data
define
draw
dragin
dragout
embeddedfile
endmenu
endsubmenu
export
extension
fighandler
figure
function

functions
help
idle
import
init
input
keydown
make
menu
mousedown
mousedoubleclick
mousedrag
mousedragcont
mouseout
mouseover

mousescroll
mouseup
output
publichandler
resize
separator
terminate
title
use
userinterface
variable
variables
version
watch

Remark: all these keywords are supported on all versions of
Sysquake to assure the compatibility of SQ files. However, import,
export and extension declarations have an effect only on the full
version of Sysquake.

SQ File Reference 107

Declarations must be either contained on a single line or split into
several lines with the continuation characters ... at the end of the
first line(s):

variable a, b, ...
c, d, e

Many keywords are followed by handler declarations. These handlers
are implemented in LME code in a functions block and may accept in-
put arguments and output arguments. Arguments may be variables
declared in the SQ file, special arguments beginning with an under-
score, or (for the input arguments) integer numbers or named con-
stants. In some case, handler declarations may be reduced to a simple
assignment such as y=x or num=3. Expressions are not allowed.

Comments are either enclosed between /* and */ or span from //
or % to the next end of line. They cannot be nested.

Declaration of Variables

Variables defined at the level of the SQ file play a very important role in
Sysquake. They are global; all handlers can use them as input and/or
output arguments. They are preserved between handler executions.
They contain the whole state of Sysquake; together with the SQ file
itself, they permit to restore what appears in the Figure window, and
are used in the Save mechanism. Finally, they are the base of the
Undo system, which enables the user to cancel the last operations
(such as manipulating a figure with the mouse, changing a subplot or
entering numeric values in a dialog box) and redo them.

Variables are declared with the variable (or variables) keyword,
followed by one or several variable names separated by commas or
spaces. They can contain any data type supported by LME, such as
numbers, arrays, strings, structures, etc. Variables are always defined;
variables whose value has not been set explicitly contain the empty
array []. Variable names are made of letters, digits and underscores;
they begin with a letter, and case is significant, like everywhere else
in Sysquake. Names beginning with an underscore are reserved for
special purposes and should not be used for variables.

Five variables are managed by Sysquake and cannot be used in
handlers: _plots, a string which contains the name of the subplots
(see function subplots); _plotprops, an array which contains the
properties and scaling of each subplot (see function subplotprops);
_plotpos, an array which contains the position of subplots when Free
Position is enabled (see function subplotpos); _plotsync, an array
which defines which and how subplot scales are synchronized (see
function subplotsync); and _plotparam, a list whose elements are
arbitrary data specific to each subplot (see function subplotparam).

108 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

They are revealed when the state of Sysquake is saved to SQ Data
files.

Example
variable x
variables num den

Variables can be initialized in the init handler(s) (see below), or di-
rectly in the variable declaration; in that case, only one variable can
be declared and initialized for each declaration statement, and the ex-
pression on the right of the equal character must not depend on other
variables.

Example
variable x = 2
variable vec = 1:10

If the expression on the right of the equal character depends on other
variables, the variable on the left is declared, and the assignment is
treated as a make handler (see below), i.e. the assignment is per-
formed everytime the variable is used and its dependencies have
changed.

Variables can be declared nondumpable to prevent Sysquake from
saving and restoring them, be it with the Undo/Redo mechanism or
with Save and Open. Nondumpable variables can be used and mod-
ified like any other variable; however, modifying them with any han-
dler will prevent Undo from restoring their previous state, and Save
(or Dump Data) will skip their value (the saving mechanism is de-
tailed later in this chapter). Variables which should be declared as
nondumpable include file descriptors for files and serial port connec-
tions: a file descriptor is only valid if the corresponding file or device
has been opened with fopen or similar functions for devices.

Nondumpable variables are declared with the keyword
_nondumpable following immediately variable. No comma may
precede or follow _nondumpable. Dumpable and nondumpable
variables may not be mixed in the same declaration.

Example
variables _nondumpable fd, connection

Declaring variables explicitly incites to plan how they will be used as
the glue between the different handlers. It makes easier the docu-
mentation; each variable can be commented, and their enumeration,
if self-explanatory names are chosen, is itself an important help for
future maintenance. But in case where small scripts are preferred
(maybe as a compact version for on-line distribution), implicit decla-
rations are also possible. Implicit declarations are enabled as follows:

SQ File Reference 109

variable _implicit

When implicit declarations are enabled, all the variables appearing in
handler declarations are managed by Sysquake exactly as if they had
been declared explicitly in variable statements. Implicit variables
cannot have the _nondumpable attribute; however, you can declare
only the nondumpable variables and have a variable _implicit
declaration for all other variables.

Definition of constants

Some numbers are used as identifiers at different places. For in-
stance graphical objects which can be manipulated with the mouse
are tagged with an identifier when they are displayed, and this iden-
tifier is used to recognize them when the user clicks them. Numeric
ID can be replaced with more meaningful names with constant defi-
nitions. Constant definitions begin with the keyword define, followed
by the identifier, the equal character, and the integer value or the
keyword _auto. Constants defined with _auto are numbered consec-
utively from 1. In the example below, kGainID is 1, kDelayID is 2,
etc.

Example
define kGainID = _auto
define kDelayID = _auto
define kMassID = _auto
define kYMaxID = 1000

The definition is valid not only in the declaration part of SQ files every-
where an integer number could appear, but also in functions defined
in function blocks. If the definition is placed inside a function block, it
cannot be referenced in handler declarations.

Init and Terminate Handlers

The purpose of init handlers is to provide default values for the vari-
ables and the plot options. Variables are initialized with the values
returned by the init handler(s); other variables (those not enumerated
in the left-hand part of init handler declarations) are set to the empty
array []. Initial plots are set up with commands subplots, subplot-
props, subplotpos, scalesync or subplotsync, and subplotparam.
By default, the first figure is displayed. The same functions can be
used without any argument to retrieve the corresponding values; this
is especially useful to store these settings in a data file.

110 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
function [A,B,R,S] = init
// default values for A, B, R and S
A = [1,1];
B = 1;
R = 1;
S = 5;

// default plots
subplots(’roots\tstep’);

// kind of plots, separated with tabs and line feeds
// (one row of two subplots)

props = [0,-2,0,-1,1 // lin. scale, zoom on [-2,0,-1,1]
0,nan,nan,nan,nan]; // default lin. scale

subplotprops(props);

When variables are initialized separately, i.e. when the init handler
does not return multiple output arguments, and the initialization ex-
pression does not depend on another variable, initialization can be
done in the variable declaration statement. The following declaration

variable x = 2

is equivalent to

variable x
init x = 2

Should resources be allocated by the init handler, a terminate handler
can be defined to release them. This is necessary only if commands
with side effects are used, for instance if a file is opened by the init
handler. The terminate handler is declared like other handlers. Output
variables are useless, because the variables are discarded immedi-
ately after its execution.

terminate termFn(var)

Example
Here is an example of init and terminate handlers which open and
close a file, respectively. Other handlers can read from or write to the
file. In this example, a custom input handler should be written to avoid
resetting the value of the file descriptor fd (see below).

variable fd

init fd = init
terminate terminate(fd)

SQ File Reference 111

functions
{@
function fd = init

fd = fopen(’data.txt’, ’rt’);

function terminate(fd)
fclose(fd);

@}

Multiple init and terminate handlers can be declared; they are all exe-
cuted in the same order as they are declared.

Resize handler

The resize handler is a function called when the dimensions of the area
where the figures are displayed are changed. This occurs typically
when the user resizes the window. The resize handler is declared with
the keyword resize. Two special input arguments can be used to
retrieve the new size of the subplots area:

Name Description
_height height of the subplots area in pixels
_width width of the subplots area in pixels

The height and width are usually given in pixels for the screen, and
in points (1/72 inch) for high-resolution devices such as printers.

The purpose of the resize handler is to change the subplot layout,
for instance to reduce their number when the display area is too small.
The resize handler is not called at startup; arguments _height and
_width can also be passed to the init handler.

Example
In the fragment of SQ file below, the subplot layout is set in the func-
tion setSubplots, which is called as an init handler at startup and as
a resize handler when the window dimensions are changed. Depend-
ing on the width of the window, one or two figures are displayed. A
separate init handler is declared for variable initialization.

variable a, b, c
init (a, b, c) = initVar
init setSubplots(_width)
resize setSubplots(_width)
...

functions
{@
function (a, b, c) = initVar
...

112 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

function setSubplots(width)
if width > 300

subplots(’Fig. 1\tFig. 2’);
else
subplots(’Fig. 1’);

end
...
@}

Figure Declaration

Each figure is declared by a figure declaration, introduced by the
figure keyword:

figure "Figure Name"

The string which follows the figure keyword is the figure name,
which can contain any character and space. It is displayed as a title
above the figure and in the Plots menu, and is used by the subplots
command as an identifier. The figure declaration is followed by the
draw, mousedown, mousedoubleclick, mousedrag, mousedragcont,
mouseup, mouseover, mouseout, mousescroll, dragin, and dragout
handlers corresponding to the figure. Only the draw handler is
required.

The Plots menu follows the order of the figure declarations. Separa-
tors (horizontal lines in the menu) can be inserted to make the menu
easier to read, with the separator keyword.

Related figures can be grouped in submenus. Figure entries are en-
closed between beginsubmenu "name" and endsubmenu lines, where
name is the name of the submenu.

Example
figure "Input Signal"
draw drawInputSignal(u);
mousedrag u = dragInputSignal(u, _id, _y1);
mouseover _cursor = overInputSignal(_id)

figure "Output Signal"
draw drawOutputSignal(y);

separator

figure "Model"
draw drawModel(u, y);

separator

beginsubmenu "Response"

SQ File Reference 113

figure "Impulse"
draw drawImpulse(u, y)

figure "Step"
draw drawStep(u, y)

endsubmenu

Draw Handler

Each figure has one draw handler, declared with the draw keyword:

draw drawFn(v1, v2, ...)

The handler draws the figure with graphical commands such as plot,
circle, or step. The scale command may be used to set the default
scale and the scale options.

The draw handler typically has input arguments; but it never has
any output argument. It also accepts the special input argument
_param (see below).

Mousedown, Mousedoubleclick, Mousedrag, Mouse-
dragcont, Mouseup, Mouseover, and Mouseout, and
Mousescroll Handlers

The mousedown, mousedoubleclick, mousedrag, mouseup,
mouseover, mouseout handlers are called when the mouse is over
the figure they are defined for and the mouse button is pressed,
double-clicked, held down, released, left unpressed, or move outside
respectively. The mousedragcont handler is an alternative to the
mousedrag handler (see below). The mousescroll handler is called
when the mouse if over the figure and the scroll wheel or scroll ball
is moved. The dragin and dragout handlers are used for drag
operations between different figures. The table below summaries
their differences. For example, the mousedrag handler accepts
variables (declared with the variable keyword) as input and output
arguments; it can set the special variable _msg with an output
argument, and its role is to modify variables during a mouse drag.

114 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Handler Var. _msg _cursor Role
mousedown in/out - - Prepares a drag
mousedoubleclick in/out - - 2nd click of a dble-click
mousedrag in/out out - Performs a drag
mousedragcont in/out out - Performs a drag
mouseup in/out - - Cleans up after a drag
mouseover in/out out out Gives visual feedback
mouseout in/out - - Cleans up visual fdback
mousescroll in/out out - Performs a change

The purpose of the mouseover handler is to give to the user visual
feedback about what is below the cursor, with a message or the shape
of the cursor. It is also possible to change the variable, and though
them all the displayed graphics, when the mouse is moved over a
figure. This should be used only to give some additional hint about
what is below the cursor (such as highlighting a matching element in
another graphics), not as a substitute of mousedrag, because the user
has no way to select what he wants to manipulate. The mouseout
handler should be used to restore the state of the variables.

The purpose of the mousedown, mousedoubleclick, mousedrag,
mousedragcont, and mouseup handlers is to handle interactions. They
receive as input arguments the position of the mouse and the value
of variables, and return as output arguments new values for the vari-
ables. Unless an error occurs, the mousedown, mousedrag, mouseup,
and draw handlers are called with the following arguments. The place-
holder S0 represents the set of variables before the mouse down, and
S1 the set after the mouse up.

S0 = mousedown(S0)
S0 = draw(S0)
S1 = S0
while the mouse button is down
S1 = mousedrag(S0)
S1 = draw(S1)

end
S1 = mouseup(S0)
S1 = draw(S1)

The Undo command discards S1 and reverts to S0. Hence the changes
caused by mousedown should be limited to computing auxiliary values
used for the drag operation, but invisible to the user. If an error occurs,
the sequence is aborted, and S1 is discarded.

The sequence above can be reduced to much simpler forms. For
dragging an element, it is often sufficient to define mousedrag and
draw:

while the mouse button is down
S1 = mousedrag(S0)

SQ File Reference 115

S1 = draw(S1)
end

To change the controller on a simple mouse click, only the mouseup
handler is used (as explained above, the mousedown function does
not change S1).

S1 = mouseup(S0)
S1 = draw(S1)

The mousedrag handler is always executed immediately after the
mousedown handler if there is one, even if the mouse is not moved.
To display some information without changing anything when you
drag the mouse and remove any trace afterwards, you can define a
mousedrag handler which sets variables used by the draw handlers,
then discard S1 with a mouseup handler which just contains the
cancel command.

The mousedrag handler uses as input arguments the values the
variables had before the drag. After the drag, the variables will be
affected only by the position of the mouse at the beginning and at the
end of the drag operation; the trajectory of the mouse is lost. This
behavior is often desirable. In the infrequent cases where it is not, the
mousedrag handler should be replaced with a mousedragcont handler.
Sysquake calls the handlers in the following sequence:

S0 = mousedown(S0)
S0 = draw(S0)
S1 = S0
while the mouse button is down
S1 = mousedragcont(S1)
S1 = draw(S1)

end
S1 = mouseup(S0)
S1 = draw(S1)

The only difference with the mousedrag handler is that mousedrag-
cont handlers use the new values of the variables as input arguments
and modify them continuously. They can record the whole trajectory
of the mouse (or any information derived from the trajectory). For ex-
ample, a mousedragcont handler could be used to draw in a pixmap.

The mousedoubleclick handler is called when the mouse button
is pressed down for the second time shortly after the first one. The
mousedown, mousedrag, mouseup and draw handlers (if they exist)
have been called for the first click.

The purpose of the mousescroll handler is to to change some quan-
tity related to a figure or an object. Since all mouses do not have
wheels, tracking balls, or other scrolling device, the mousescroll han-
dler should be a shortcut to some other way of performing the same

116 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

action, for instance with a dialog box or a slider. This is espacially true
for horizontal scroll which is not supported by most wheels. Note also
that some wheels have a coarse resolution.

Predefined variables
In addition to the variables defined with the variable keyword, you
can use the following predefined variables as input argument for
the mousedown, mousedoubleclick, mousedrag, mouseup, and
mouseover handlers.
Name Purpose
_z initial position of the mouse as a complex number
_x initial horizontal position of the mouse
_y initial vertical position of the mouse
_rho initial distance between the position of the mouse and the origin
_theta initial angle of the vector from the origin to the position of the mouse
_z0 initial position of the clicked element as a complex number
_x0 initial horizontal position of the clicked element
_y0 initial vertical position of the clicked element
_p0 initial position of the clicked element as a 2D or 3D vector
_rho0 initial distance between the position of the clicked element and the origin
_theta0 initial angle of the vector from the origin to the position of the clicked element
_z1 current position of the mouse as a complex number
_x1 current horizontal position of the mouse
_y1 current vertical position of the mouse
_p1 current position of the mouse as a 2D or 3D vector
_rho1 current distance between the position of the mouse and the origin
_theta1 current angle of the vector from the origin to the position of the mouse
_str1 current string parameter
_dx horizontal displacement (_x1-_x) or horizontal scrolling
_dy vertical displacement (_y1-_y) or vertical scrolling
_dz displacement (_z1-_z) or scrolling as a complex number
_kx factor the horizontal position is multiplied by (_x1/_x)
_ky factor the vertical position is multiplied by (_y1/_y)
_kz complex factor the position is multiplied by in the complex plane (_z1/_z)
_q additional data specific to the plot
_m true if the modifier key (Shift key) is held down
_id ID of the manipulated object
_nb number of the manipulated trace (1-based)
_ix index of the manipulated point (1-based)
_param subplot parameter

The value of _z0 is constrained to existing elements of the plot,
contrary to _z which represents the actual position of the mouse click.
The value of _z1 is not constrained. If you need the original position
of the manipulated object, you should usually use _z0 (or _x0 or _y0)
and replace it with _z1. The value of _z is used when the amplitude of

SQ File Reference 117

the move is considered, not the initial and final positions, or when no
object is selected.

The value of _id is the value you define in plot commands for ele-
ments you want to manipulate. You can use it to recognize different
graphical objects in the same figure. The value of _nb defines which
line is manipulated among those plotted by the same command (most
graphical commands can draw multiple lines or multiple responses).
The value of _ix, an integer starting from 1, is always defined when
the user selected an element of the figure; it is useful mainly for traces
where you define explicitly each point, e.g. plot and line. Note that
you need not use IDs; all clicks generate calls to the mouse handler(s),
and _z, _z1, _x, _x1, _y, and _y1 are always defined.

For each subplot, Sysquake maintains a piece of data which can be
used freely for any purpose. This data is passed to and from all figure-
related handlers with _param. It is initialized to the empty array []. It
is useful in cases where the same figure is displayed in different sub-
plots; _param may contain for instance initial conditions for a simula-
tion. It may also be used as input or output argument of menu, import
and export handlers and in their _enable and _checkmark expression;
in these cases, the handlers are enabled when a single subplot is se-
lected.

As output argument of the mousedrag and mouseover handlers,
you can use the following special variables:

Name Purpose
_msg string displayed in the status bar at the bottom of the window
_param new value of the subplot parameter

The variable _msg is typically set to describe what is below the cur-
sor, with possibly some numeric values using sprintf. If it contains a
linefeed (’\n’) or carriage return (’\r’) character, it is truncated.

As output argument of the mouseover handler, you can also use
the following special variable:

Name Purpose
_cursor true to display the cursor as a finger in manipulate mode

The shape of the cursor gives a hint to the user whether he can
manipulate the object below the cursor. This can makes the use of
SQ files much easier. By default in manipulate mode, the finger cursor
is displayed in figures where mousedown, mousedrag and/or mouseup
handlers are defined; otherwise, the cursor is the standard arrow. Slid-
ers, buttons, and other controls (see command slider) are a special
case; the finger is displayed only when the cursor is over a slider. In
case you define mouse handlers, though, you often want to specify
explicitly whether any manipulation is possible.

118 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Here are handlers for displaying the roots of a polynomial A that you
can manipulate.

variable A = poly([-1, -2-2j, -2+2j])

figure "Roots"
draw drawRoots(A)
mousedrag A = dragRoots(A, _z0, _z1)
mouseover _cursor = overRoots(_id)

functions
{@
function drawRoots(A)
// plot the roots of polynomial A
plotroots(A, ’x’, 1);
scale lock;

function A = dragRoots(A, z0, z1)
// if the click is too far away from a root of A, z0 is empty
if isempty(z0)
cancel; // discard the dragging operation

end
A = movezero(A, z0, z1); // move the root

function cursor = overRoots(id)
// displays a finger if the cursor is over a root,
// and a plain cursor otherwise
cursor = ĩsempty(id);

@}

One thing to note about cursors, if your mouseover handler decla-
ration specifies _cursor as the (or one of the) output(s), and your
mouseover handler is canceled by cancel, the cursor is set to the
plain arrow. Hence you can have code like

if isempty(id)
cancel;

end

early in your mouseover handler.
Here is an example which shows how the mousedragcont handler

can be used to accumulate the position of the mouse during a drag.

variable x, y // position of the mouse

figure "Plot"
draw draw(x, y)
mousedragcont (x, y) = drag(x, y, _x1, _y1)

SQ File Reference 119

functions
{@

function draw(x, y)
// display the trace of the mouse
scale(’equal’, [0,10,0,10]);
plot(x, y);

function (x, y) = drag(x, y, _x1, _y1)
// add the current position of the mouse to x and y
x(end + 1) = _x1;
y(end + 1) = _y1;

@}

Handlers for a specific ID
Instead of a single handler which is called when required whatever
there is under the mouse, you can restrict the handler to a specific ID
value. The handler is called only if the mouse is over an object with
that ID. You can have multiple handlers of the same type with different
ID. This can simplify the code: the handler does not have to check that
the ID is not empty and has the correct value, and multiple handlers
can have a smaller number of arguments.

The ID is placed directly after the handler keyword, either as an
integer or a constant name defined with define. The example below
is a complete SQ file where you can move two points, the first one
horizontally and the second one vertically. Note that the mousedrag
handlers are so simple they do not need a function. Since there are
mouseover handlers with specific ID, but no generic one, the cursor is
displayed as a finger only over one of the points.

variable p1x = 0.3
variable p2y = 0.6

define kP1Id = 1
define kP2Id = 2

figure "Points"
draw drawPoints(p1x, p2y)
mousedrag kP1Id p1x = _x1
mouseover kP1Id _msg = overP1
mousedrag kP2Id p2y = _y1
mouseover kP2Id _msg = overP2

functions
{@
function drawPoints(p1x, p2y)
scale([0, 1, 0, 1]);
plot(p1x, 0.5, ’x’, kP1Id);

120 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

plot(0.5, p2y, ’o’, kP2Id);

function msg = overP1
msg = ’Point 1’;

function msg = overP2
msg = ’Point 2’;

@}

Fighandler Handler

Separate handlers for the different events which can occur result typ-
ically in small functions. While the implementation of these functions
can be very simple, code reuse is complicated: only the function def-
initions can be stored in separate libraries, while the multiple handler
declarations (often at least a draw handler, a mousedrag handler and
a mouseover handler) must be inserted in the SQ file.

Fighandler handlers replace all the handlers related to figures, i.e.
draw, mousedown, mousedoubleclick, mousedrag, mousedragcont,
mouseup, mouseover, mouseout, mousescroll, dragin, and dragout.
In the handler, the action to perform is given by _event, which is
typically used in a switch construct. Upon events to be ignored,
cancel(false) should be executed.

Example
Here is the example for figure "Roots" given above, rewritten with
a single fighandler function instead of separate draw, drag and over
handlers.

variable A = poly([-1, -2-2j, -2+2j])

figure "Roots"
fighandler A = figRoots(A)

functions
{@
function A = figRoots(A)
switch _event

case ’draw’
plotroots(A, ’x’, 1);
scale lock;

case ’drag’
if isempty(_z0)
cancel;

end
A = movezero(A, _z0, _z1);

case ’over’
_cursor(̃ isempty(_id));

SQ File Reference 121

otherwise
cancel(false);

end
@}

Menu Handler

The interactive manipulation of graphical elements is not suited for all
the modifications of the variables. To change the structure of a con-
troller or to specify numeric values, a command triggered by a menu
entry, possibly with the help of a dialog box, is more convenient. This
is the purpose of menu handlers, which are installed in the Settings
menu. Menu handlers are declared as follows:

menu "Title" (out1, out2, ...) = function(in1, in2, ...)

The string is the menu entry title. The function typically gives new
values to one or more variables. If numeric values must be entered
or modified by the user, or if a confirmation is required, the dialog
command should be used. To cancel the action, the cancel command
must be used to prevent a new set of variables from being created in
the Undo buffer.

Like figures, menu entries are listed in the Settings menu in the
same order as their declaration in the SQ file. Separators can be added
with the separator keyword, and entries can be grouped in submenus
with beginsubmenu and endsubmenu keywords. In addition, instead of
the default Settings menu, menu entries can be grouped in different
menus with the beginmenu and endmenu keywords. On versions of
Sysquake which do not support multiple menus, these keywords are
also accepted for compatibility; separators are inserted automatically.

The appearance of the menu entries can be modified in two ways:
they can be disabled (they are written in gray and cannot be selected)
with the _enable keyword, and they can be decorated with a check
mark with the _checkmark keyword. Both keywords must appear be-
tween the menu handler title and the handler function declaration.
They use a single LME boolean expression (typically based on the vari-
ables) as argument.

Examples
In the following example, the variable color has the value 0 for black,
1 for blue and 2 for red.

variable color, polygon, sides

init color = 0
init polygon = 0
init sides = 3

122 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

beginsubmenu "Color"
menu "Black" _checkmark(color==0) color=0
menu "Blue" _checkmark(color==1) color=1
menu "Red" _checkmark(color==2) color=2

endsubmenu
separator
menu "Polygon"

_checkmark(polygon) polygon=toggle(polygon)
menu "Number of Sides..."

_enable(polygon) sides=setNumberOfSides(sides)

functions
{@
function b = toggle(b)
b = b̃;

function sides = setNumberOfSides(sides)
(ok, sides) = dialog(’Number of sides:’, sides);
if õk

cancel;
end

@}

In the fragment below, two menus are declared:

beginmenu "Color"
menu "Black" _checkmark(color==0) color=0
menu "Blue" _checkmark(color==1) color=1
menu "Red" _checkmark(color==2) color=2

endmenu
beginmenu "Parameters"
menu "Polygon"

_checkmark(polygon) polygon=toggle(polygon)
menu "Number of Sides..."

_enable(polygon) sides=setNumberOfSides(sides)
endmenu

Sysquake will display two menus whose titles are "Color" and "Param-
eters".

Keydown Handler

To react to a key pressed down, multiple specific keydown handlers
and a single default keydown handler can be installed. Specific key-
down handlers are declared as follows:

keydown "k" (out1, out2, ...) = function(in1, in2, ...)

SQ File Reference 123

The string "k" contains the key which triggers the handler when
pressed. Most keys are denoted by the corresponding character;
arrow keys are denoted by "up", down, left, and right.

The default keydown handler is declared as follows:

keydown (out1, out2, ...) = function(in1, in2, ...)

It is triggered if a key without a specific keydown handler is pressed. In
both kinds of keydown handlers, the function typically gives new val-
ues to one or more variables. In addition to the variables defined with
the variable keyword, you can use the following predefined variable
as input argument:

Name Purpose
_key key pressed as a string

Example
In the following example, the variable n is incremented or
decremented when the user type "+" or "-", respectively. When
another key is pressed, cancel is executed, so that no new undo
frame is created.

variable n

init n = 1
keydown n = keydownHandler(n, _key)

functions
{@
function n = keydownHandler(n, key)
switch key
case ’-’
n = n - 1

case ’+’
n = n + 1

otherwise
cancel;

end
@}

Make Handler

It is often useful to have variables which hold the result of a compu-
tation based on other variables. If several figures depend on it, this
avoids the need to calculate it in each draw handler and reduce the
computation time. The computation may be performed in the han-
dlers which change the independent variables. However, this forces

124 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

to add arguments; handlers become more difficult to write, especially
when dependencies are complicated. Make handlers describe the way
to calculate variables not as the direct effect of some user action, but
when their output arguments are required by another handler. The
name make is borrowed from the programming utility which builds a
complicated project based on a set of rules and dependencies. Make
handlers do the same for variables. Their declaration is simply

make (output_variables) = makeHandler(input_variables)

Suppose that a variable x is changed, and that the draw handler of a
figure uses variable y as input argument. If the following make handler
is declared,

make y = f(x)

Sysquake calls the function f to compute y based on x. More complex
dependencies may be defined using several make handlers. There
must not be circular dependencies; no variable may depend on itself
through one or more make handlers.

When a make handler gives the value of a single variable, it can be
specified in the variable declaration statement. The following declara-
tion

variable x, y
variable z = x + y

is equivalent to

variable x, y, z
make z = x + y

Examples
The examples below represent three different ways to implement the
same behavior. A variable x may be modified either in a menu handler
or by interactive manipulation of a figure. Two figures uses variable y,
which is a function of x.

The first implementation does not store y in a variable declared to
Sysquake. It is computed in each draw handler.

variable x
init x = init
menu "Change x" x = changeX(x)
figure "Figure 1"
draw drawFig1(x)
mousedrag x = dragFig1(_x1)

figure "Figure 2"
draw drawFig2(x)

SQ File Reference 125

functions
{@
function x = init
x = 3;

function x = changeX(x)
// (dialog box to let the user edit x)

function drawFig1(x)
y = f(x);
// (plot based on x and y)

function x = dragFig1(x1)
x = x1;

function drawFig2(x)
y = f(x);
// (other plot based on x and y)

function y = f(x)
// computation of y

@}

The second implementation declares y, which is computed in all han-
dlers which change the value of x. When both figures are displayed,
y is computed only once when the menu or mousedrag handler is in-
voked.

variable x, y
init (x, y) = init
menu "Change x" (x, y) = changeX(x)
figure "Figure 1"
draw drawFig1(x, y)
mousedrag (x, y) = dragFig1(_x1)

figure "Figure 2"
draw drawFig2(x, y)

functions
{@
function (x, y) = init
x = 3;
y = f(x);

function (x, y) = changeX(x)
// (dialog box to let the user edit x)
y = f(x);

function drawFig1(x, y)
// (plot based on x and y)

function (x, y) = dragFig1(x1)
x = x1;
y = f(x);

function drawFig2(x, y)
// (other plot based on x and y)

function y = f(x)
// computation of y

@}

The third implementation also declares y, which is computed by a

126 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

make handler when it is needed by another handler. Note how each
handler is as simple as it can be. If none of the two figures is displayed,
y is not computed at all.

variable x, y
init x = init
make y = f(x)
menu "Change x" x = changeX(x)
figure "Figure 1"
draw drawFig1(x, y)
mousedrag x = dragFig1(_x1)

figure "Figure 2"
draw drawFig2(x, y)

functions
{@
function x = init
x = 3;

function x = changeX(x)
// (dialog box to let the user edit x)

function drawFig1(x, y)
// (plot based on x and y)

function x = dragFig1(x1)
x = x1;

function drawFig2(x, y)
// (other plot based on x and y)

function y = f(x)
// computation of y

@}

Function Definitions

Functions declared by the different handlers must be built-in, defined
in separate libraries, or defined in one or several function blocks.

A library (.lml file) must be referenced with the use keyword:

use library

The library name does not include the file suffix .lml. Libraries are
searched in the same folders or directories as SQ files.

Functions defined directly in the SQ files are placed in a function
block, with the following syntax:

function
{@
...
@}

The keyword functions is a synonym of function. The functions
can be defined in any order and in any number of blocks. In addition

SQ File Reference 127

to functions declared as handlers, other functions can be defined to
extend the set of built-in commands.

Function blocks can also include use statements. Whether to place
use statements outside or inside function blocks is a matter of style.
SQ-level use statements should be preferred for libraries which define
functions called directly as handlers.

Embedded files

In some cases, especially when a large amount of constant data is
required in an SQ file, it may be convenient to store these data in the
SQ file itself and to use the standard input functions of LME, such as
fread and fscanf, to retrieve them. This avoids the need of separate
files. Blocks of texts, introduced by keyword embeddedfile, provide
such a facility:

embeddedfile "name"
{@
Embedded file contents...
@}

The contents of the block may be as large as required. They can be
either plain text, or binary data encoded with base64. The name is
used to identify the embedded file; it corresponds to the argument of
function efopen. The number of embedded files in an SQ file is not
limited.

Title, Version, and Help

SQ files may include a title, version information, and explanations
about their purpose and how they can be used. The title is specified
by a string:

title "..."

It is used instead of the file name in some windows and menus titles.
The version and help are provided in blocks of text:

version
{@
Text...
@}

help
{@
Text...
@}

128 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

In the block of text, paragraphs are separated by one or more empty
lines. Initial and trailing empty lines and spaces are ignored. For cases
where preformatted text is preferred, such as for program code or
equations, the HTML tags <pre>/</pre> are used. Here is an exam-
ple:

help
{@
Here is an identity matrix:

<pre>
[1 0 0]

I = [0 1 0]
[0 0 1]

</pre>
@}

Upon user request, Sysquake displays the version or the help of the
current SQ file.

The purpose of the version text is to give any version number, re-
lease date, and copyright information relevant to the SQ file.

User interface

The standard user interface of Sysquake has menus to customize the
layout of figures and their options. Some of them can be disabled
once the layout has been carefully tuned. This is done with the
userinterface keyword, followed by comma-separated options:

userinterface option1, options, ...

Here is the list of supported options:

Name Purpose
appmenus (default) Standard menus
noappmenus No standard menus
figoptions (default) Submenu "Figure>Options" for margin, title, etc.
nofigoptions No submenu "Figure>Options"
plotchoice (default) Menus "Plots" and "Layout"
noplotchoice No menus "Plots" and "Layout"
resize (default) The figure window can be resized
noresize The figure window has a fixed size
selectall (default) Menu entry "Edit>Select All"
noselectall No menu entry "Edit>Select All"
toolbar (default) Figure toolbar
notoolbar No figure toolbar

Depending on the version of Sysquake, the menus or menu en-
tries are disabled or completely removed. Option noplotchoice also

SQ File Reference 129

disables the dragging of subplots. Option noappmenus removes most
menus and menu entries.

To have finer control on exactly which plot options should be avail-
able, the Figure menu should be removed with nofigoptions and the
appropriate options added back in menus with sqguicmd. The code
below shows a reduced menu with logarithmic scale for x and y axis,
and labels and legends.

userinterface nofigoptions

beginmenu "Options"
menu "Log x"
_enable(sqguicmd(’scale/log-x’,’e’))
_checkmark(sqguicmd(’scale/log-x’,’c’))
sqguicmd(’scale/log-x’)

menu "Log y"
_enable(sqguicmd(’scale/log-y’,’e’))
_checkmark(sqguicmd(’scale/log-y’,’c’))
sqguicmd(’scale/log-y’)

separator
menu "Label"
_enable(sqguicmd(’figure/label’,’e’))
_checkmark(sqguicmd(’figure/label’,’c’))
sqguicmd(’figure/label’)

menu "Legend"
_enable(sqguicmd(’figure/legend’,’e’))
_checkmark(sqguicmd(’figure/legend’,’c’))
sqguicmd(’figure/legend’)

endmenu

9.2 SQ Data Files and Input/Output Han-
dlers

SQ Data files (or SQD files) are composed of a succession of LME state-
ments which define variables. The contents of these variables are
used by an input function which translates them to the variables used
by Sysquake itself and which restores the subplots and their settings.
This filtering step serves two purposes:

– Sysquake can use more or other variables than what the SQ Data
files define. For instance, a proportional-integral-derivative con-
troller (PID) could be defined by three parameters, but described
by a transfer function in the Sysquake variables.

– A validity check is often useful, because the data files are text
files which can be written by the user.

130 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

To avoid the hassle to write input and output handlers when these
advanced features are not needed, Sysquake has a default behavior if
the handlers are not declared in the SQ file. If the output function is
missing, all the variables and the settings are written to the file. If the
input function is missing, the variables declared in the SQ file are set
to the values defined in the SQD file, or to the empty array [] if they
are not found.

To permit the user to simply open the SQ data file without specifying
the SQ file which can make use of it, the first line should form a valid
LME comment with the name of the associated SQ file:

%SQ sqfile.sq
...

When the user opens a file, the first line is read. If it corresponds to a
data file, the associated SQ file is read and its init function processed.
Finally, the data file is executed and the contents of its variables con-
verted by the input function. If the file opened by the user is a SQ file,
it is read and its init function executed.

A typical data file could be

%SQ greatDesign.sq

A = [1,2];
B = 2;
kp = 20;
_plots = ’greatView\tstep’;
_plotprops = [0,-1,1,-1,1;
0,10,50,0,0];

Variables A, B, and kp correspond directly to variables defined in the
SQ file. Variable _plots is the list of the subplots which were dis-
played when the file was saved; it corresponds to the input or out-
put argument of the command subplots. Variable _plotprops is the
properties of the subplots (options like logarithmic scaling and grids,
and zoom); it corresponds to the input or output argument of the com-
mand subplotprops. The names _plots and _plotprops are those
used by the default input and output handlers; it is better to use them
also if you write your own handlers.

Input and Output Handlers

To generate and read back the data file above, the following handlers
can be declared:

output outputHandler(_fd, v1, v2, ...)
input (v1, v2, ...) = inputHandler(_fd)

SQ File Reference 131

The output handler must write to file descriptor _fd the contents of
the variables. You need not save all the variables; for example, if
pol is a polynomial and you have defined a variable r to store its
roots, saving pol is enough; you can restore r in the input handler
with r=roots(pol). The variable _fd represents the file descriptor of
the output file:

Name Purpose
_fd file descriptor of the output or input file

Like all special arguments, _fd can also be used directly in the func-
tion definitions, without being passed from the handler declaration.

You can use it with functions such as fprintf and dumpvar. You
can write the data using any format. However, it is better to follow the
format of standard SQD files, as described above, with perhaps calls
to the built-in functions of LME. The first line, which contains the name
of the SQ file, is required to permit Sysquake to find the appropriate
SQ file.

The input handler reads the SQD file using the file descriptor _fd,
and produces values stored in Sysquake variables. The input handler
is always called after the init handler; variables which are not output
arguments of the input handler keep the value set by the init handler.

If the SQD file contains variable assignments, the easiest way to
parse it is to read the whole file with fread, and to interpret the string
with sandbox.

The following example shows how to write input and output han-
dlers which save and restore three variables, check the validity of the
variables in the SQD file, and save and restore the subplots.

output myOutputHandler(A,B,kp)
input (A,B,kp) = myInputHandler()

function
{@
function myOutputHandler(A,B,kp)

// write header line
fprintf(_fd, ’%SQ greatDesign.sq\n\n’);

// write variables
dumpvar(_fd, ’A’, A);
dumpvar(_fd, ’B’, B);
dumpvar(_fd, ’gain’, kp); // different name

// write current subplot settings
dumpvar(_fd, ’_plots’, subplots);
dumpvar(_fd, ’_plotprops’, subplotprops);
if ĩsempty(subplotpos)

dumpvar(_fd, ’_plotpos’, subplotpos);

132 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

end

function (A,B,kp) = myInputHandler()

// read and interpret SQD file into struct s
str = fread(_fd, inf, ’*char’);
s = sandbox(str);

// map the SQD variables to the SQ variable
kp = s.gain;

// check the validity of the transfer function
if length(s.A) >= length(s.B)

dialog([’The transfer function of the system B/A ’,
’must be strictly causal.’);

cancel;
end

A = s.A;
B = s.B;

// restore subplot settings
subplots(s._plots);
subplotprops(s._plotprops);
subplotpos(s._plotpos);

@}

The contents of what might be a data file can also be written in the
data block of a SQ file. The user may find more convenient to save
the data in the SQ file itself, either to have an SQ file with new default
values or to distribute it to other people. The data block should be at
the end of the SQ file, so that all the variables and the functions used
by the input handler are defined. You can write it manually, but its
purpose is to be written by Sysquake when the user chooses to save
the data as an SQ file. Its syntax is

data
{@
contents of a data file
@}

9.3 Error Messages

Here is the list of error messages; some of them may appear in a
message box when you read a bad file, but many are internal errors.
LME errors are listed in the LME Reference chapter and are caused by
a bad function either at compile time or at execution time.

Exhausted resources Not enough memory for the current opera-
tion.

SQ File Reference 133

Too small name buffer Not enough memory for the table of vari-
able names.

No more name slot Too many variable names.

Too small Sysquake buffer Not enough memory to launch
Sysquake.

Not enough memory for decoding SQ file Class file too com-
plex.

Too small Undo buffer Not enough memory to create the Undo
structures.

Too many variables for the Undo buffer Undo structures too
small for the large number of variables.

Variable too large for the Undo buffer The new value given to
a variable is too large.

Variable not found Attempt to retrieve a variable which has not
been defined (should never occur).

Variable already exists Attempt to redefine a variable.

Standard variable unexpected here A standard variable, such
as _x1, is not supported here.

Syntax error in class file Unbalanced quotes or parenthesis,
missing element, or other syntax error in the class file.

Bad block of text Block of text (such as a block of function defi-
nitions) without end mark.

Bad variable definition The variable keyword is not followed by
a valid variable name.

Bad function definition The function keyword is not followed by
a valid function call.

Undefined element The keyword is unknown.

Nonexistent set of variables in the Undo buffer Attempt to
revert to an undo state which is not available.

Not a data file The file does not begin with the expected "% SQ"
characters.

Cannot undo Too many attempts to undo.

Cannot redo Too many attempts to redo.

134 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

9.4 Advanced Features of SQ Files

This section describes the more advanced features of SQ files.

Dragin and Dragout Handlers

The dragin and dragout handlers are used for drag operations between
different figures. A dragin handler must be defined in the scope of the
figure which can be the target of cross-figure drag operations, and a
dragout handler must be defined in the scope of the figure from where
cross-figure drag operations are initiated.

No dragin or dragout is called unless a drag operation starts from a
figure which has a dragout handler (source) and the mouse is moved
over a figure which has a dragin handler (target). In that case, when
the mouse enters the target figure, the source dragout handler is
called first, then the target dragin handler. Then the dragging con-
tinues exactly as if it had started from the target figure, with calls to
the mousedrag, mousedragcont, and/or mouseup handlers of the tar-
get figure. Other cross-figure drag operations can follow if the first
target figure has a dragout handler.

Here is the sequence of calls during a drag, extended to take into
account one or several drags between figures.

Sw = S0
Sw = mousedown_i(Sw)
Sw = draw_i(Sw)
S1 = Sw
while the mouse is down
while the mouse in figure i
S1 = mousedrag_i(Sw)
S1 = draw(S1)

end
if the mouse is in figure j
Sw = dragout_i(Sw)
Sw = dragin_j(Sw)
i = j

end
end
S1 = mouseup_i(Sw)
S1 = draw(S1)
discard Sw

Example
Here is an example where a red cross can be moved between Figure
One and Figure Two. The location of the cross is stored in Sysquake
variables x and y for its coordinates, and i for the figure (1 for Figure
One, 2 for Figure Two).

SQ File Reference 135

variable i, x, y

init (i, x, y) = init

figure "Figure one"
draw draw(1, i, x, y)
mousedrag (x, y) = drag(1, i, _id, _x1, _y1)
dragin i = dragin(1)
dragout dragout(1)

figure "Figure two"
draw draw(2, i, x, y)
mousedrag (x, y) = drag(2, i, _id, _x1, _y1)
dragin i = dragin(2)
dragout dragout(2)

function
{@
function (i, x, y) = init
i = 1; x = 0; y = 0;
subplots(’Figure one\tFigure two’);

function draw(fig, i, x, y)
scale(’equal’, [-5, 5, -5, 5]);
if i == fig
plot(x, y, ’xR’, 1);

else
text(0, 0, ’(empty)’);

end

function (x, y) = drag(fig, i, _id, _x1, _y1)
if isempty(_id); cancel; end
x = _x1; y = _y1;

function fig = dragin(fig)
fprintf(’dragin %d\n’, fig);

function dragout(fig)
fprintf(’dragout %d\n’, fig);

@}

Here is what happens when the cross is dragged from Figure One to
Figure Two:

– Figure One’s mousedrag handler is called with fig=1 as long as
the mouse is not moved over Figure Two

– When the mouse enters Figure Two, since Figure One (the source
figure) has a dragout handler and Figure Two (the target figure)
has a dragin handler, Sysquake calls Figure One’s dragout han-
dler with fig=1, then Figure Two’s dragin handler with fig=2; the

136 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

dragin handler is declared in such a way that Sysquake variable
i is set to the target figure number, i.e. 2. The cross is displayed
in Figure Two.

– Figure Two’s mousedrag handler is called with fig=2. Figure
One’s mousedrag handler is not called anymore.

A dragout operation is prevented by the dragout handler if it calls
cancel, either without argument to abort completely the mousedrag
operation or as cancel(false) to continue the mousedrag in the ini-
tial figure. Calling cancel in the dragin handler has an effect only on
the drag in the second figure.

User Interface Options

By default, Sysquake lets the user of an SQ file change the layout of
figures with the Layout menu, the Plots menu which is filled with all
the figures defined in the SQ file, and the ability to drag figures with
the mouse. The developer of the SQ file can disable these features by
adding the following statement to the SQ file:

userinterface noplotchoice

The supported options of userinterface are enumerated in the table
below:
Option Effect
figoptions menu items for figure options (default)
nofigoptions no menu items for figure options
noplotchoice fixed set of figures
noselectall no menu entry "Select All"
plotchoice options to change figures
selectall menu entry "Select All" (default)

Languages

Some elements contain text. A single SQ file can contain multiple
translations of these elements. When the SQ file is loaded, only ele-
ments corresponding to a single language are displayed; the language
can be selected from a menu which enumerates all the translations it
contains.

Elements declared for a specific language must be enclosed be-
tween beginlanguage and endlanguage:

beginlanguage "Language;code"
// declarations
endlanguage

SQ File Reference 137

The string following beginlanguage contains the language name
(such as Fran ais), followed optionally by a semicolon and the ISO
639 code of the language (such as fr). The language name is used in
the user interface; the code of the language is used on some
platforms to obtain the default language.

A single SQ file can contain multiple language specifications for
the same language. When the first specification contains both the
language name and the language code, successive declarations for
the same language can omit the language name.

Any declaration can be placed under the scope of beginlanguage;
then it becomes language-specific, contrary to declarations outside
of any beginlanguage section which are valid for all the languages.
Language-specific init handlers are used in a special way: contrary
to non-language-specific init handlers, they are executed when the
language is changed. This is especially useful to change the figures.

Instead of having different handlers for different languages, it is
also possible to test in handlers which is the current language with
function

Examples
In the following example, two languages are defined, English and
French. Function definitions are omitted.

variable a, b
init (a, b) = init

beginlanguage "English;en"
title "Amounts"
menu "Value of a" a = setA(a)
init initFigEn
figure "Chart"
draw drawChart(a, b)

endlanguage

beginlanguage "Fran ais;fr"
title "Grandeurs"
menu "Valeur de a" a = setA(a)
init initFigFr
figure "Graphique"
draw drawChart(a, b)

endlanguage

functions
{@
function initFigEn
subplots(’Chart’);

function initFigFr
subplots(’Graphique’);

138 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

// ...
@}

The following SQ file is equivalent, with multiple declarations for the
same languages.

variable a, b
init (a, b) = init

beginlanguage "English;en"
title "Amounts"

endlanguage
beginlanguage "Fran ais;fr"
title "Grandeurs"

endlanguage

beginlanguage "en"
menu "Value of a" a = setA(a)

endlanguage
beginlanguage "fr"
menu "Valeur de a" a = setA(a)

endlanguage

beginlanguage "en"
figure "Chart"
draw drawChart(a, b)

endlanguage
beginlanguage "fr"
figure "Graphique"
draw drawChart(a, b)

endlanguage

functions
{@
// ...
@}

Idle Handler

In addition to menu and mouse handlers, which modify Sysquake vari-
ables when the user performs some action, SQ files can define an idle
handler, which is called periodically. Variables are modified without
adding a new undo level. An idle handler is declared as follows:

idle (output_variables) = idleHandler(input_variables)

The rate at which the idle handler is executed depends on the operat-
ing system. It usually depends on the activity of the computer, such
as the user interface or the network. You can give hints to Sysquake
by adding a special output argument to the idle handler:

SQ File Reference 139

Name Description
_idlerate time rate, in seconds, for calling the idle handler
_idleamount proportion of time for idle processing (between 0 and 1)

Only one of these arguments should be used. It should be stressed
that the use of _idlerate does not guarantee real-time execution.
Sysquake limits the time it gives to the idle handler to permit user
interaction. It also enforces a maximum delay to make sure the idle
handler is not blocked forever in case _idlerate is set to 0.

There may be only one idle handler per SQ file. It is useful when
some external data can be acquired and displayed continuously, for
long optimization procedures to display their progress, or for simple
animations.

Example
variable x
init x = init
idle (x, _idlerate) = idle(x)
functions
{@
function x = init

x = 0;
function (x, _idlerate) = idle(x)

// increment and display x
x = x + 1
// should be called about every second

_idlerate = 1;
@}

Import and Export Handlers

The most obvious way to exchange data between different SQ files
and with other applications is with Copy/Paste in dialog boxes or via
files. This has four drawbacks:

– it involves several steps;

– the amount of data is limited;

– since no common interchange format has been defined, editing
(manually or via computation in the command line) may be re-
quired;

– a significant development effort is required.

Sysquake solves this problem with a generalized import/export mech-
anism. There are two handler types to support this mechanism, ex-
port and import, with a syntax similar to menu handlers. They are

140 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

collected respectively in submenus "Copy As" and "Paste As" in the
Edit menu. Export handlers implement the conversion from variables
to some well-defined LME data type, such as a matrix or a structure.
Import handlers do the same in the opposite way. There is no limit
to the number of import and export handlers. Handlers should be de-
fined for complete sets of data which can easily be grasped by the
user rather than variables which make sense only to the programmer:
for instance, a set of points is better than their X-axis coordinates.

Import handlers are declared as

import "menu entry name" (outvar) = fn(invar,_xdatatype,_xdata)

or

import "menu entry name" _enabled(b) ...
(outvar) = fn(invar,_xdatatype,_xdata)

The menu entry name is inserted in the Edit/Paste As submenu. The
entry is enabled when the expression invoked with _enabled is true,
or always if _enabled is missing. When the menu entry is selected,
the handler is executed the usual way (i.e. a new undo frame is cre-
ated, the handler is executed, and the changes are accepted unless an
error occurs or the cancel function is executed by the handler). Both
the _enabled expression and the handler arguments may include the
special variable _xdatatype, which contains a string describing the
type of the data in the clipboard (see below); the handler typically
also uses as input _xdata, which contains the clipboard contents as
an LME object.

Name Description
_xdata clipboard converted to an LME object
_xdatatype type of the contents of the clipboard

The import handlers may be laid out like the figures and the menu
entries, with separators. If an entry has an empty name, it is merged
with the previous entry with a nonempty name: a single menu entry is
displayed, it is enabled if any of the _enabled expressions is true, and
the first handler for which the _enabled expression is true is executed.
In the following example, points stored in arrays x and y are set by
importing either an n-my-2 real array (type ’xy’) or an n-by-1 complex
array (type ’complex array’).

import "Points" _enable(strcmp(_xdatatype,’xy’)) ...
(x,y)=importXY(_xdata)

import "" _enable(strcmp(_xdatatype,’complex array’)) ...
(x,y)=importC(_xdata)

functions
{@
function (x,y)=importXY(xdata)

SQ File Reference 141

x = xdata(:,1);
y = xdata(:,2);

function (x,y)=importC(xdata)
x = real(xdata(:));
y = imag(xdata(:));

@}

Export handlers are declared as

export "menu entry name" (_xdata,_xdatatype) = fn(invar)

or

export "menu entry name" _enabled(b) ...
(_xdata,_xdatatype) = fn(invar)

The menu entry name is inserted in the Edit/Copy As submenu. The
entry is enabled when the expression invoked with _enabled is true,
or always if _enabled is missing. When the menu entry is selected,
the handler is executed, but no new stack frame is created. If the
handler does not through any error or cancel, the contents of _xdata
is copied to the clipboard, as data of type _xdatatype if the argument
exists or as native data (tab-separated array for a real matrix or text
for a string) if _xdatatype is missing.

Format of the interchange data
There are two formats of data used for exchange with the export and
import handlers: raw data and structured data. Raw data used when
the export handler does not output an _xdatatype argument. They
also contain text: strings are output literally, and the real part of ma-
trices is output as tabbed arrays of numbers. In both cases, end-of-
lines are platform-dependent (LF for OS X and Linux, and CRLF for
Windows). Other data types (such as structures) are not supported.

Structured data represents a complex type exported with an ex-
plicit _xdatatype; it contains text, whose first line is

%SQ xdata " datatype"

where datatype corresponds directly to the value of the argument
_xdatatype set by the export handler; the remaining line(s) is a tex-
tual representation (as generated with dumpvar) of _xdata.

Data types are strings which are used to ensure the compatibility
between export and import handlers. Official types, defined by Ca-
lerga, do not begin with "x-"; user types should begin with "x-" to
avoid type name clash in the future. Here is a list of the current offi-
cial types.

unknown any LME type

142 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

string string

real array matrix of real numbers

complex array matrix of complex numbers

polynomial polynomial whose real coefficients are given in de-
scending powers as a row vector

samples

tf s transfer function in the Laplace domain given by a structure
of two fields:

Field Description
num numerator, row vector of coefficients in descending powers of s
den numerator, row vector of coefficients in descending powers of s

tf z transfer function in the z domain given by a structure of three
fields:

Field Description
num numerator, row vector of coefficients in descending powers of z
den numerator, row vector of coefficients in descending powers of z
Ts sampling period

ss c state-space linear time-invariant continuous-time model with
nu inputs, ny outputs and n states, given by a structure of four
fields:

Field Description
A n-by-n real matrix
B n-by-nu real matrix
C ny-by-n real matrix
D ny-by-nu real matrix

ss d state-space linear time-invariant discrete-time model with nu
inputs, ny outputs and n states, given by a structure of five fields:

Field Description
A n-by-n real matrix
B n-by-nu real matrix
C ny-by-n real matrix
D ny-by-nu real matrix
Ts sampling period

rst c polynomial linear time-invariant continuous-time controller
given by the structure of two or three fields described below;
control signal U(s) is given by R(s)U(s) = S(s)

�

Yreƒ (s) − Y(s)
�

or

SQ File Reference 143

R(s)U(s) = T(s)Yreƒ (s) − S(s)Y(s), where Yreƒ (s) is the system
output, Y(s) is the set-point, and R(s), S(s), and T(s) are three
polynomials

Field Description
R row vector of coefficients in descending powers of s
S row vector of coefficients in descending powers of s
T row vector of coefficients in descending powers of s (optional)
Ts sampling period

rst d polynomial linear time-invariant discrete-time controller
given by the structure of two or three fields described below;
control signal (t) is given by R(q)(t) = S(q)

�

yreƒ (t) − y(t)
�

or
R(q)(s) = T(q)yreƒ (t) − S(q)y(t), where yreƒ (t) is the system
output, y(t) is the set-point, and R(q), S(q), and T(q) are three
polynomials in the forward-shift operator q

Field Description
R row vector of coefficients in descending powers of z
S row vector of coefficients in descending powers of z
T row vector of coefficients in descending powers of z (optional)

function inline or anonymous function

xy n-by-2 array of n points [X,Y]

Public handler

Public handlers are used to interact with an SQ file from another con-
text. In most cases, Sysquake executes handlers defined in an SQ file
in the context of this SQ file. For example, Sysquake knows which SQ
file instance to address when a menu handler is executed, and which
Sysquake variables and figures are involved. But in some advanced
applications, it can be useful to execute the handler of another in-
stance. This is the case when you want to transmit information across
two SQ file instances, or to update graphics from a separate thread
created with threadnew. Unlike libraries, the purpose of public han-
dlers is not code reuse, but code execution in the context of another
SQ file instance to change its SQ variables and usually trigger the up-
date of graphics.

Public handlers, like all other handlers, are implemented as a single
assignment. In addition to SQ variables, the special variable _xdata
is used as input to provide data from the caller, and as output to give
back data to the caller.

Here is a typical public handler declaration, with SQ variables in_sq
and out_sq:

144 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

publichandler "phname" (out_sq, _xdata) = phfun(in_sq, _xdata)

The caller of the public handler provides and gets only the data passed
in _xdata by calling sqcall:

out_xdata = sqcall(instanceid, ’phname’, in_xdata);

Watch handler

Watch handlers are functions called when an SQ variable has been
changed, for instance to send an updated parameter to a device you
want to control from an SQ file. They can be declared either for a list
of variables or for all SQ variables:

watch {var1,var2,...} watchfun(...)
watch _all watchfun(...)

The watch handler is called after another handler has changed one of
the watched variables. During mouse drag, calls to watch handlers
are delayed until the end of the drag, even if no mouseup handler is
declared, to reduce the number of calls.

The arguments of the watch handler function do not have to match
the watched variables.

The watched variables themselves do not trigger calls to make han-
dlers; but watch handler input arguments do, like any other handler.

Extension declaration

Extensions required by the SQ file can be declared as follows:

extension "extensionname"

The extension name is the name of the extension file without its suffix,
such as longint for long integer support. Multiple extensions must be
declared separately.

Currently, Sysquake Application Builder is the only application
which requires the declaration of the extensions which are used.
Extension declarations are ignored by other applications.

Chapter 10

LME Reference

This chapter describes LME (Lightweight Math Engine), the interpreter
for numeric computing used by Sysquake.

10.1 Program format

Statements

An LME program, or a code fragment typed at a command line, is com-
posed of statements. A statement can be either a simple expression,
a variable assignment, or a programming construct. Statements are
separated by commas, semicolons, or end of lines. The end of line has
the same meaning as a comma, unless the line ends with a semicolon.
When simple expressions and assignments are followed by a comma
(or an end of line), the result is displayed to the standard output; when
they are followed by a semicolon, no output is produced. What follows
programming constructs does not matter.

When typed at the command line, the result of simple expressions
is assigned to the variable ans; this makes easy reusing intermediate
results in successive expressions.

Continuation characters

A statement can span over several lines, provided all the lines but the
last one end with three dots. For example,

1 + ...
2

is equivalent to 1 + 2. After the three dots, the remaining of the line,
as well as empty lines and lines which contain only spaces, are ig-
nored.

146 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Inside parenthesis or braces, line breaks are permitted even if they
are not escaped by three dots. Inside brackets, line breaks are ma-
trix row separators, like semicolons, unless they follow a comma or a
semicolon where they are ignored.

Comments

Unless when it is part of a string enclosed between single ticks, a
single percent character or two slash characters mark the beginning
of a comment, which continues until the end of the line and is ignored
by LME. Comments must follow continuation characters, if any.

a = 2; % comment at the end of a line
x = 5; // another comment
% comment spanning the whole line
b = ... % comment after the continuation characters

a;
a = 3% no need to put spaces before the percent sign
s = ’%’; % percent characters in a string

Comments may also be enclosed between /* and */; in that case,
they can span several lines.

Pragmas

Pragmas are directives for the LME compiler. They can be placed at
the same location as LME statements, i.e. in separate lines or between
semicolons or commas. They have the following syntax:

_pragma name arguments

where name is the pragma name and arguments are additional data
whose meaning depends on the pragma.

Currently, only one pragma is defined. Pragmas with unknown
names are ignored.

Name Arguments Effect
line n Set the current line number to n

_pragma line 120 sets the current line number as reported by er-
ror messages or used by the debugger or profiler to 120. This can
be useful when the LME source code has been generated by process-
ing another file, and line numbers displayed in error messages should
refer to the original file.

LME Reference 147

10.2 Function Call

Functions are fragments of code which can use input arguments as
parameters and produce output arguments as results. They can be
built in LME (built-in functions), loaded from optional extensions, or
defined with LME statements (user functions).

A function call is the action of executing a function, maybe with
input and/or output arguments. LME supports different syntaxes.

fun
fun()
fun(in1)
fun(in1, in2,...)
out1 = fun...
(out1, out2, ...) = fun...
[out1, out2, ...] = fun...
[out1 out2 ...] = fun...

Input arguments are enclosed between parenthesis. They are passed
to the called function by value, which means that they cannot be mod-
ified by the called function. When a function is called without any input
argument, parenthesis may be omitted.

Output arguments are assigned to variables or part of variables
(structure field, list element, or array element). A single output argu-
ment is specified on the left on an equal character. Several output
arguments must be enclosed between parenthesis or square brackets
(arguments can simply be separated by spaces when they are en-
closed in brackets). Parenthesis and square brackets are equivalent
as far as LME is concerned; parenthesis are preferred in LME code, but
square brackets are available for compatibility with third-party appli-
cations.

Output arguments can be discarded without assigning them to vari-
ables either by providing a shorter list of variables if the arguments to
be discarded are at the end, or by replacing their name with a tilde
character. For example to get the index of the maximum value in a
vector and to discard the value itself:

(̃ , index) = max([2, 1, 5, 3]);

10.3 Named input arguments

Input arguments are usually recognized by their position. Some func-
tions also differentiate them by their data type. This can lead to code
which is difficult to write and to maintain. A third method to distin-
guish the input arguments of a function is to tag them with a name,
with a syntax similar to an assignment. Named arguments must follow
unnamed arguments.

148 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

fun(1, [2,3], dim=2, order=1);

For some functions, named arguments are an alternative to a se-
quence of unnamed arguments.

10.4 Command syntax

When a function has only literal character strings as input arguments,
a simpler syntax can be used. The following conditions must be satis-
fied:

– No output argument.

– Each input argument must be a literal string

– without any space, tabulator, comma or semicolon,

– beginning with a letter, a digit or one of ’-/.:*’ (minus, slash,
dot, colon, or star),

– containing at least one letter or digit.

In that case, the following syntax is accepted; left and right columns
are equivalent.

Command Function
fun str1 fun(’str1’)
fun str1 str2 fun(’str1’,’str2’)
fun abc,def fun(’abc’),def

Arguments can also be quoted strings; in that case, they may con-
tain spaces, tabulators, commas, semicolons, and escape sequences
beginning with a backslash (see below for a description of the string
data type). Quoted and unquoted arguments can be mixed:

fun ’a bc\n’ fun(’a bc\n’)
fun str1 ’str 2’ fun(’str1’,’str 2’)

The command syntax is especially useful for functions which accept
well-known options represented as strings, such as format loose.

10.5 Libraries

Libraries are collections of user functions, identified in LME by a name.
Typically, they are stored in a file whose name is the library name with
a ".lml" suffix (for instance, library stdlib is stored in file "stdlib.lml").
Before a user function can be called, its library must be loaded with
the use statement. use statements have an effect only in the context
where they are placed, i.e. in a library, or the command-line interface,

LME Reference 149

or a Sysquake SQ file; this way, different libraries may define functions
with the same name provided they are not used in the same context.

In a library, functions can be public or private. Public functions
may be called from any context which use the library, while private
functions are visible only from the library they are defined in.

10.6 Types

Numerical, logical, and character arrays

The basic type of LME is the two-dimensional array, or matrix. Scalar
numbers and row or column vectors are special kinds of matrices. Ar-
rays with more than two dimensions are also supported. All elements
have the same type, which are described in the table below. Two non-
numeric types exist for character arrays and logical (boolean) arrays.
Cell arrays, which contain composite types, are described in a section
below.
Type Description
double 64-bit IEEE number
complex double Two 64-bit IEEE numbers
single 32-bit IEEE number
complex single Two 32-bit IEEE numbers
uint32 32-bit unsigned integer
int32 32-bit signed integer
uint16 16-bit unsigned integer
int16 16-bit signed integer
uint8 8-bit unsigned integer
int8 8-bit signed integer
uint64 64-bit unsigned integer
int64 64-bit signed integer

64-bit integer numbers are not supported by all applications on all
platforms.

These basic types can be used to represent many mathematic ob-
jects:

Scalar One-by-one matrix.

Vector n-by-one or one-by-n matrix. Functions which return vec-
tors usually give a column vector, i.e. n-by-one.

Empty object 0-by-0 matrix (0-by-n or n-by-0 matrices are always
converted to 0-by-0 matrices).

Polynomial of degree d 1-by-(d+1) vector containing the coeffi-
cients of the polynomial of degree d, highest power first.

150 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

List of n polynomials of same degree d n-by-(d+1) matrix con-
taining the coefficients of the polynomials, highest power at left.

List of n roots n-by-1 matrix.

List of n roots for m polynomials of same degree n n-by-m
matrix.

Single index One-by-one matrix.

List of indices Any kind of matrix; the real part of each element
taken row by row is used.

Sets Numerical array, or list or cell array of strings (see below).

Boolean value One-by-one logical array; 0 means false, and any
other value (including nan) means true (comparison and logical
operators and functions return logical values). In programs and
expressions, constant boolean values are entered as false and
true. Scalar boolean values are displayed as false or true; in
arrays, respectively as F or T.

String Usually 1-by-n char array, but any shape of char arrays are
also accepted by most functions.

Unless a conversion function is used explicitly, numbers are repre-
sented by double or complex values. Most mathematical functions ac-
cept as input any type of numeric value and convert them to double;
they return a real or complex value according to their mathematical
definition.

Basic element-wise arithmetic and comparison operators accept di-
rectly integer types ("element-wise" means the operators + - .* ./ .\
and the functions mod and rem, as well as operators * / \ with a scalar
multiplicand or divisor). If their arguments do not have the same type,
they are converted to the size of the largest argument size, in the fol-
lowing order:

double > single > uint64 > int64 > uint32 > int32 > uint16
> int16 > uint8 > int8

Literal two-dimensional arrays are enclosed in brackets. Rows are
separated with semicolons or line breaks, and row elements with com-
mas or spaces. Here are three different ways to write the same 2-by-3
double array.

A = [1, 2, 3; 4, 5, 6];
A = [1 2 3
4 5 6];

A = [1, 2,
3;
4, 5 6];

LME Reference 151

Functions which manipulate arrays (such as reshape which changes
their size or repmat which replicates them) preserve their type.

To convert arrays to numeric, char, or logical arrays, use functions
+ (unary operator), char, or logical respectively. To convert the nu-
meric types, use functions double, single, or uint8 and similar func-
tions.

Numbers

Double and complex numbers are stored as floating-point numbers,
whose finite accuracy depends on the number magnitude. During
computations, round-off errors can accumulate and lead to visible ar-
tifacts; for example, 2-sqrt(2)*sqrt(2), which is mathematically 0,
yields -4.4409e-16. Integers whose absolute value is smaller than
2̂ 52 (about 4.5e15) have an exact representation, though.

Literal double numbers (constant numbers given by their numeric
value) have an optional sign, an integer part, an optional fractional
part following a dot, and an optional exponent. The exponent is the
power of ten which multiplies the number; it is made of the letter ’e’
or ’E’ followed by an optional sign and an integer number. Numbers
too large to be represented by the floating-point format are changed
to plus or minus infinity; too small numbers are changed to 0. Here
are some examples (numbers on the same line are equivalent):

123 +123 123. 123.00 12300e-2
-2.5 -25e-1 -0.25e1 -0.25e+1
0 0.0 -0 1e-99999
inf 1e999999
-inf -1e999999

Literal integer numbers may also be expressed in hexadecimal with
prefix 0x, in octal with prefix 0, or in binary with prefix 0b. The four
literals below all represent 11, stored as double:

0xb
013
0b1011
11

Literal integer numbers stored as integers and literal single numbers
are followed by a suffix to specify their type, such as 2int16 for the
number 2 stored as a two-byte signed number or 0x300uint32 for the
number whose decimal representation is 768 stored as a four-byte un-
signed number. All the integer types are valid, as well as single. This
syntax gives the same result as the call to the corresponding function
(e.g. 2int16 is the same as int16(2)), except when the integer num-
ber cannot be represented with a double; then the number is rounded

152 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

to the nearest value which can be represented with a double. Compare
the expressions below:

Expression Value
uint64(123456789012345678) 123456789012345696
123456789012345678uint64 123456789012345678

Literal complex numbers are written as the sum or difference of
a real number and an imaginary number. Literal imaginary numbers
are written as double numbers with an i or j suffix, like 2i, 3.7e5j, or
0xffj. Functions i and j can also be used when there are no variables
of the same name, but should be avoided for safety reasons.

The suffices for single and imaginary can be combined as isingle
or jsingle, in this order only:

2jsingle
3single + 4isingle

Command format is used to specify how numbers are displayed.

Strings

Strings are stored as arrays (usually row vectors) of 16-bit unsigned
numbers. Literal strings are enclosed in single quotes:

’Example of string’
’’

The second string is empty. For special characters, the following es-
cape sequences are recognized:

Character Escape seq. Character code
Null \0 0
Bell \a 7
Backspace \b 8
Horizontal tab \t 9
Line feed \n 10
Vertical tab \v 11
Form feed \f 12
Carriage return \r 13
Single tick \’ 39
Single tick ’’ (two ’) 39
Backslash \\ 92
Hexadecimal number \xhh hh
Octal number \ooo ooo
16-bit UTF-16 \uhhhh 1 UTF-16 code
21-bit UTF-32 \Uhhhhhhhh 1 or 2 UTF-16 codes

For octal and hexadecimal representations, up to 3 (octal) or 2 (hex-
adecimal) digits are decoded; the first non-octal or non-hexadecimal

LME Reference 153

digit marks the end of the sequence. The null character can conve-
niently be encoded with its octal representation, \0, provided it is not
followed by octal digits (it should be written \000 in that case). It is an
error when another character is found after the backslash. Single ticks
can be represented either by a backslash followed by a single tick, or
by two single ticks.

Depending on the application and the operating system, strings can
contain directly Unicode characters encoded as UTF-8, or MBCS (multi-
byte character sequences). 16-bit characters encoded with \uhhhh
escape sequences are always accepted and handled correctly by all
built-in LME functions (low-level input/output to files and devices which
are byte-oriented is an exception; explicit UTF-8 conversion should be
performed if necessary).

UTF-32 sequences \Uhhhhhhhh assume UTF-16 encoding. In se-
quences \uhhhh and \Uhhhhhhhh, up to 4 or 8 hexadecimal digits
can be provided, respectively, but the first non-hexadecimal character
marks the end of the sequence.

Inline data

For large amounts of text or binary data, the syntax described above
is impractical. Inline data is a special syntax for storing strings as raw
text or uint8 arrays as base64.

Strings (char arrays of dimension 1-by-n) can be defined in the
source code as raw text without any escape sequence with the fol-
lowing syntax:

@/text marker
text
marker

where @/text is that literal sequence of six characters followed or not
by spaces and tabs, marker is an arbitrary sequence of characters
without spaces, tabs or end-of-lines which does not occur in the text,
and text is the text itself. The spaces, tabs and first end-of-line which
follow the first marker are ignored. The last marker must be at the
beginning of a line; this means that the string always ends with an
end-of-line. The whole text inline data is equivalent to a string with
the corresponding characters and can be located in an assignment or
any expression. End-of-line sequences (\n, \r or \r\n) are replaced by
a single linefeed character.

Here is an example of a short fragment of C code, assigned to vari-
able src. The sequence \n is not interpreted as an escape sequence
by LME; it results in the two characters \ and n in src. The trailing
semicolon suppresses the display of the assignment, like in any LME
expression.

154 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

src = @/text"""
int main() {
printf("Hello, data!\n");

}
""";

Arrays of uint8, of dimension n-by-1 (column vectors), can be defined
in the source code in a compact way using the base64 encoding in
inline data:

@/base64 data

where @/base64 is that literal sequence of eight characters, followed
by spaces and/or line breaks, and the data encoded with base64 (see
RFC 2045). The base64-encoded data can contain lowercase and up-
percase letters a-z and A-Z, digits 0-9, and characters / (slash) and +
(plus), and is followed by 0, 1 or 2 characters = (equal) for padding.
Spaces, tabs and line breaks are ignored. Comments are not allowed.

The first character which is not a valid base64 character signals the
end of the inline data and the beginning of the next token of source
code. Inline data can be a part of any expression, assignment or func-
tion call, like any other literal value. In the case where the inline data
is followed by a character which would erroneously be interpreted as
more base64 codes (e.g. neither padding with = nor statement termi-
nator and a keyword at the beginning of the following line), it should
be enclosed in parenthesis.

Inline data can be generated with the base64encode function. For
example, to encode uint8(0:255).’ as inline data, you can evaluate

base64encode(uint8(0:255))

Then copy and paste the result to the source code, for instance as
follows to set a variable d (note how the semicolon will be interpreted
as the delimiter following the inline data, not the data iteself):

d = @/base64
AAECAwQFBgcICQoLDA0ODxAREhMUFRYXGBkaGxwdHh8gISIjJCUmJygpKiss
LS4vMDEyMzQ1Njc4OTo7PD0+P0BBQkNERUZHSElKS0xNTk9QUVJTVFVWV1hZ
WltcXV5fYGFiY2RlZmdoaWprbG1ub3BxcnN0dXZ3eHl6e3x9fn+AgYKDhIWG
h4iJiouMjY6PkJGSk5SVlpeYmZqbnJ2en6ChoqOkpaanqKmqq6ytrq+wsbKz
tLW2t7i5uru8vb6/wMHCw8TFxsfIycrLzM3Oz9DR0tPU1dbX2Nna29zd3t/g
4eLj5OXm5+jp6uvs7e7v8PHy8/T19vf4+fr7/P3+/w== ;

Lists and cell arrays

Lists are ordered sets of other elements. They may be made of any
type, including lists. Literal lists are enclosed in braces; elements are
separated with commas.

LME Reference 155

{1,[3,6;2,9],’abc’,{1,’xx’}}

Lists can be empty:

{}

List’s purpose is to collect any kind of data which can be assigned to
variables or passed as arguments to functions.

Cell arrays are arrays whose elements (or cells) contain data of any
type. They differ from lists only by having more than one dimension.
Most functions which expect lists also accept cell arrays; functions
which expect cell arrays treat lists of n elements as 1-by-n cell arrays.

To create a cell array with 2 dimensions, cells are written between
braces, where rows are separated with semicolons and row elements
with commas:

{1, ’abc’; 27, true}

Since the use of braces without semicolon produces a list, there is no
direct way to create a cell array with a single row, or an empty cell
array. Most of the time, this is not a problem since lists are accepted
where cell arrays are expected. To force the creation of a cell array,
the reshape function can be used:

reshape({’ab’, ’cde’}, 1, 2)

Structures

Like lists and cell arrays, structures are sets of data of any type. While
list elements are ordered but unnamed, structure elements, called
fields, have a name which is used to access them.

There are three ways to make structures: with field assignment
syntax inside braces, with the struct function, or by setting each field
in an assignment. s.f refers to the value of the field named f in the
structure s. Usually, s is the name of a variable; but unless it is in the
left part of an assignment, it can be any expression which evaluates
to a structure.

a = {label = ’A’, position = [2, 3]};

b = struct(name = ’Sysquake’,
os = {’Windows’, ’macOS’, ’Linux’});

c.x = 200;
c.y = 280;
c.radius = 90;

d.s = c;

156 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

With the assignments above, a.os{3} is ’Linux’ and c.s.radius is
90.

While the primary way to access structure fields is by name, field
order is still preserved, as can be seen by displaying the strcture,
getting the field names with fieldnames, or converting the structure
to a cell array with struct2cell. The fields can be reordered with
orderfields.

Structure arrays

While structure fields can contain any type of array and cell arrays
can have structures stored in their cells, structure arrays are arrays
where each element has the same named fields. Plain structures are
structure arrays of size [1,1], like scalar numbers are arrays of size
[1,1].

Values are specified first by indices between parenthesis, then by
field name. Braces are invalid to access elements of structure arrays
(they can be used to access elements of cell arrays stored in structure
array fields).

Structure arrays are created from cell arrays with functions
structarray or cell2struct, or by assigning values to fields.

A = structarray(’name’, {’dog’,’cat’},
’weight’, {[3,100],[3,18]});

B = cell2struct({’dog’,’cat’;[3,100],[3,18]},
{’name’,’weight’});

C(1,1).name = ’dog’;
C(1,1).weight = [3,100];
C(1,2).name = ’cat’;
C(1,2).weight = [3,18];

Column struct arrays (1-dimension) can be defined with field assign-
ments inside braces by separating array elements with semicolons.
Missing fields are set to the empty array [].

D = {a = 1, b = 2; a = 5, b = 3; b = 8};

Value sequences

Value sequences are usually written as values separated with com-
mas. They are used as function input arguments or row elements in
arrays or lists.

When expressions involving lists, cell arrays or structure arrays
evaluate to multiple values, these values are considered as a value
sequence, or part of a value sequence, and used as such in context

LME Reference 157

where value sequences are expected. The number of values can be
known only at execution time, and may be zero.

L = {1, 2};
v = [L{:}]; // convert L to a row vector
c = complex(L{:}); // convert L to a complex number

Value sequences can arise from element access of list or cell arrays
with brace indexing, or from structure arrays with field access with or
without parenthesis indexing.

Function references

Function references are equivalent to the name of a function together
with the context in which they are created. Their main use is as argu-
ment to other functions. They are obtained with operator @.

Inline and anonymous functions

Inline and anonymous functions encapsulate executable code. They
differ only in the way they are created: inline functions are made with
function inline, while anonymous functions have special syntax and
semantics where the values of variables in the current context can be
captured implicitly without being listed as argument. Their main use
is as argument to other functions.

Sets

Sets are represented with numeric arrays of any type (integer, real
or complex double or single, character, or logical), or lists or cell ar-
rays of strings. Members correspond to an element of the array or list.
All set-related functions accept sets with multiple values, which are
always reduced to unique values with function unique. They imple-
ment membership test, union, intersection, difference, and exclusive
or. Numerical sets can be mixed; the result has the same type as when
mixing numeric types in array concatenation. Numerical sets and list
or cell arrays os strings cannot be mixed.

Null

Null stands for the lack of data. It is both a data type and the only
value it can represent. It can be assigned to a variable, be contained
in a list or cell array element or a structure field, or passed as an input
or output argument to/from a function.

Null is a recent addition to LME, where the lack of data is usually
represented by the empty matrix []. It is especially useful when LME

158 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

is interfaced with languages or libraries where the null value has a
special meaning, such as SQL (Structured Query Language, used with
relational databases) or the DOM (Document Object Model, used with
XML).

Objects

Objects are the basis of Object-Oriented Programming (OOP), an ap-
proach of programming which puts the emphasis on encapsulated
data with a known programmatic interface (the objects). Two OOP
languages in common use today are C++ and Java.

The exact definition of OOP varies from person to person. Here is
what it means when it relates to LME:

Data encapsulation Objects contain data, but the data cannot be
accessed directly from the outside. All accesses are performed via
special functions, called methods. What links a particular method
to a particular object is a class. Class are identified with a name.
When an object is created, its class name is specified. The names
of methods able to act on objects of a particular class are prefixed
with the class name followed with two colons. Objects are special
structures whose contents are accessible only to its methods.

Function and operator overloading Methods may have the
same name as regular functions. When LME has to call a function,
it first checks the type of the input arguments. If one of them is an
object, the corresponding method is called, rather than the
function defined for non-object arguments. A method which has
the same name as a function or another method is said to
overload it. User functions as well as built-in ones can be
overloaded. Operators which have a function name (for instance
x+y can also be written plus(x,y)) can also be overloaded.
Special functions, called object constructors, have the same name
as the class and create new objects. They are also methods of the
class, even if their input arguments are not necessarily objects.

Inheritance A class (subclass) may extend the data and methods
of another class (base class or parent). It is said to inherit from the
parent. In LME, objects from a subclass contain in a special field
an object of the parent class; the field name has the same name
as the parent class. If LME does not find a method for an object, it
tries to find one for its parent, great-parent, etc. if any. An object
can also inherit from several parents.

Here is an example of the use of polynom objects, which (as can
be guessed from their name) contain polynomials. Statement use
polynom imports the definitions of methods for class polynom and oth-
ers.

LME Reference 159

use polynom;
p = polynom([1,5,0,1])
p =
x̂ 3+5x̂ 2+1

q = p̂ 2 + 3 * p / polynom([1,0])
q =
x̂ 6+10x̂ 5+25x̂ 4+2x̂ 3+13x̂ 2+15x+1

10.7 Input and Output

LME identifies channels for input and output with non-negative integer
numbers called file descriptors. File descriptors correspond to files,
devices such as serial port, network connections, etc. They are used
as input argument by most functions related to input and output, such
as fprintf for formatted data output or fgets for reading a line of
text.

Note that the description below applies to most LME applications.
For some of them, files, command prompts, or standard input are ir-
relevant or disabled; and standard output does not always correspond
to the screen.

At least four file descriptors are predefined:

Value Input/Output Purpose
0 Input Standard input from keyboard
1 Output Standard output to screen
2 Output Standard error to screen
3 Output Prompt for commands

You can use these file descriptors without calling any opening func-
tion first, and you cannot close them. For instance, to display the value
of π, you can use fprintf:

fprintf(1, ’pi = %.6f\n’, pi);
pi = 3.141593

Some functions use implicitly one of these file descriptors. For in-
stance disp displays a value to file descriptor 1, and warning displays
a warning message to file descriptor 2.

File descriptors for files and devices are obtained with specific func-
tions. For instance fopen is used for reading from or writing to a file.
These functions have as input arguments values which specify what
to open and how (file name, host name on a network, input or output
mode, etc.), and as output argument a file descriptor. Such file de-
scriptors are valid until a call to fclose, which closes the file or the
connection.

160 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

10.8 Error Messages

When an error occurs, the execution is interrupted and an error mes-
sage explaining what happened is displayed, unless the code is en-
closed in a try/catch block. The whole error message can look like

> use stat
> iqr(123)

Index out of range for variable ’M’ (stat/prctile;61)
-> stat/iqr;69

The first line contains an error message, the location in the source
code where the error occurred, and the name of the function or oper-
ator involved. Here stat is the library name, prctile is the function
name, and 61 is the line number in the file which contains the library.
If the function where the error occurs is called itself by another func-
tion, the whole chain of calls is displayed; here, prctile was called by
iqr at line 69 in library stat.

Here is the list of errors which can occur. For some of them, LME
attempts to solve the problem itself, e.g. by allocating more memory
for the task.

Stack overflow Too complex expression, or too many nested func-
tion calls.

Data stack overflow Too large objects on the stack (in expres-
sions or in nested function calls).

Variable overflow Not enough space to store the contents of a
variable.

Code overflow Not enough memory for compiling the program.

Not enough memory Not enough memory for an operation out-
side the LME core.

Algorithm does not converge A numeric algorithm does not con-
verge to a solution, or does not converge quickly enough. This
usually means that the input arguments have invalid values or are
ill-conditioned.

Incompatible size Size of the arguments of an operator or a func-
tion do not agree together.

Bad size Size of the arguments of a function are invalid.

Non-vector array A row or column vector was expected, but a
more general array was found.

LME Reference 161

Not a column vector A column vector was expected, but a more
general array was found.

Not a row vector A row vector was expected, but a more general
array was found.

Non-matrix array A matrix was expected, but an array with more
than 2 dimensions was found.

Non-square matrix A square matrix was expected, but a rectan-
gular matrix was found.

Index out of range Index negative or larger than the size of the
array.

Wrong type String or complex array instead of real, etc.

Non-integer argument An argument has a fractional part while
an integer is required.

Non positive integer argument An argument is not a positive
integer as expected.

Argument out of range An argument is outside the permitted
range of values.

Non-scalar argument An argument is an array while a scalar
number is required.

Non-object argument An object is required as argument.

Not a permutation The argument is not a permutation of the
integers from 1 to n.

Bad argument A numeric argument has the wrong site or the
wrong value.

Unknown option A string option has an invalid value.

Object too large An object has a size larger than some fixed limit.

Undefined variable Attempt to retrieve the contents of a variable
which has not been defined.

Undefined input argument Attempt to retrieve the contents of
an input argument which was neither provided by the caller nor
defined in the function.

Undefined function Attempt to call a function not defined.

Too few or too many input arguments Less or more arguments
in the call than what the function accepts.

162 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Too few or too many output arguments Less or more left-side
variables in an assignment than the function can return.

Syntax error Unspecified compile-time error.

"function" keyword without function name Incomplete func-
tion header.

Bad function header Syntax error in a function header

Missing expression Statement such as if or while without ex-
pression.

Unexpected expression Statement such as end or else followed
by an expression.

Incomplete expression Additional elements were expected dur-
ing the compilation of an expression, such as right parenthesis or
a sub-expression at the right of an operator.

"for" not followed by a single assignment for is followed by
an expression or an assignment with multiple variables.

Bad variable name The left-hand part of an assignment is not a
valid variable name (e.g. 2=3)

String without right quote The left quote of a string was found,
but the right quote is missing.

Unknown escape character sequence In a string, the backslash
character is not followed by a valid escape sequence.

Unexpected right parenthesis Right parenthesis which does not
match a left parenthesis.

Unexpected right bracket Right bracket which does not match
a left bracket.

Unrecognized or unexpected token An unexpected character
was found during compilation (such as (1+))

"end" not in an index expression end was used outside of any
index sub-expression in an expression.

"beginning" not in an index expression beginning was used
outside of any index sub-expression in an expression.

"matrixcol" not in an index expression matrixcol was used
outside of any index sub-expression in an expression.

"matrixrow" not in an index expression matrixrow was used
outside of any index sub-expression in an expression.

LME Reference 163

"matrixrow" or "matrixcol" used in the wrong index
matrixrow was used in an index which was not the first one, or
matrixcol was used in an index which was not the only one or
the second one.

Compilation overflow Not enough memory during compilation.

Too many nested subexpressions The number of nested of
subexpressions is too high.

Variable table overflow A single statement attempts to define
too many new variables at once.

Expression too large Not enough memory to compile a large ex-
pression.

Too many nested (), [] and {} The maximum depth of nested
subexpressions, function argument lists, arrays and lists is
reached.

Too many nested programming constructs Not enough mem-
ory to compile that many nested programming constructs such as
if, while, switch, etc.

Wrong number of input arguments Too few or too many input
arguments for a built-in function during compilation.

Wrong number of output arguments Too few or too many out-
put arguments for a built-in function during compilation.

Too many indices More than two indices for a variable.

Variable not found A variable is referenced, but appears neither
in the arguments of the function nor in the left part of an assign-
ment.

Unbounded language construct if, while, for, switch, or try
without end.

Unexpected "end" The end statement does not match an if,
switch, while, for, or catch block.

"case" or "otherwise" without "switch" The case or otherwise
statement is not inside a switch block.

"catch" without "try" The catch statement does not match a try
block.

"break" or "continue" not in a loop The break or continue
statement is not inside a while or for block.

164 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Variable name reused Same variable used twice as input or as
output argument.

Too many user functions Not enough memory for that many user
functions.

Attempt to redefine a function A function with the same name
already exists.

Can’t find function definition Cannot find a function definition
during compilation.

Unexpected end of expression Missing right parenthesis or
square bracket.

Unexpected statement Expression expected, but a statement is
found (e.g. if).

Null name Name without any character (when given as a string in
functions like feval and struct).

Name too long More than 32 characters in a variable or function
name.

Unexpected function header A function header (keyword "func-
tion") has been found in an invalid place, for example in the argu-
ment of eval.

Function header expected A function header was expected but
not found.

Bad variable in the left part of an assignment The left part of
an assignment does not contain a variable, a structure field, a list
element, or the part of an array which can be assigned to.

Bad variable in a for loop The left part of the assignment of a
for loop is not a variable.

Source code not found The source code of a function is not avail-
able.

File not found fopen does not find the file specified.

Bad file ID I/O function with a file descriptor which neither is stan-
dard nor corresponds to an open file or device.

Cannot write to file Attempt to write to a read-only file.

Bad seek Seek out of range or attempted on a stream file.

Too many open files Attempt to open too many files.

End of file Attempt to read data past the end of a file.

LME Reference 165

Timeout Input or output did not succeed before a too large amount
of time elapsed.

No more OS memory The operating system cannot allocate more
memory.

Bad context Call of a function when it should not (application-
dependent).

Not supported The feature is not supported, at least in the current
version.

10.9 Character Set

There exist different standards to represent characters. In LME, char-
acters are stored as 16-bit unsigned integer numbers. The mapping
between these codes and the actual characters they represent de-
pends on the application and the operating system. Currently, on ma-
cOS, Windows and Linux, Sysquake uses the UTF-16 character encod-
ing (i.e. Unicode characters encoded in one or two 16-bit words).

To make the exchange of files possible without manual conversion,
all text files used by LME applications can have their character set
specified explicitly. In Sysquake, this includes library files (.lml), SQ
files (.sq), and SQ data files (.sqd). Versions of Sysquake using Unicode
(currently macOS and Linux) convert automatically files with a charset
specification.

The character set specification is a comment line with the following
format:

// charset=charsetname
or
% charset=charsetname
Spaces between the comment mark and the keyword charset are

ignored. The comment line must be the first or the second line of the
text file. The character set charsetname must be one of the following:

Name Description
ascii or usascii ASCII
utf-8 or utf8 UTF-8 (unicode)
iso-8859-1 or iso-latin-1 ISO-Latin-1 (Windows 1252)
macintosh or macosroman Mac OS Classic

Here are advices about the use of character set specifications, both
for the current transition phase where Sysquake for Windows does not
use Unicode and for the future.

If you need only ASCII (typically because you work in English, or for
files without text or where unaccented letters are acceptable), do not
add any character set specification (ASCII is a subset of all supported

166 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

character sets) or add charset=ascii as an indication that the file
should contain only 7-bit characters.

If you need accented characters found in western European lan-
guages, use ISO-8859-1 with an explicit character set specification on
Windows and other platforms if you need cross-platform compatibility,
or any character set with a character set specification otherwise.

If you need another native character set on Windows, do not add
any character set specification, and switch to UTF-8 as soon as a uni-
code version of Sysquake becomes available.

10.10 Formatted text

Like most text-based programming languages, LME primary text for-
mat is plain text, without any character or paragraph formatting. To
improve readability, it also supports formatted text. Formatting in-
formation used to change the character font and size and how para-
graphs are aligned is embedded in the text itself as markup, i.e. spe-
cial sequences of characters unlikely to occur in normal text. This is
similar to HTML or LaTeX, but with a simpler syntax similar to what is
used in wikis and blogs. The markup which has been chosen for LME
is Creole, a collaborative effort to create a common markup language
to be used across different wikis, and more precisely the open-source
NME implementation.

Formatted text output channel

In addition to the standard output channel (file descriptor 1) and the
standard error channel (file descriptor 2), LME has a special channel
for formatted output (file descriptor 4). Anything written to that chan-
nel is parsed so that markup constructs are interpreted; the result is
displayed in the command window. Each write command should con-
tain a whole block of text with markup; there is no buffering across
output commands.

Not all versions of LME support formatted output, and how format-
ted output is displayed depends on the application and the platform.
For instance, in shell applications, word-wrap is applied to paragraphs,
but bold or italic text is rendered as plain text.

Example
T = 27.3;
fprintf(4, ’=Report=\nTemperature is %.1f\n’, T);

The same markup is used in LME applications at other places. For
example, in Sysquake, the version and help information can contain
markup.

LME Reference 167

Markup reference

Text with markup is plain text with a few character sequences which
are recognized by the markup processor and change the format of the
result. The result is styled text with titles, paragraphs with justifica-
tion, bold and italic faces, etc.

There are two kinds of markup constructs: blocks and inline. Blocks
are paragraphs (indented or not), headings, list items, table cells,
horizontal rules and block extensions. Inline constructs are charac-
ter styles, verbatim text and links; they are part of blocks. Except in
preformatted blocks, sequences of spaces or tabs are replaced with
single spaces.

Paragraphs
Paragraphs are made of lines whose first character is not one of *#:;=
nor sequence {{{, ---, or <<<. Lines can begin with sequences **
and ##.

Paragraphs end with blank lines or next heading, list, table, in-
dented paragraph, preformatted block of text, horizontal rule or block
extension. They can contain styled text, links, spans of verbatim text,
and inline extensions.

Example
This is a paragraph
written in two lines.

This is another paragraph.

Indenting
Indented paragraphs are paragraphs which begin with a colon. Mul-
tiple colons define the level of indenting. Indented paragraphs can
contain styled text, links, spans of verbatim text, and inline exten-
sions.

Example
This is a normal paragraph.
:This is an indented
paragraph in two lines.
::This is more indented.

Headings
Headings are made of a single line beginning with an equal character.
The number of equal characters defines the level of title, from main
title (=) to sub-sub-subtitle (====). Headings may end with a sequence
of equal characters.

168 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
=Level 1 heading=
Paragraph
=Another level 1 heading, without trailing equal character
==Level 2 heading==
===Level 3 heading===

Lists
Lists are collections of items. There are three kinds of lists: unnum-
bered lists, numbered lists, and definition lists. Lists can be nested;
they end with the next heading, indented paragraph, table, or blank
line.

Unnumbered lists are represented as indented paragraphs with a
bullet. Each item begins with a star character (*); it can span multiple
lines.

Numbered lists are represented as indented paragraphs with a
number. Items are numbered automatically with consecutive integers
starting at 1. Each item begins with a sharp character (#); it can span
multiple lines.

Definition lists are made of two kinds of items: title, typically dis-
played in bold font, and definition, typically displayed indented. Titles
begin with a semicolon at the beginning of a line. Definitions either
follow the title, separated with a colon; or they begin on a new line
beginning with a colon.

List nesting can combine different kinds of lists. Sublist items begin
with multiple markers, the first one(s) corresponding to the enclosing
list(s). For instance, items of an unnumbered list nested in a num-
bered list should start with #* at the beginning of the line, without any
preceding space. List markers must be used in a consistent way; for
example, ## at the beginning of a line in an unnumbered list is not
interpreted as a second-level numbered list item, but as monospace
style (see below).

Examples

* First item of unnumbered list.
* Second
item, in two lines.
*Third item without space (spaces are optional).

First item of numbered list.
Second item.
#* First item on unnumbered sublist.
#* Second item.
Thirst item of top-level numbered list.

; First title of definition list

LME Reference 169

: Definition of first item.
; Second title: Second definition
beginning on the same line.

Paragraph separated with a blank line.

Tables
Tables are rectangular array of cells. They are made of one line per
row. Each cell begins with character |. Heading cells (typically dis-
played in bold face) begin with |=. Rows may end with a trailing |.

Example
In the table below, the first row and the first column contain headings.
The very first cell is empty.

||=First column|=Second column
|=First row|Cell 1,1|Cell 1,2
|=Second row|Cell 2,1|Cell 2,2

Preformatted
Preformatted text is a block of text displayed literally, including line
feeds. Preformatted text is preceded with a line containing {{{ and is
followed by a line containing }}}.

Example
This is some C code:
{{{
double f(double x)
{
return 2 * x; // f(x) = 2x

}
}}}

In preformatted text, lines which begin with }}}, with leading spaces
or not, must have an additional space which is discarded in the output.

Horizontal rules
Horizontal rules are single lines containing four hyphens.

Example
Paragraph.

Paragraph following a horizontal rule.

170 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Extensions
Sequences << and <<< are reserved for extensions.

Character style
Inside paragraphs, indented paragraphs, headings, list elements, and
table cells, the following two-character sequences toggle on or off the
corresponding style. It is not mandatory to nest spans of styled char-
acters between matching style sequences. Style is reset at the end of
text block.
Markup Style
** Bold
// Italic
Monospace
„ (two commas) Subscript
ˆ̂ Superscript
__ (two underscores) Underlined

Double stars and double sharps are interpreted as the beginning of
list items when they are the first characters of a line in the context of
lists. To be interpreted as style markup, they can be preceded by a
space.

Example
This is //italic text//, **bold text**,
and //**bold italic text**//.

Escape character
The tilde character, when followed by any character except space, tab
or line feed, is an escape character; it is not displayed and the next
character loses its special meaning, if any.

Example
Two stars: *̃̃ * or *̃* or *̃ *; tilde: ˜̃ .

is rendered as "Two stars: ** or ** or **; tilde: .̃"

Verbatim
Verbatim text is a sequence of characters enclosed between {{{ and
}}}. After {{{, all characters are output verbatim, without any markup
interpreting, until the next }}} or the end of text block. Multiple spaces
and tabs and single line feeds are still converted to single spaces,
though. Verbatim text is an alternative to the escape character; it is
more convenient for sequences of characters.

LME Reference 171

Example
{{{**}}} //{{{{{{xx}}}}}}//

is rendered as "** {{{xx}}}".

Line break
Except in preformatted blocks, line breaks are not preserved. The
sequence \\ forces a line break.

Example
The next line of this paragraph begins...\\here!

Links
Hypertext links (URLs) are enclosed between [[and]]. The text dis-
played as the link is either the same as the URL itself if there is no |
character, or it is what follows |. No markup is recognized in the URL
part; what follows | can contain styled text and verbatim text. Spaces
surrounding | are ignored.

Examples

* Simple link: [[https://calerga.com]]
* Link with link text: [[https://calerga.com | Calerga]]
* Link with styled link text: [[https://calerga.com | **Calerga**]]

10.11 List of Commands, Functions, and
Operators

Programming keywords

break
case
catch
clear
continue
define
endfunction
else
elseif
error

for
function
global
hideimplementation
if
otherwise
persistent
private
public
repeat

rethrow
return
switch
try
until
use
useifexists
while

172 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Programming operators and functions

assert
Variable assignment
Operator ()
Operator @
builtin
deal
dumpvar
eval
feval
fevalx

fun2str
inline
isdefined
isfun
isglobal
lasterr
lasterror
namedargin
nargin
nargout

sandbox
sandboxtrust
str2fun
str2obj
subsasgn
subsref
varargin
varargout

Platform

exist
help
info
inmem

iskeyword
ismac
ispc
isunix

lookfor
variables
which

Debugging

dbclear
dbcont
dbhalt
dbquit

dbstack
dbstatus
dbstep
dbstop

dbtype
echo
profile

LME Reference 173

Arrays

[]
,
;
:
arrayfun
beginning
cat
diag
end
eye
find
flipdim
fliplr
flipud
ind2sub

inthist
ipermute
isempty
length
linspace
logspace
magic
matrixcol
matrixrow
meshgrid
ndgrid
ndims
nnz
numel
ones

permute
rand
randi
randn
repmat
reshape
rng
rot90
size
sort
squeeze
sub2ind
unique
unwrap
zeros

Strings

base32decode
base32encode
base64decode
base64encode
char
deblank
ischar
isdigit
isempty
isletter
isspace
latex2mathml

length
lower
mathml
mathmlpoly
regexp
regexpi
setstr
split
sprintf
sscanf
strcmp
strcmpi

strfind
strmatch
strrep
strtok
strtrim
unicodeclass
upper
utf32decode
utf32encode
utf8decode
utf8encode

Hash

hmac
md5

sha1
sha1

174 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Lists

{}
apply
join
isempty

islist
length
list2num
map

num2list
replist

Cell arrays

cell
cellfun

iscell
num2cell

Structures and structure arrays

cell2struct
cellfun
fieldnames
getfield
isfield

isstruct
orderfields
rmfield
setfield
struct

struct2cell
structarray
structmerge

Null value

isnull null

Objects

class
inferiorto
isa

isobject
methods
superclasses

superiorto

LME Reference 175

Logical operators

==
===
=̃
=̃=
<

>
<=
>=
˜
&

|
&&
||
?

Logical functions

all
any
false
find
ischar
iscolumn
isdigit
isempty
isequal

isfinite
isfloat
isinf
isinteger
isletter
islogical
ismatrix
isnan
isnumeric

isprime
isrow
isscalar
isspace
isvector
logical
true
xor

Bitwise functions

bitall
bitand
bitany
bitcmp

bitget
bitor
bitset
bitshift

bitxor
graycode
igraycode

Integer functions

int8
int16
int32

int64
map2int
uint8

uint16
uint32
uint64

176 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Set functions

intersect
ismember

setdiff
setxor

union
unique

Constants

eps
false
flintmax
goldenratio
i

inf
intmax
intmin
j
nan

pi
realmax
realmin
true

Arithmetic functions

+
-
*
.*
/
./

\
.\
ˆ
.̂
cumprod
cumsum

diff
kron
mod
prod
rem
sum

Trigonometric functions in radians

acos
acot
acsc
asec
asin

atan
atan2
cos
cot
csc

sec
sin
tan

LME Reference 177

Trigonometric functions in degrees

acosd
acotd
acscd
asecd
asind

atand
atan2d
cosd
cotd
cscd

secd
sind
tand

Hyperbolic functions

acosh
acoth
acsch
asech

asinh
atanh
cosh
coth

csch
sech
sinh
tanh

Other scalar math functions

abs
angle
beta
betainc
betaln
conj
diln
ellipam
ellipe
ellipf
ellipj
ellipke
erf
erfc

erfcinv
erfcx
erfinv
exp
expm1
factor
factorial
gamma
gammainc
gammaln
gcd
hypot
imag
lcm

log
log10
log1p
log2
nchoosek
nthroot
rat
real
reallog
realpow
realsqrt
sign
sinc
sqrt

178 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Type conversion functions

cast
ceil
complex
double

fix
floor
round
roundn

single
swapbytes
typecast

Matrix math functions

’
.’
balance
care
chol
cond
conv2
dare
det
dlyap
eig
expm

fft
funm
hess
householder
householderapply
ifft
inv
linprog
logm
lu
lyap
norm

null
orth
pinv
qr
rank
schur
sqrtm
svd
trace
tril
triu

Geometry functions

cart2pol
cart2sph

cross
dot

pol2cart
sph2cart

Probability distribution functions

cdf
icdf

pdf
random

LME Reference 179

Statistic functions

cov
cummax
cummin
kurtosis

max
mean
median
min

moment
skewness
std
var

Polynomial math functions

addpol
conv
deconv

filter
poly
polyder

polyint
polyval
roots

Interpolation and triangulation functions

delaunay
delaunayn
griddata
griddatan

interp1
interpn
tsearch
tsearchn

voronoi
voronoin

Quaternion operators

,
;
==
=̃
+
-

*
.*
/
./
\
.\

ˆ
.̂
’
.’

180 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Quaternion math functions

abs
conj
cos
cumsum
diff
exp
log
mean

q2mat
q2rpy
q2str
qimag
qinv
qnorm
qslerp
quaternion

real
rpy2q
sign
sin
sqrt
sum

Other quaternion functions

beginning
cat
char
disp
dumpvar
double
end
flipdim

fliplr
flipud
ipermute
isempty
isquaternion
length
ndims
numel

permute
repmat
reshape
rot90
size
squeeze
subsasgn
subsref

Non-linear numeric functions

fminbnd
fminsearch
fsolve
fzero

integral
lsqcurvefit
lsqnonlin
ode23

ode45
odeset
optimset

Dynamical systems functions

c2dm
d2cm
dmargin

margin
movezero
ss2tf

tf2ss
zp2ss

LME Reference 181

Input/output

bwrite
disp
error
fclose
feof
fgetl
fgets
fionread

format
fprintf
fread
frewind
fscanf
fseek
ftell
fwrite

redirect
sprintf
sread
sscanf
swrite
warning

Files

efopen fopen

Path manipulation

fileparts filesep fullfile

XML

getElementById
getElementsByTagName
saxcurrentline
saxcurrentpos

saxnew
saxnext
saxrelease
xmlread

xmlreadstring
xmlrelease

LME threads

semaphoredelete
semaphorelock
semaphorenew

semaphoreunlock
threadkill
threadnew

threadset
threadsleep

182 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Parallel execution

batch
cancel
createJob
createTask

delete
fetchOutputs
findTask
parcluster

pardefaultcluster
submit
wait

Basic graphics

activeregion
altscale
area
bar
barh
circle
colormap
contour
figurestyle
fontset

fplot
image
label
legend
line
math
pcolor
plot
plotoption
plotset

polar
quiver
scale
scalefactor
subplotstyle
text
tickformat
ticks
title

3D graphics

camdolly
camorbit
campan
campos
camproj
camroll
camtarget

camup
camva
camzoom
contour3
daspect
lightangle
line3

material
mesh
plot3
plotpoly
sensor3
surf

LME Reference 183

Graphics for dynamical systems

bodemag
bodephase
dbodemag
dbodephase
dimpulse
dinitial
dlsim
dnichols
dnyquist

dsigma
dstep
erlocus
hgrid
hstep
impulse
initial
lsim
ngrid

nichols
nyquist
plotroots
rlocus
sgrid
sigma
step
zgrid

User interface controls

button
popupmenu
pushbutton

settabs
slider
text

textfield

Figures and subplots

currentfigure
defaultstyle
figure
scaleoverview
scalesync

subplot
subplotparam
subplotpos
subplotprops
subplots

subplotsize
subplotspring
subplotsync

Dialog box

dialog
dialogset

getfile
putfile

184 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Date and time

cal2julian
clock

julian2cal
posixtime

tic
toc

Extensions loaded on demand

exteval extload extunload

Interactivity

firstrun
_dx
_dy
_dz
_id
_ix
_kx
_ky
_kz
_nb
_m

_p0
_p1
_q
_rho
_rho0
_rho1
_str1
_theta
_theta0
_theta1
_v

_x
_x0
_x1
_y
_y0
_y1
_z
_z0
_z1

Sysquake instances

sqcall
sqcurrentinstance

sqguicmd
sqinstances

sqinstancetitle
sqselect

LME Reference — variables 185

Miscellaneous

cancel
clf
hasfeature

idlestate
progress
quit

redraw
sqcurrentlanguage
sqfilepath

10.12 Variable Assignment and Subscript-
ing

Variable assignment

Assignment to a variable or to some elements of a matrix variable.

Syntax
var = expr
(var1, var2, ...) = function(...)

Description
var = expr assigns the result of the expression expr to the variable
var. When the expression is a naked function call, (var1,var2,...)
= function(...) assigns the value of the output arguments of the
function to the different variables. Usually, providing less variables
than the function can provide just discards the superfluous output
arguments; however, the function can also choose to perform in a
different way (an example of such a function is size, which returns
the number of rows and the number of columns of a matrix either as
two numbers if there are two output arguments, or as a 1-by-2 vector
if there is a single output argument). Providing more variables than
what the function can provide is an error.

Variables can store any kind of contents dynamically: the size and
type can change from assignment to assignment.

A subpart of a matrix variable can be replaced with the use of
parenthesis. In this case, the size of the variable is expanded when
required; padding elements are 0 for numeric arrays and empty ar-
rays [] for cell arrays and lists.

See also
Operator (), operator {}, clear, exist, for, subsasgn

beginning

First index of an array.

186 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
v(...beginning...)
A(...beginning...)
function e = C::beginning(obj, i, n)

Description
In an expression used as an index to access some elements of an
array, beginning gives the index of the first element (line or column,
depending of the context). It is always 1 for native arrays.

beginning can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::beginning(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where beginning is used, and n is the total number of index
expressions.

See also
Operator (), operator {}, beginning, end, matrixcol, matrixrow

end

Last index of an array.

Syntax
v(...end...)
A(...end...)
function e = C::end(obj, i, n)

Description
In an expression used as an index to access some elements of an ar-
ray, end gives the index of the last element (line or column, depending
of the context).

end can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::end(obj,i,n), where C is the name of the class, obj is the
object to be indexed, i is the position of the index expression where
end is used, n is the total number of index expressions.

Examples
Last 2 elements of a vector:

a = 1:5; a(end-1:end)
4 5

LME Reference — variables 187

Assignment to the last element of a vector:

a(end) = 99
a =
1 2 3 4 99

Extension of a vector:

a(end + 1) = 100
a =
1 2 3 4 99 100

See also
Operator (), operator {}, size, length, beginning, matrixcol,
matrixrow

global persistent

Declaration of global or persistent variables.

Syntax
global x y ...
persistent x y ...

Description
By default, all variables are local and created the first time they are
assigned to. Local variables can be accessed only from the body of the
function where they are defined, but not by any other function, even
the ones they call. They are deleted when the function exits. If the
function is called recursively (i.e. if it calls itself, directly or indirectly),
distinct variables are defined for each call. Similarly, local variables
defined in the workspace using the command-line interface cannot be
referred to in functions.

On the other hand, global variables can be accessed by multiple
functions and continue to exist even after the function which cre-
ated them exits. Global variables must be declared with global in
each function which uses them. They can also be declared in the
workspace. There exists only a single variable for each different name.

Declaring a global variable has the following result:

– If a previous local variable with the same name exists, it is
deleted.

– If the global variable does not exist, it is created and initialized
with the empty array [].

188 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

– Every access which follows the declaration in the same function
or workspace uses the global variable.

Like global variables, persistent variables are preserved between func-
tion calls; but they cannot be shared between different functions. They
are declared with persistent. They cannot be declared outside a
function. Different persistent variables can have the same name in
different functions.

Examples

Functions to reset and increment a counter:

function reset
global counter;
counter = 0;

function value = increment
global counter;
counter = counter + 1;
value = counter;

Here is how the counter can be used:

reset;
i = increment
i =
1

j = increment
j =
2

See also

function

matrixcol

First index in a subscript expression.

Syntax
A(...matrixcol...)
function e = C::matrixcol(obj, i, n)

LME Reference — variables 189

Description
In an expression used as a single subscript to access some elements
of an array A(expr), matrixcol gives an array of the same size as
A where each element is the column index. For instance for a 2-by-3
matrix, matrixcol gives the 2-by-3 matrix [1,2,3;1,2,3].

In an expression used as the second of multiple subscripts to
access some elements of an array A(...,expr) or A(...,expr,...),
matrixcol gives a row vector of length size(A,2) whose elements
are the indices of each column. It is equivalent to the range
(beginning:end).

matrixcol is useful in boolean expressions to select some ele-
ments of an array.

matrixcol can be overloaded for objects of used-defined
classes. Its definition should have a header equivalent to function
e=C::matrixcol(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixcol is used, and n is the total number of index
expressions.

Example
Set to 0 the NaN values which are not in the first column:

A = [1, nan, 5; nan, 7, 2; 3, 1, 2];
A(matrixcol > 1 & isnan(A)) = 0
A =

1 0 5
nan 7 2
3 1 2

See also
matrixrow, beginning, end

matrixrow

First index in a subscript expression.

Syntax
A(...matrixrow...)
function e = C::matrixrow(obj, i, n)

Description
In an expression used as a single subscript to access some elements
of an array A(expr), matrixrow gives an array of the same size as A

190 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

where each element is the row index. For instance for a 2-by-3 matrix,
matrixrow gives the 2-by-3 matrix [1,1,1;2,2,2].

In an expression used as the first of multiple subscripts to access
some elements of an array A(expr,...), matrixrow gives a row vec-
tor of length size(A,1) whose elements are the indices of each row.
It is equivalent to the range (beginning:end).

matrixrow is useful in boolean expressions to select some ele-
ments of an array.

matrixrow can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::matrixrow(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixrow is used, and n is the total number of index
expressions.

See also
matrixcol, beginning, end

subsasgn

Assignment to a part of an array, list, or structure.

Syntax
A = subsasgn(A, s, B)

Description
When an assignment is made to a subscripted part of an object in a
statement like A(s1,s2,...)=B, LME executes A=subsasgn(A,s,B),
where subsasgn is a method of the class of variable A and s is a struc-
ture with two fields: s.type which is ’()’, and s.subs which is the
list of subscripts {s1,s2,...}. If a subscript is the colon character
which stands for all elements along the corresponding dimensions, it
is represented with the string ’:’ in s.subs.

When an assignment is made to a subscripted part of an object
in a statement like A{s}=B, LME executes A=subsasgn(A,s,B), where
subsasgn is a method of the class of variable A and s is a structure
with two fields: s.type which is ’{}’, and s.subs which is the list
containing the single subscript {s}.

When an assignment is made to the field of an object in a statement
like A.f=B, LME executes A=subsasgn(A,s,B), where s is a structure
with two fields: s.type which is ’.’, and s.subs which is the name of
the field (’f’ in this case).

While the primary purpose of subsasgn is to permit the use of sub-
scripts with objects, a built-in implementation of subsasgn is provided

LME Reference — variables 191

for arrays when s.type is ’()’, for lists and cell arrays when s.type
is a list or a cell array, and for structures when s.type is ’.’. In that
case, the second argument s can be reduced to the list of subscripts
or the field name; and a single subscripts can be given directly instead
of a list of length 1.

Examples
A = [1,2;3,4];
subsasgn(A, {type=’()’,subs={1,’:’}}, 999)
999 999
3 4

subsasgn(A, {type=’()’,subs={’:’,1}}, [])
2
4

Same result when the indices are given directly as the second argu-
ment:

subsasgn(A, {1,’:’}, 999)
999 999
3 4

s = {a=2, b=1:5};
subsasgn(s, ’b’, ’abc’)
a: 2
b: ’abc’

See also
Operator (), operator {}, subsref, beginning, end

subsref

Reference to a part of an array, list, or structure.

Syntax
B = subsref(A, s)

Description
When an object variable is subscripted in an expression like
A(s1,s2,...), LME evaluates subsref(A,s), where subsref is a
method of the class of variable A and s is a structure with two fields:
s.type which is ’()’, and s.subs which is the list of subscripts
{s1,s2,...}. If a subscript is the colon character which stands for all
elements along the corresponding dimensions, it is represented with
the string ’:’ in s.subs.

192 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

When an object variable is subscripted in an expression like A{s},
LME evaluates subsref(A,s), where subsref is a method of the class
of variable A and s is a structure with two fields: s.type which is ’{}’,
and s.subs which is the list containing the single subscript {s}.

When the field of an object variable is retrieved in an expression
like A.f, LME executes subsref(A,s), where s is a structure with two
fields: s.type which is ’.’, and s.subs which is the name of the field
(’f’ in this case).

While the primary purpose of subsref is to permit the use of sub-
scripts with objects, a built-in implementation of subsref is provided
for arrays when s.type is ’()’, for lists when s.type is ’{}’, and for
structures when s.type is ’.’. In that case, the second argument s
can be reduced to the list of subscripts or the field name; and a single
subscripts can be given directly instead of a list of length 1.

Examples
A = [1,2;3,4];
subsref(A, {type=’()’,subs={1,’:’}})
1 2

Same result when the indices are given directly as the second argu-
ment:

subsref(A, {1,’:’})
1 2

s = {a=’abc’, b=1:5};
subsref(s, ’b’)
1 2 3 4 5

See also
Operator (), operator {}, subsasgn, beginning, end

10.13 Programming Constructs

Programming constructs are the backbone of any LME program. Ex-
cept for the variable assignment, all of them use reserved keywords
which may not be used to name variables or functions. In addition to
the constructs described below, the following keywords are reserved
for future use:

classdef
goto

parfor
spmd

LME Reference — programming constructs 193

break

Terminate loop immediately.

Syntax
break

Description
When a break statement is executed in the scope of a loop construct
(while, repeat or for), the loop is terminated. Execution continues
at the statement which follows end. Only the innermost loop where
break is located is terminated.

The loop must be in the same function as break. It is an error to
execute break outside any loop.

See also
while, repeat, for, continue, return

case

Conditional execution of statements depending on a number or a
string.

See also
switch, otherwise

catch

Error recovery.

See also
try

continue

Continue loop from beginning.

Syntax
continue

194 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
When a continue statement is executed in the scope of a loop con-
struct (while, repeat or for), statements following continue are ig-
nored and a new loop is performed if the loop termination criterion is
not fulfilled.

The loop must be in the same function as continue. It is an error
to execute continue outside any loop.

See also
while, repeat, for, break

define

Definition of a constant.

Syntax
define c = expr
define c = expr;

Description
define c=expr assign permanently expression expr to c. It is equiv-
alent to

function y = c
y = expr;

Since c does not have any input argument, the expression is usually
constant. A semicolon may follow the definition, but it does not have
any effect. define must be the first element of the line (spaces and
comments are skipped).

Examples
define e = exp(1);
define g = 9.81;
define c = 299792458;
define G = 6.672659e-11;

See also
function

for

Loop controlled by a variable which takes successively the value of the
elements of a vector or a list.

LME Reference — programming constructs 195

Syntax
for v = vect

s1
...

end

for v = list
s1
...

end

Description

The statements between the for statement and the corresponding
end are executed repeatedly with the control variable v taking succes-
sively every column of vect or every element of list list. Typically,
vect is a row vector defined with the range operator.

You can change the value of the control variable in the loop; how-
ever, next time the loop is repeated, that value is discarded and the
next column of vect is fetched.

Examples
for i = 1:3; i, end
i =
1

i =
2

i =
3

for i = (1:3)’; i, end
i =
1
2
3

for i = 1:2:5; end; i
i =
5

for i = 1:3; break; end; i
i =
1

for el = {1,’abc’,{2,5}}; el, end
el =
1

el =
abc

el =
{2,5}

196 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
while, repeat, break, continue, variable assignment

function endfunction

Definition of a function, operator, or method.

Syntax
function f

statements

function f(x1, x2, ...)
statements

function f(x1, x2 = expr2, ...)
statements

function y = f(x1, x2, ...)
statements

function (y1,y2,...) = f(x1,x2,...)
statements

function ... class::method ...
statements

function ...
statements

endfunction

Description
New functions can be written to extend the capabilities of LME. They
begin with a line containing the keyword function, followed by the
list of output arguments (if any), the function name, and the list of
input arguments between parenthesis (if any). The output arguments
must be enclosed between parenthesis or square brackets if they are
several. One or more variable can be shared in the list of input and
output arguments. When the execution of the function terminates (ei-
ther after the last statement or because of the command return), the
current value of the output arguments, as set by the function’s state-
ments, is given back to the caller. All variables used in the function’s
statements are local; their value is undefined before the first assign-
ment (and it is illegal to use them in an expression), and is not shared
with variables in other functions or with recursive calls of the same
function. Different kinds of variables can be declared explicitly with
global and persistent.

LME Reference — programming constructs 197

When multiple functions are defined in the same code source (for
instance in a library), the body of a function spans from its header
to the next function or until the endfunction keyword, whichever
comes first. Function definitions cannot be nested. endfunction is
required only when the function definition is followed by code to be
executed outside the scope of any function. This includes mixed code
and function definitions entered in one large entry in a command-
line interface, or applications where code is mainly provided as state-
ments, but where function definitions can help and separate libraries
are not wished (note that libraries cannot contain code outside func-
tion definitions; they do not require endfunction). Both function
and endfunction appear usually at the beginning of a line, but are
also permitted after a semicolon or a comma.

Variable number of arguments
Not all of the input and output arguments are necessarily specified
by the caller. The caller fixes the number of input and output argu-
ments, which can be obtained by the called function with nargin and
nargout, respectively. Unspecified input arguments (from nargin+1
to the last one) are undefined, unless a default value is provided in
the function definition: with the definition function f(x,y=2), y is 2
when f is called with a single input argument. Unused output argu-
ments (from nargout+1 to the last one) do not have to be set, but may
be.

Functions which accept an unspecified number of input and/or out-
put arguments can use the special variables varargin and varargout,
which are lists of values corresponding to remaining input and output
arguments, respectively.

Named arguments
The caller can pass some or all of the input arguments by name, such
as f(x=2). Named arguments must follow unnamed ones. Their or-
der does not have to match the order of the input arguments in the
function declaration, and some arguments can be missing. Missing
arguments are set to their default value if it exists, or left undefined.
Undefined arguments can be detected with isdefined, or the error
caused by their use caught by try.

Functions which accept unspecified named arguments or which do
not want to expose the argument names used in their implementation
can use the special variable namedargin, which is a structure contain-
ing all named arguments passed by the caller.

Unused arguments
Character ˜ stands for an unused argument. It can be used as a place-
holder for an input argument name in the function definition, or in the

198 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

list of output arguments specified for the function call.
If function f is defined with function header function f(x,̃), it ac-

cepts two input arguments, the first one assigned to x and the second
one discarded. This can be useful if f is called by code which expects
a function with two input arguments.

In (a,̃ ,c)=f, function f is called to provide three output arguments
(nargout==3), but the second output argument is discarded.

Operator overloading
To redefine an operator (which is especially useful for object methods;
see below), use the equivalent function, such as plus for operator +.
The complete list is given in the section about operators.

To define a method which is executed when one of the input argu-
ments is an object of class class (or a child in the classes hierarchy),
add class:: before the method (function) name. To call it, use only
the method name, not the class name.

Examples
Function with optional input and output arguments:

function (Sum, Prod) = calcSumAndProd(x, y)
if nargout == 0
return; % nothing to be computed

end
if nargin == 0 % make something to be computed...
x = 0;

end
if nargin <= 1 % sum of elements of x
Sum = sum(x);

else % sum of x and y
Sum = x + y;

end
if nargout == 2 % also compute the product
if nargin == 1 % product of elements of x
Prod = prod(x);

else % product of x and y
Prod = x .* y;

end
end

Two equivalent definitions:

function S = area(a, b = a, ellipse = false)
S = ellipse ? pi * a * b / 4 : a * b;

function S = area(a, b, ellipse)
if ĩsdefined(b)

b = a;

LME Reference — programming constructs 199

end
if ĩsdefined(ellipse)

ellipse = false;
end
S = ellipse ? pi * a * b / 4 : a * b;

With unnamed arguments only, area can be called with values for a
only, a and b, or a, b and ellipse. By naming ellipse, the second
argument can be omitted:

S = area(2, ellipse=true)
S =
3.1416

Function max can return the index of the maximum value in a vector.
In the following call, the maximum itself is discarded.

(̃ , maxIndex) = max([2,7,3,5])
maxIndex =
2

See also
return, nargin, nargout, isdefined, varargin, varargout,
namedargin, define, inline, global, persistent

hideimplementation

Hide the implementation of remaining functions in a library.

Syntax
hideimplementation

Description
In a library, functions which are defined after the hideimplementation
keyword have their implementation hidden: for errors occuring when
they are executed, the error message is the same as if the function
was a native function (it does not contain information about the er-
ror location in the function or subfunctions), and during debugging,
dbstep in steps over the function call.

hideimplementation may not be placed in the same line of source
code as any other command (comments are possible, though).

See also
public, private, function, use, error, dbstep

200 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

if elseif else end

Conditional execution depending on the value of one or more boolean
expressions.

Syntax
if expr

s1
...

end

if expr
s1
...

else
s2
...

end

if expr1
s1
...

elseif expr2
s2
...

else
s3
...

end

Description
If the expression following if is true (nonempty and all elements dif-
ferent from 0 and false), the statements which follow are executed.
Otherwise, the expressions following elseif are evaluated, until one
of them is true. If all expressions are false, the statements following
else are executed. Both elseif and else are optional.

Example
if x > 2
disp(’large’);

elseif x > 1
disp(’medium’);

else
disp(’small’);

end

See also
switch, while

LME Reference — programming constructs 201

include

Include libraries.

Syntax
include lib

Description
include lib inserts the contents of the library file lib. Its effect is
similar to the use statement, except that the functions and constants
in lib are defined in the same context as the library where include
is located. Its main purpose is to permit to define large libraries in
multiple files in a transparent way for the user. include statements
must not follow other statements on the same line, and can reference
only one library which is searched at the same locations as use. They
can be used only in libraries.

Since LME replaces include with the contents of lib, one should
be cautious about the public or private context which is preserved
between the libraries. It is possible to include a fragment of function
without a function header.

See also
use, includeifexists, private, public

includeifexists

Include library if it exists.

Syntax
includeifexists lib

Description
includeifexists lib inserts the contents of the library file lib if it
exists; if the library does not exists, it does nothing.

See also
include, useifexists, private, public

otherwise

Conditional execution of statements depending on a number or a
string.

202 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
switch, case

private

Mark the beginning of a sequence of private function definitions in a
library.

Syntax
private

Description
In a library, functions which are defined after the private keyword are
private. private may not be placed in the same line of source code
as any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default.

Example
Here is a library for computing the roots of a second-order polynomial.
Only function roots2 can be called from the outside of the library.

private
function d = discr(a, b, c)
d = b̂ 2 - 4 * a * c;

public
function r = roots2(p)
a = p(1);
b = p(2);
c = p(3);
d = discr(a, b, c);
r = [-b+sqrt(d); -b-sqrt(d)] / (2 * a);

See also
public, function, use

public

Mark the beginning of a sequence of public function definitions in a
library.

LME Reference — programming constructs 203

Syntax
public

Description
In a library, functions which are defined after the public keyword are
public. public may not be placed in the same line of source code as
any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default: the public keyword
is not required at the beginning of the library.

See also
private, function, use

repeat

Loop controlled by a boolean expression.

Syntax
repeat

s1
...

until expr

Description
The statements between the repeat statement and the corresponding
until are executed repeatedly (at least once) until the expression of
the until statement yields true (nonempty and all elements different
from 0 and false).

Example
v = [];
repeat
v = [v, sum(v)+1];

until v(end) > 100;
v

1 2 4 8 16 32 64 128

See also
while, for, break, continue

204 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

return

Early return from a function.

Syntax
return

Description
return stops the execution of the current function and returns to the
calling function. The current value of the output arguments, if any,
is returned. return can be used in any control structure, such as if,
while, or try, or at the top level.

Example
function dispFactTable(n)
% display the table of factorials from 1 to n
if n == 0
return; % nothing to display

end
fwrite(’ i i!\n’);
for i = 1:n
fwrite(’%2d %3d\n’, i, prod(1:i));

end

See also
function

switch

Conditional execution of statements depending on a number or a
string.

Syntax
switch expr

case e1
s1
...

case [e2,e3,...]
s23
...

case {e4,e5,...}
s45
...

otherwise
so

LME Reference — programming constructs 205

...
end

switch string
case str1

s1
...

case str2
s2
...

case {str3,str4,...}
s34
...

otherwise
so
...

end

Description
The expression of the switch statement is evaluated. If it yields a
number, it is compared successively to the result of the expressions of
the case statements, until it matches one; then the statements which
follow the case are executed until the next case, otherwise or end.
If the case expression yields a vector or a list, a match occurs if the
switch expression is equal to any of the elements of the case expres-
sion. If no match is found, but otherwise is present, the statements
following otherwise are executed. If the switch expression yields a
string, a match occurs only in case of equality with a case string ex-
pression or any element of a case list expression.

Example
switch option
case ’arithmetic’
m = mean(data);

case ’geometric’
m = prod(data)̂ (1/length(data));

otherwise
error(’unknown option’);

end

See also
case, otherwise, if

try

Error recovery.

206 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
try
...

end

try
...

catch
...

end

try
...

catch e
...

end

Description
The statements after try are executed. If an error occurs, execution
is switched to the statements following catch, if any, or to the state-
ments following end. If catch is followed by a variable name, a struc-
ture describing the error (the result of lasterror) is assigned to this
variable; otherwise, the error message can be retrieved with lasterr
or lasterror. If no error occurs, the statements between try and end
are ignored.

try ignores two errors:

– the interrupt key (Control-Break on Windows, Command-. on ma-
cOS, Control-C on other operating systems with a keyboard, time-
out in Sysquake Remote);

– an attempt to execute an untrusted function in a sandbox. The
error can be handled only outside the sandbox.

Examples
a = 1;
a(2), 555
Index out of range ’a’

try, a(2), end, 555
555

try, a(2), catch, 333, end, 555
333
555

try, a, catch, 333, end, 555
a =
1

555

LME Reference — programming constructs 207

See also
lasterr, lasterror, error

until

End of repeat/until loop.

See also
repeat

use

Import libraries.

Syntax
use lib
use lib1, lib2, ...

Description
Functions can be defined in separate files, called libraries. use makes
them available in the current context, so that they can be called by
the functions or statements which follow. Using a library does not
make available functions defined in its sublibraries; however, libraries
can be used multiple times, in each context where their functions are
referenced.

All use statements are parsed before execution begins. They can be
placed anywhere in the code, typically before the first function. They
cannot be skipped by placing them after an if statement. Likewise,
try/catch cannot be used to catch errors; useifexists should be
used if the absence of the library is to be ignored.

See also
useifexists, include, function, private, public, info

useifexists

Import libraries if they exist.

Syntax
useifexists lib
useifexists lib1, lib2, ...

208 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
useifexists has the same syntax and effect as use, except that li-
braries which are not found are ignored without error.

See also
use, include, function, private, public, info

while

Loop controlled by a boolean expression.

Syntax
while expr

s1
...

end

Description
The statements between the while statement and the corresponding
end are executed repeatedly as long as the expression of the while
statement yields true (nonempty and all elements different from 0
and false).

If a break statement is executed in the scope of the while loop (i.e.
not in an enclosed loop), the loop is terminated.

If a continue statement is executed in the scope of the while loop,
statements following continue are ignored and a new loop is per-
formed if the while statement yields true.

Example
e = 1;
i = 2;
while true % forever
eNew = (1 + 1/i) ˆ i;
if abs(e - eNew) < 0.001
break;

end
e = eNew;
i = 2 * i;

end
e
2.717

See also
repeat, for, break, continue, if

LME Reference — debugging commands 209

10.14 Debugging Commands

dbclear

Remove a breakpoint.

Syntax
dbclear fun
dbclear fun line
dbclear(’fun’, line)
dbclear

Description
dbclear fun removes all breakpoints in function fun. dbclear fun
line or dbclear(’fun’,line) removes the breakpoint in function fun
at line number line.

Without argument, dbclear removes all breakpoints.

See also
dbstop, dbstatus

dbcont

Resume execution.

Syntax
dbcont

Description
When execution has been suspended by a breakpoint or dbhalt, it can
be resumed from the command-line interface with dbcont.

See also
dbstop, dbhalt, dbstep, dbquit

dbhalt

Suspend execution.

Syntax
dbhalt

210 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
In a function, dbhalt suspends normal execution as if a breakpoint
had been reached. Commands dbstep, dbcont and dbquit can then
be used from the command line to resume or abort execution.

See also
dbstop, dbcont, dbquit

dbquit

Abort suspended execution.

Syntax
dbquit

Description
When execution has been suspended by a breakpoint or dbhalt, it can
be aborted completely from the command-line interface with dbquit.

See also
dbstop, dbcont, dbhalt

dbstack

Chain of function calls.

Syntax
dbstack
s = dbstack
dbstack all
s = dbstack(’all’)

Description
dbstack displays the chain of function calls which lead to the current
execution point, with the line number where the call to the subfunction
is made. It can be executed in a function or from the command-line
interface when execution is suspended with a breakpoint or dbhalt.

dbstack all (or dbstack(’all’)) displays the whole stack of
function calls. For instance, if two executions are successively
suspended at breakpoints, dbstack displays only the second chain of
function calls, while dbstack all displays all functions.

With an output argument, dbstack returns the result as a structure
array. Field name contains the function name (or class and method
names), and field line the line number. Note that you cannot assign
the result of dbstack to a new variable in suspended mode.

LME Reference — debugging commands 211

Examples
use stat
dbstop prctile
iqr(rand(1,1000))
<prctile:45> if nargin < 3

dbstack
stat/prctile;45
stat/iqr;69

See also
dbstop, dbhalt

dbstatus

Display list of breakpoints.

Syntax
dbstatus
dbstatus fun

Description
dbstatus displays the list of all breakpoints. dbstatus fun displays
the list of breakpoints in function fun.

See also
dbstop, dbclear, dbtype

dbstep

Execute a line of instructions.

Syntax
dbstep
dbstep in
dbstep out

Description
When normal execution is suspended after a breakpoint set with
dbstop or the execution of function dbhalt, dbstep, issued from the
command line, executes the next line of the suspended function. If
the line is the last one of the function, execution resumes in the
calling function.

212 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

dbstep in has the same effect as dbstep, except if a subfunction
is called. In this case, execution is suspended at the beginning of the
subfunction.

dbstep out resumes execution in the current function and sus-
pends it in the calling function.

Example
Load library stdlib and put a breakpoint at the beginning of function
hankel:

use stdlib
dbstop hankel

Start execution of function hankel until the breakpoint is reached (the
next line to be executed is displayed):

hankel(1:3,3:8)
<hankel:21> c = c(:);

When the execution is suspended, any function can be called. Local
variables of the function can be accessed and changed; but no new
variable can be created. Here, the list of variables and the value of c
are displayed:

info v
M (not defined)
c (1x3)
r (1x6)
m (not defined)
n (not defined)
ix (not defined)
M1 (not defined)

c
c =
1 2 3

Display the stack of function calls:

dbstack
stdlib/hankel;21

Execute next line (typing Return with an empty command has the
same effect as typing dbstep):

dbstep
<hankel:22> m = length(c);

Continue until the end; then normal execution is resumed:

LME Reference — debugging commands 213

dbcont
ans =
1 2 3 4 5 6

2 3 4 5 6 7
3 4 5 6 7 8

Display breakpoint and clear it:

dbstatus
stdlib/hankel;0

dbclear

See also
dbstop, dbcont, dbquit

dbstop

Set a breakpoint.

Syntax
dbstop fun
dbstop fun line
dbstop(’fun’, line)

Description
dbstop fun sets a breakpoint at the beginning of function fun. dbstop
fun line or dbstop(’fun’,line) sets a breakpoint in function fun at
line line.

When LME executes a line where a breakpoint has been set, it sus-
pends execution and returns to the command-line interface. The user
can inspect or change variables, executes expressions or other func-
tions, continue execution with dbstep or dbcont, or abort execution
with dbquit.

Example
use stdlib
dbstop cart2pol
dbstatus
stdlib/cart2pol;0

dbclear cart2pol

See also
dbhalt, dbclear, dbstatus, dbstep, dbcont, dbquit, dbtype

214 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

dbtype

Display source code with line numbers, breakpoints, and current exe-
cution point.

Syntax
dbtype fun
dbtype
dbtype(’fun’, fd=fd)
src = dbtype(’fun’)

Description
dbtype fun displays the source code of function fun with line num-
bers, breakpoints, and the position where execution is suspended (if
it is in fun). Without argument, dbtype displays the function which is
suspended.

dbtype can be used at any time to check the source code of any
function known to LME.

By defulat, dbtype displays the source code to the standard output
channel. A file descriptor can be specified as a named argument fd.

With an output argument, dbtype returns the function source code
as a string.

Example
use stdlib
dbstop cart2pol
(phi, r) = cart2pol(1, 2);
<cart2pol:99> r = hypot(x, y);

dbstep
<cart2pol:100> phi = atan2(y, x);

dbtype
97 function (phi, r, z) = cart2pol(x, y, z)

98
99 r = hypot(x, y);

> 100 phi = atan2(y, x);

See also
dbstatus, dbstack, echo

echo

Echo of code before its execution.

LME Reference — debugging commands 215

Syntax
echo on
echo off
echo fun on
echo(state)
echo(state, fd)
echo(fun, state)
echo(fun, state, fd)

Description

echo on enables the display of an echo of each line of function code
before execution. The display includes the function name and the line
number. echo off disables the echo.

The argument can also be passed as a boolean value with the func-
tional form echo(state): echo on is equivalent to echo(true).

echo fun on enables echo for function named fun only. echo fun
off disables echo (the function name is ignored); echo off has the
same effect.

By default, the echo is output to the standard error channel (file
descriptor 2). Another file descriptor can be specified as an additional
numeric argument, with the functional form only.

Example

Trace of a function:

use stdlib
echo on
C = compan([2,5,4]);
compan 26 if min(size(v)) > 1
compan 29 v = v(:).’;
compan 30 n = length(v);
compan 31 M = [-v(2:end)/v(1); eye(n-2, n-1)];

Echo stored into a file ’log.txt’:

fd = fopen(’log.txt’, ’w’);
echo(true, fd);
...
echo off
fclose(fd);

See also

dbtype

216 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

10.15 Profiler

profile

Install, remove, or display a function profile.

Syntax
profile fun
profile report
profile done

profile function fun
profile off
profile on
profile reset
profile(’report’, format)

Description
The purpose of the profiler is to measure the amount of time spent
executing each line of code of a function. This helps in evaluating
where effort should be put in order to optimize the code. With LME, a
single function can be profiled at any given time. Command profile
manages all aspects related to profiling, from specifying which func-
tion is to be profiled to displaying the results and resuming normal
operations.

The time measured for each line includes time spent executing sub-
functions called from that line. Only the cumulative times are col-
lected; lines of code in loops are likely to have a larger impact on the
overall execution time.

The profile accuracy is limited mainly by two factors:

– The resolution of the timer, which is typically between 1e-9 and
1e-6 second. This has obviously a larger effect on lines executed
quickly. Lines which contain scalar assignments or statements
like if and for may completely escape from the timing.

– The time overhead to perform the timing and add the data. Here
again, its effect is more dramatic with fast lines.

To profile a function, one usually proceeds in four steps:

Setup profile fun sets up profiling for function fun. Room in
memory is allocated and initialized for collecting the cumulative
time of execution for each line in fun.

Function execution Each execution of the function adds to the
profile data. Since the relative execution times are usually what

LME Reference — profiler 217

is really interesting, you may want to execute the function several
times to reduce fluctuations due to rounding errors. Time spent
outside the function (such as the time you spend typing the com-
mands at the command-line interface) is not included.

Profile report profile report displays a report for the function
being profiled. The default format is a listing of all lines with the
line number, the cumulative time spent for the line in seconds, its
percentage with respect to the time spent in the whole function,
and the source code of the line. You can continue executing the
function and creating new reports; times are cumulative (but see
profile reset and profile off below).

End profile done releases the data structures set up with
profile fun.

Other options are available. profile off suspends profiling, and
profile on resumes it. When profiling is suspended, calls to the pro-
filed function are not taken into account.

profile reset resets all the times and resumes profiling if it was
suspended.

profile function fun is equivalent to profile fun, but it may
also be used to profile functions with the same name as one of the op-
tions which have a special meaning for profile, like report or done.

profile(’report’,format) produces a report with a special for-
mat specified by the string format. This string is similar to the format
argument of sprintf; it is reused for each line of the profiled func-
tion. Its characters are output literally, except for sequences which
begin with a percent character, whose meaning is given in the table
below.
Char. Meaning
%% single %
%l line number
%t cumulative time
%p percentage of the total time
%s source code of the line

Like with sprintf, precision numbers may be inserted between the
percent sign and the letter; for instance, %8.3t displays the cumula-
tive time in a column of 8 characters with a fractional part of 3 digits.
The percentage is displayed only if it is greater than 1 %; otherwise, it
is replaced (together with the percent character which may follow it)
with spaces. The default format is ’%4l%9.3t%6.1p%% %s\n’.

Example
We shall profile function logspace from library stdlib (the source
code of this function has been revised since the profiling was done).

218 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

use stdlib
profile logspace
x = logspace(1,10);
profile report
13 0.000 function r = logspace(x1, x2, n)
14 0.000
15 0.000 14.8% if nargin < 3
16 0.000 5.8% n = 100;
17 0.000 2.2% end
18 0.000 77.1% r = exp(log(x1)+log(x2/x1)*(0:n-1)/(n-1));

While the times spent for all lines are smaller than half a millisecond,
the resolution is fine enough to permit relative timing of each line. The
function header does not correspond to any code and is not timed. To
improve the accuracy of the timing, we repeat the execution 10000
times.

for i=1:10000; x = logspace(1,10); end
profile report
13 0.000 function r = logspace(x1, x2, n)
14 0.000
15 0.055 8.9% if nargin < 3
16 0.057 9.2% n = 100;
17 0.047 7.6% end
18 0.458 74.3% r = exp(log(x1)+log(x2/x1)*(0:n-1)/(n-1));

Finally, here is a report with a different format: the first column is the
percentage as an integer, a space and the percent sign, followed by
spaces and the source code:

profile(’report’, ’%3.0p %% %s\n’)
function r = logspace(x1, x2, n)

9 % if nargin < 3
9 % n = 100;
8 % end

74 % r = exp(log(x1) + log(x2/x1) * (0:n-1) / (n-1));

See also

tic, toc, sprintf

10.16 Miscellaneous Functions

This section describes functions related to programming: function ar-
guments, error processing, evaluation, memory.

LME Reference — miscellaneous functions 219

assert

Check that an assertion is true.

Syntax
assert(expr)
assert(expr, str)
assert(expr, format, arg1, arg2, ...)
assert(expr, identifier, format, arg1, arg2, ...)

Description
assert(expr) checks that expr is true and throws an error otherwise.
Expression expr is considered to be true if it is a non-empty array
whose elements are all non-zero.

With more input arguments, assert checks that expr is true and
throws the error specified by remaining arguments otherwise. These
arguments are the same as those expected by function error.

When the intermediate code is optimized, assert can be ignored.
It should be used only to produce errors at an early stage or as a de-
bugging aid, not to trigger the try/catch mechanism. The expression
should not have side effects. The most common use of assert is to
check the validity of input arguments.

Example
function y = fact(n)
assert(length(n)==1 && isreal(n) && n==round(n), ’LME:nonIntArg’);
y = prod(1:n);

See also
error, warning, try

builtin

Built-in function evaluation.

Syntax
(argout1, ...) = builtin(fun, argin1, ...)

Description
(y1,y2,...)=builtin(fun,x1,x2,...) evaluates the built-in func-
tion fun with input arguments x1, x2, etc. Output arguments are as-
signed to y1, y2, etc. Function fun is specified by its name as a string.

builtin is useful to execute a built-in function which has been re-
defined.

220 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Here is the definition of operator plus so that it can be used with
character strings to concatenate them.

function r = plus(a, b)
if ischar(a) && ischar(b)
r = [a, b];

else
r = builtin(’plus’, a, b);

end

The original meaning of plus for numbers is preserved:

1 + 2
3

’ab’ + ’cdef’
abcdef

See also
feval

clear

Discard the contents of a variable.

Syntax
clear
clear(v1, v2, ...)
clear -functions

Description
Without argument, clear discards the contents of all the local
variables, including input arguments. With string input arguments,
clear(v1,v2,...) discards the contents of the enumerated
variables. Note that the variables are specified by strings; clear is a
normal function which evaluates its arguments if they are enclosed
between parenthesis. You can also omit parenthesis and quotes and
use command syntax.

clear is usually not necessary, because local variables are auto-
matically discarded when the function returns. It may be useful if a
large variable is used only at the beginning of a function, or at the
command-line interface.

clear -functions or clear -f removes the definition of all func-
tions. It can be used only from the command-line interface, not in a
function.

LME Reference — miscellaneous functions 221

Examples
In the example below, clear(b) evaluates its argument and clears
the variable whose name is ’a’; clear b, without parenthesis and
quotes, does not evaluate it; the argument is the literal string ’b’.

a = 2;
b = ’a’;
clear(b)
a
Undefined variable ’a’

b
a

clear b
b
Undefined variable b

See also
variable assignment, isdefined

deal

Copy input arguments to output arguments.

Syntax
(v1, v2, ...) = deal(e)
(v1, v2, ...) = deal(e1, e2, ...)

Description
With a single input argument, deal provides a copy of it to all its output
arguments. With multiple input arguments, deal provides them as
output arguments in the same order.

deal can be used to assign a value to multiple variables, to swap
the contents of two variables, or to assign the elements of a list to
different variables.

Examples
Swap variable a and b:

a = 2;
b = ’abc’;
(a, b) = deal(b, a)
a =
abc

b =
2

222 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Copy the same random matrix to variables x, y, and z:

(x, y, z) = deal(rand(5));

Assign the elements of list l to variables v1, v2, and v3:

l = {1, ’abc’, 3:5};
(v1, v2, v3) = deal(l{:})
v1 =
1

v2 =
abc

v3 =
3 4 5

See also
varargin, varargout, operator {}

dumpvar

Dump the value of an expression as an assignment to a variable.

Syntax
dumpvar(value)
dumpvar(name, value)
dumpvar(fd, name, value)
str = dumpvar(value)
str = dumpvar(name, value)
... = dumpvar(..., fd=fd, NPrec=nPrec)

Description
dumpvar(fd,name,value) writes to the channel fd (the standard out-
put by default) a string which would set the variable name to value, if
it was evaluated by LME. If name is omitted, only the textual represen-
tation of value is written. A file descriptor can also be specified as a
named argument fd.

With an output argument, dumpvar stores result into a string and
produces no output.

In addition to fd, dumpvar also accepts named argument NPrec for
the maximum number of digits in floating-point numbers.

Examples
dumpvar(2+3)
5

a = 6; dumpvar(’a’, a)

LME Reference — miscellaneous functions 223

a = 6;
s = ’abc’; dumpvar(’string’, s)
string = ’abc’;

dumpvar(’x’, 1/3, NPrec=5)
x = 0.33333;

See also
fprintf, sprintf, str2obj

error

Display an error message and abort the current computation.

Syntax
error(str)
error(format, arg1, arg2, ...)
error(identifier, format, arg1, arg2, ...)
error(identifier)
error(..., throwAsCaller=b)

Description
Outside a try block, error(str) displays string str as an error mes-
sage and the computation is aborted. With more arguments, error
use the first argument as a format string and displays remaining argu-
ments accordingly, like fprintf.

In a try block, error(str) throws a user error without displaying
anything.

An error identifier can be added in front of other arguments. It is a
string made of at least two segments separated by semicolons. Each
segment has the same syntax as variable or function name (i.e. it
begins with a letter or an underscore, and it continues with letters,
digits and underscores.) The identifier can be retrieved with lasterr
or lasterror in the catch part of a try/catch construct and helps to
identify the error. For errors thrown by LME built-in functions, the first
segment is always LME.

The identifier of an internal error (an error which can be thrown
by an LME builti-in function, such as ’LME:indexOutOfRange’), can
be used as the only argument; then the standard error message is
displayed.

error also accepts a boolean named argument throwAsCaller. If
it is true, the context of the error is changed so that the function
calling error appears to throw the error itself. It is useful for fully
debugged functions whose internal operation can be hidden. Keyword
hideimplementation has a similar effect at the level of a library, by
hiding the internal error handling in all its functions.

224 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
error(’Invalid argument.’);
Invalid argument.

o = ’ground’;
error(’robot:hit’, ’The robot is going to hit %s’, o);
The robot is going to hit ground

lasterror
message: ’The robot is going to hit ground’
identifier: ’robot:hit’

Definition of a function which checks its input arguments, and a test
function which calls it:

function xmax = largestRoot(a, b, c)
// largest root of a x̂ 2 + b x + c = 0
if b̂ 2 - 4 * a * c < 0
error(’No real root’, throwAsCaller=true);

end
xmax = (-b + sqrt(b̂ 2 - 4 * a * c)) / (2 * a);

function test
a = largestRoot(1,1,1);

Error message:

test
No real root (test;8)

Error message without throwAsCaller=true in the definition of
largestRoot:

test
No real root (largestRoot;4)
-> test;8

See also
warning, try, lasterr, lasterror, assert, fprintf,
hideimplementation

eval

Evaluate the contents of a string as an expression or statements.

Syntax
x = eval(str_expression)
eval(str_statement)

LME Reference — miscellaneous functions 225

Description
If eval has output argument(s), the input argument is evaluated as an
expression whose result(s) is returned. Without output arguments, the
input argument is evaluated as statement(s). eval can evaluate and
assign to existing variables, but cannot create new ones.

Examples
eval(’1+2’)
3

a = eval(’1+2’)
a = 3

eval(’a=2+3’)
a = 5

See also
feval

exist

Existence of a function or variable.

Syntax
b = exist(name)
b = exist(name, type)

Description
exist returns true if its argument is the name of an existing function
or variable, or false otherwise. A second argument can restrict the
lookup to builtin functions (’builtin’), user functions (’function’),
or variables (’variable’).

Examples
exist(’sin’)
true

exist(’cos’, ’function’)
false

See also
info, isdefined

feval

Function evaluation.

226 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
(argout1,...) = feval(fun,argin1,...)

Description

(y1,y2,...)=feval(fun,x1,x2,...) evaluates function fun with in-
put arguments x1, x2, etc. Output arguments are assigned to y1, y2,
etc. Function fun is specified by either its name as a string, a function
reference, or an anonymous or inline function.

If a variable f contains a function reference or an anonymous or
inline function, f(arguments) is equivalent to feval(f,arguments).

Examples
y = feval(’sin’, 3:5)
y =
0.1411 -0.7568 -0.9589

y = feval(@(x) sin(2*x), 3:5)
y =
-0.2794 0.9894 -0.544

fun = @(x) sin(2*x);
y = fun(3:5)
y =
-0.2794 0.9894 -0.544

See also

builtin, eval, fevalx, apply, inline, operator @

fun2str

Name of a function given by reference or source code of an inline
function.

Syntax
str = fun2str(funref)
str = fun2str(inlinefun)

Description

fun2str(funref) gives the name of the function whose reference is
funref.

fun2str(inlinefun) gives the source code of the inline function
inlinefun.

LME Reference — miscellaneous functions 227

Examples
fun2str(@sin)
sin

fun2str(inline(’x+2*y’, ’x’, ’y’))
function y=f(x,y);y=x+2*y;

See also
operator @, str2fun

info

Information about LME.

Syntax
info
info builtin
info date
info errors
info functions
info global
info libraries
info methods
info operators
info persistent
info size
info threads
info usedlibraries
info variables
info(kind, fd=fd)
str = info
SA = info(kind)

Description
info displays the language version. With an output argument, the
language version is given as a string.

info builtin displays the list of built-in functions with their mod-
ule name (modules are subsets of built-in functions). A letter u is
displayed after each untrusted function (functions which cannot be ex-
ecuted in the sandbox). With an output argument, info(’builtin’)
gives a structure array which describes each built-in function, with the
following fields:

Field Description
name function name
module module name
trusted true if the function is trusted

228 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

info operators displays the list of operators. With an output
argument, info(’operators’) gives a list of structures, like
info(’builtin’).

info functions displays the list of user-defined functions with the
library where they are defined and the line number in the source code.
Parenthesis denote functions known by LME, but not loaded; they also
indicate spelling errors in function or variable names. With an out-
put argument, info(’functions’) gives a structure array which de-
scribes each user-defined function, with the following fields:

Field Description
library library name
name function name
loaded true if loaded
line line number if available, or []

info methods displays the list of methods. With an output argu-
ment, info(’methods’) gives a structure array which describes each
method, with the following fields:

Field Description
library library name
class class name
name function name
loaded true if loaded
line line number if available, or []

info variables displays the list of variables with their type and
size. With an output argument, info(’variables’) gives a structure
array which describes each variable, with the following fields:

Field Description
name function name
defined true if defined

info global displays the list of all global variables. With an output
argument, info(’global’) gives the list of the global variable names.

info persistent displays the list of all persistent variables. With
an output argument, info(’persistent’) gives the list of the persis-
tent variable names.

info libraries displays the list of all loaded libraries with the li-
braries they have loaded with use. The base context in which direct
commands are evaluated is displayed as (base); it is not an actual
library and contains no function definition. With an output argument,
info(’libraries’) gives a structure array with the following fields:

Field Description
library library name, or ’(base)’
sublibraries list of sublibraries

LME Reference — miscellaneous functions 229

info usedlibraries displays the list of libraries available in the
current context. With an output argument, info(’usedlibraries’)
gives the list of the names of these libraries.

info errors displays the list of error messages. With an output
argument, info(’errors’) gives a structure array which describes
each error message, with the following fields:

Field Description
id error ID
msg error message

info size displays the size in bytes of integer numbers (as used
for indices and most internal computations), double numbers, single
numbers, and pointers; the byte ordering in multibyte values (little-
endian if the least-significant byte comes first, else big-endian), and
whether arrays are stores column-wise or row-wise. With an output
argument, info(’size’) gives them in a structure of six fields:

Field Description
int integer size
double double size
single single size (or 0)
ptr pointer size
be true if big-endian
columnwise true for column-wise array layout

info date displays the compilation date. With an output argu-
ment, info(’date’) gives it in a structure:

Field Description
date year, month, and day in a row vector

info threads displays the ID of all threads. With an output argu-
ment, info(’threads’) gives a structure array which describes each
thread, with the following fields:

Field Description
id thread ID
totaltime execution time in seconds

Only the first character of the argument is meaningful; info b is
equivalent to info builtin.

A named argument fd can specify the output channel; in that case,
the command syntax cannot be used.

Examples
info
LME 5.2

info s
int: 4 bytes

230 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

double: 8 bytes
ptr: 4 bytes
little endian
array layout: row-wise

info b
LME/abs
LME/acos
LME/acosh
(etc.)

info v
ans (1x1 complex)

vars = info(’v’)
var =
2x1 struct array (2 fields)

List of variables displayed on channel 2 (standard error channel):

info(’v’, fd=2)

Library hierarchy in the command-line interface:

use lti
info l
(base): _cli, lti
_cli: lti
lti: polynom
polynom

The meaning is as follows: (base) is the context where commands are
evaluated; functions defined from the command-line interface, stored
in _cli, and in lti can be called from there. Functions defined from
the command-line interface also have access to the definitions of lti.
Library lti uses library polynom, but functions defined in polynom
cannot be called directly from commands (polynom does not appear
as a sublibrary of (base) or _cli). Finally, library polynom does not
import a sublibrary itself.

See also
inmem, which, exist, use

isequal

Comparison.

Syntax
b = isequal(a, b, ...)

LME Reference — miscellaneous functions 231

Description
isequal compares its input arguments and returns true if all of them
are equal, and false otherwise. Two numeric, logical and/or char arrays
are considered to be equal if they have the same size and if their
corresponding elements have the same value; an array which has at
least one NaN (not a number) element is not equal to any other array.
Two lists, cell arrays, structures or structure arrays are equal if the
corresponding elements or fields are equal. Structure fields do not
have to be in the same order.

isequal differs from operator == in that it results in a scalar logical
value and arrays do not have to have the same size. It differs from
operator === in that it does not require the type or the structure field
order to agree, and in the way NaN is interpreted.

See also
operator ==, operator ===

inline

Creation of inline function.

Syntax
fun = inline(funstr)
fun = inline(expr)
fun = inline(expr, arg1, ...)
fun = inline(funstr, param)
fun = inline(expr, arg1, ..., paramstruct)
fun = inline(expr, ..., true)

Description
Inline function are LME objects which can be evaluated to give a result
as a function of their input arguments. Contrary to functions declared
with the function keyword, inline functions can be assigned to vari-
ables, passed as arguments, and built dynamically. Evaluating them
with feval is faster than using eval with a string, because they are
compiled only once to an intermediate code. They can also be used
as the argument of functions such as fzero and fmin.

inline(funstr) returns an inline function whose source code is
funstr. Input argument funstr follows the same syntax as a plain
function. The function name is ignored.

inline(expr) returns an inline function with one implicit input ar-
gument and one result. The input argument expr is a string which
evaluates to the result. The implicit input argument of the inline func-
tion is a symbol made of a single lower-case letter different from i and

232 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

j, such as x or t, which is found in expr. If several such symbols are
found, the one closer to x in alphabetical order is picked.

inline(expr,arg1,...) returns an inline function with one re-
sult and the specified arguments arg1 etc. These arguments are also
given as strings.

Inline functions also accept an additional input argument which cor-
respond to fixed parameters provided when the function is executed.
inline(funstr,param), where funstr is a string which contains the
source code of a function, stores param together with the function.
When the function is called, param is prepended to the list of input
arguments.

inline(expr,args...,paramstruct) is a simplified way to create
an inline function when the code consists of a single expression. args
is the names of the arguments which must be supplied when the inline
function is called, as strings; paramstruct is a structure whose fields
define fixed parameters.

inline(expr,...,true) defines a function which can return as
many output arguments as what feval (or other functions which call
the inline function) expects. Argument expr must be a function call
itself.

Anonymous functions created with operator @ are an alternative,
often easier way of creating inline functions. The result is the same.
Since inline is a normal function, it must be used in contexts where
fixed parameters cannot be created as separate variables.

Examples
A simple expression, evaluated at x=1 and x=2:

fun = inline(’cos(x)*exp(-x)’);
y = feval(fun, 2)
y =
-5.6319e-2

y = feval(fun, 5)
y =
1.9113e-3

A function of x and y:

fun = inline(’exp(-x̂ 2-ŷ 2)’, ’x’, ’y’);

A function with two output arguments (the string is broken in three
lines to have a nice program layout):

fun = inline([’function (a,b)=f(v);’,...
’a=mean(v);’,...
’b=prod(v)̂ (1/length(v));’]);

(am, gm) = feval(fun, 1:10)
am =

LME Reference — miscellaneous functions 233

5.5
gm =
4.5287

Simple expression with fixed parameter a:

fun = inline(’cos(a*x)’, ’x’, struct(’a’,2));
feval(fun, 3)
0.9602

An equivalent function where the source code of a complete function
is provided:

fun = inline(’function y=f(a,x); y=cos(a*x);’, 2);
feval(fun, 3)
0.9602

The same function created with the anonymous function syntax:

a = 2;
fun = @(x) cos(a*x);

A function with two fixed parameters a and b whose values are pro-
vided in a list:

inline(’function y=f(p,x);(a,b)=deal(p{:});y=a*x+b;’,{2,3})

An inline function with a variable number of output arguments:

fun = inline(’eig(exp(x))’,true);
e = feval(fun, magic(2))
e =
-28.1440
38.2514

(V,D) = feval(fun, magic(2))
V =
-0.5455 -0.4921
0.8381 -0.8705

D =
-28.1440 0.0000
0.0000 38.2514

See also
function, operator @, feval, eval

inmem

List of functions loaded in memory.

234 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
inmem
SA = inmem

Description
inmem displays the list of user-defined functions loaded in memory with
the library where they are defined. With an output argument, inmem
gives the result as a structure array which describes each user-defined
function loaded in memory, with the following fields:

Field Description
library library name
class class name (’’ for functions)
name function name

See also
info, which

isdefined

Check if a variable is defined.

Syntax
isdefined(var)

Description
isdefined(var) returns true if variable var is defined, and false oth-
erwise. Unlike ordinary functions, isdefined’s argument must be a
variable known to LME, referenced by name without quotes, and not
an arbitrary expression. A variable is undefined in the following cir-
cumstances:

– function input argument when the function call does not supply
enough values;

– function output argument which has not been assigned to, in the
function itself, not in a function call;

– function local variable before its first assignment;

– function local variable after it has been cleared with function
clear.

At command-line interface, clear usually discards completely vari-
ables.

LME Reference — miscellaneous functions 235

Example
Let function f be defined as

function f(x)
if isdefined(x)
disp(x);

else
disp(’Argument x is not defined.’);

end

Then

f
Argument x is not defined.

f(3)
3

See also
nargin, exist, which, clear, function

isfun

Test for an inline function or function reference.

Syntax
b = isfun(obj)

Description
isfun(obj) returns true if obj is an inline function or a function refer-
ence, or false otherwise.

See also
isa, class, fun2str

isglobal

Test for the existence of a global variable.

Syntax
b = isglobal(str)

Description
isglobal(str) returns true if the string str is the name of a global
variable, defined as such in the current context.

236 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
info, exist, isdefined, which

iskeyword

Test for a keyword name.

Syntax
b = iskeyword(str)
list = iskeyword

Description
iskeyword(str) returns true if the string str is a reserved keyword
which cannot be used as a function or variable name, or false other-
wise. Keywords include if and global, but not the name of built-in
functions like sin or i.

Without input argument, iskeyword gives the list of all keywords.

Examples
iskeyword(’otherwise’)
true

iskeyword
{’break’,’case’,’catch’,’continue’,’else’,’elseif’,
’end’,’endfunction’,’for’,’function’,’global’,
’hideimplementation’,’if’,’otherwise’,’persistent’,
’private’,’public’,’repeat’,’return’,’switch’,’try’,
’until’,’use’,’useifexists’,’while’}

See also
info, which

ismac

Check whether computer runs under macOS.

Syntax
b = ismac

Description
ismac returns true on macOS, false on other platforms.

See also
isunix, ispc

LME Reference — miscellaneous functions 237

ispc

Check whether platform is a PC.

Syntax
b = ispc

Description
ispc returns true on Windows, false on other platforms.

See also
isunix, ismac

isunix

Check whether computer runs under unix.

Syntax
b = isunix

Description
isunix returns true on unix platforms (including Mac OS X and unix-
like), false on other platforms.

See also
ispc, ismac

lasterr

Last error message.

Syntax
msg = lasterr
(msg, identifier) = lasterr

Description
lasterr returns a string which describes the last error. With two out-
put arguments, it also gives the error identifier. It can be used in the
catch part of the try construct.

238 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
x = 2;
x(3)
Index out of range

(msg, identifier) = lasterr
msg =
Index out of range

identifier =
LME:indexOutOfRange

See also
lasterror, try, error

lasterror

Last error structure.

Syntax
s = lasterror

Description
lasterror returns a structure which describes the last error. It con-
tains the following fields:

Field Type Description
identifier string short tag which identifies the error
message string error message

The structure can be used as argument to rethrow in the catch
part of a try/catch construct to propagate the error further.

Example
x = 2;
x(3)
Index out of range

lasterror
message: ’Index out of range’
identifier: ’LME:indexOutOfRange’

See also
lasterr, try, rethrow, error

namedargin

Named input arguments.

LME Reference — miscellaneous functions 239

Syntax
function ... = fun(..., namedargin)

Description
namedargin is a special variable which can be used to collect named
input arguments. In the function declaration, it must be used as the
last (or unique) input argument. When the function is called with
named arguments, all of them are collected and stored in namedargin
as a structure, where field names correspond to the argument names.
With namedargin, there is no matching between the named argu-
ments and the argument names in the function declaration. If the
function is called without any named argument, namedargin is set to
an empty structure.

In the body of the function, namedargin is a normal variable. Its
fields can be accessed with the dot notation namedargin.name or
namedargin.(name). All functions using structures can be used, such
as fieldnames or isfield. namedargin can also be modified or
assigned to any value of any type.

When both varargin (for a variable number of unnamed argu-
ments) and namedargin are used in the same function, they must be
the last-but-one and the last arguments in the function declaration,
respectively.

Example
Here is a function which calculates the volume of a solid of revolution
defined by a function y=f(x) between x=a and x=b, rotating around
y=0. It accepts the same options as integral, given as a single option
argument, as named values or both.

function V = solidRevVolume(fun, a, b, opt=struct, namedargin)
opt = structmerge(opt, namedargin);
V = pi * integral(@(x) fun(x)̂ 2, a, b, opt);

It can be called without any option (opt is set to its default value, an
empty structure):

cyl = solidRevVolume(@(x) 1, 0, 1)
cyl = 3.1416

cone = solidRevVolume(@(x) x, 0, 2, RelTol=1e-4)
cone = 8.3776

See also
varargin, function, struct, fieldnames, structmerge, operator .

nargin

Number of input arguments.

240 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
n = nargin
n = nargin(fun)

Description
Calling a function with less arguments than what the function expects
is permitted. In this case, the trailing variables are not defined. The
function can use the nargin function to know how many arguments
were passed by the caller to avoid accessing the undefined variables.
Named arguments (arguments passed as name=value by the caller)
are not included in the count.

Note that if you want to have an optional argument before the end
of the list, you have to interpret the meaning of the variables yourself.
LME always sets the nargin first arguments.

There are three other ways to let a function accept a variable num-
ber of input arguments: to check if an input argument is defined with
isdefined, to define default values directly in the function header, or
to call varargin to collect some or all of the input arguments in a list.

With an input argument, nargin(fun) returns the (maximum) num-
ber of input arguments a function accepts. fun can be the name
of a built-in or user function, a function reference, or an inline func-
tion. Functions with a variable number of input arguments (such as
fprintf) give -1.

Examples
A function with a default value (pi) for its second argument:

function x = multiplyByScalar(a,k)
if nargin < 2 % multiplyByScalar(x)
k = pi; % same as multiplyByScalar(x,pi)

end
x = k * a;

A function with a default value (standard output) for its first argument.
Note how you have to interpret the arguments.

function fprintstars(fd,n)
if nargin == 1 % fprintstars(n) to standard output
fprintf(repmat(’*’,1,fd)); % n is actually stored in fd

else
fprintf(fd, repmat(’*’,1,n));

end

Number of input arguments of function plus (usually called as the infix
operator "+"):

nargin(’plus’)
2

LME Reference — miscellaneous functions 241

See also
nargout, varargin, isdefined, function

nargout

Number of output arguments.

Syntax
n = nargout
n = nargout(fun)

Description
A function can be called with between 0 and the number of output
arguments listed in the function definition. The function can use
nargout to check whether some output arguments are not used, so
that it can avoid computing them or do something else.

With one argument, nargout(fun) returns the (maximum) number
of output arguments a function can provide. fun can be the name of
a built-in or user function, a function reference, or an inline function.
Functions with a variable number of output arguments (such as feval)
give -1.

Example
A function which prints nicely its result when it is not assigned or used
in an expression:

function y = multiplyByTwo(x)
if nargout > 0
y = 2 * x;

else
fprintf(’The double of %f is %f\n’, x, 2*x);

end

Maximum number of output arguments of svd:

nargout(’svd’)
3

See also
nargin, varargout, function

rethrow

Throw an error described by a structure.

242 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
rethrow(s)
rethrow(s, throwAsCaller=b)

Description
rethrow(s) throws an error described by structure s, which contains
the same fields as the output of lasterror. rethrow is typically used
in the catch part of a try/catch construct to propagate further an
error; but it can also be used to initiate an error, like error.

rethrow also accepts a boolean named argument throwAsCaller.
If it is true, the context of the error is changed so that the function
calling rethrow appears to throw the error itself. It is useful for fully
debugged functions whose internal operation can be hidden.

Example
The error whose identifier is ’LME:indexOutOfRange’ is handled by
catch; other errors are not.

try
...

catch
err = lasterror;
if err.identifier === ’LME:indexOutOfRange’
...

else
rethrow(err);

end
end

See also
lasterror, try, error

str2fun

Function reference.

Syntax
funref = str2fun(str)

Description
str2fun(funref) gives a function reference to the function whose
name is given in string str. It has the same effect as operator @,
which is preferred when the function name is fixed.

LME Reference — miscellaneous functions 243

Examples
str2fun(’sin’)
@sin

@sin
@sin

a = ’cos’;
str2fun(a)
@cos

See also
operator @, fun2str

str2obj

Convert to an object its string representation.

Syntax
obj = str2obj(str)

Description
str2obj(str) evaluates string str and gives its result. It has the in-
verse effect as dumpvar with one argument. It differs from eval by
restricting the syntax it accepts to literal values and to the basic con-
structs for creating complex numbers, arrays, lists, structures, objects,
and other built-in types.

Examples
str2obj(’1+2j’)
1 + 2j

str = dumpvar({1, ’abc’, 1:100})
str =
{1, ...
’abc’, ...
[1:100]}

str2obj(str)
{1,’abc’,real 1x100}

eval(str)
{1,’abc’,real 1x100}

str2obj(’sin(2)’)
Bad argument ’str2obj’

eval(’sin(2)’)
0.9093

See also
eval, dumpvar

244 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

varargin

Remaining input arguments.

Syntax
function ... = fun(..., varargin)
function ... = fun(..., varargin, namedargin)
l = varargin

Description
varargin is a special variable which can be used to collect input argu-
ments. In the function declaration, it must be used after the normal in-
put arguments; if namedargin is also present, varargin immediately
precedes it. When the function is called with more arguments than
what can be assigned to the other arguments, remaining ones are col-
lected in a list and assigned to varargin. In the body of the function,
varargin is a normal variable. Its elements can be accessed with the
brace notation varargin{i}. nargin is always the total number of
arguments passed to the function by the caller.

When the function is called with fewer arguments than what is de-
clared, varargin is set to the empty list, {}.

Example
Here is a function which accepts any number of square matrices and
builds a block-diagonal matrix:

function M = blockdiag(varargin)
M = [];
for block = varargin
// block takes the value of each input argument
(m, n) = size(block);
M(end+1:end+m,end+1:end+n) = block;

end

In the call below, varargin contains the list {ones(3),2*ones(2),3}.

blockdiag(ones(3),2*ones(2),3)
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 2 2 0
0 0 0 2 2 0
0 0 0 0 0 3

See also
nargin, namedargin, varargout, function

LME Reference — miscellaneous functions 245

varargout

Remaining output arguments.

Syntax
function (..., varargout) = fun(...)
varargout = ...

Description
varargout is a special variable which can be used to dispatch output
arguments. In the function declaration, it must be used as the last
(or unique) output argument. When the function is called with more
output arguments than what can be obtained from the other argu-
ments, remaining ones are extracted from the list varargout. In the
body of the function, varargout is a normal variable. Its value can
be set globally with the brace notation {...} or element by element
with varargout{i}. nargout can be used to know how many output
arguments to produce.

Example
Here is a function which differentiates a vector of values as many
times as there are output arguments:

function varargout = multidiff(v)
for i = 1:nargout
v = diff(v);
varargout{i} = v;

end

In the call below, [1,3,7,2,5,3,1,8] is differentiated four times.

(v1, v2, v3, v4) = multidiff([1,3,7,2,5,3,1,8])
v1 =

2 4 -5 3 -2 -2 7
v2 =

2 -9 8 -5 0 9
v3 =

-11 17 -13 5 9
v4 =

28 -30 18 4

See also
nargout, varargin, function

variables

Contents of the variables as a structure.

246 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
v = variables

Description
variables returns a structure whose fields contain the variables de-
fined in the current context.

Example
a = 3;
b = 1:5;
variables
a: 3
b: real 1x5
...

See also
info

warning

Write a warning to the standard error channel.

Syntax
warning(msg)
warning(format, arg1, arg2, ...)

Description
warning(msg) displays the string msg. It should be used to notify the
user about potential problems, not as a general-purpose display func-
tion.

With more arguments, warning uses the first argument as a format
string and displays remaining arguments accordingly, like fprintf.

Example
warning(’Doesn\’t converge.’);

See also
error, disp, fprintf

which

Library where a function is defined.

LME Reference — sandbox function 247

Syntax
fullname = which(name)

Description
which(name) returns an indication of where function name is defined.
If name is a user function or a method prefixed with its class and two
colons, the result is name prefixed with the library name and a slash.
If name is a built-in function, it is prefixed with (builtin); a variable,
with (var); and a keyword, with (keyword). If name is unknown, which
returns the empty string.

Examples
which logspace
stdlib/logspace

which polynom::plus
polynom/polynom::plus

which sin
(builtin)/sin

x = 2;
which x
(var)/x

See also
info, isdefined

10.17 Sandbox Function

sandbox

Execute untrusted code in a secure environment.

Syntax
sandbox(str)
sandbox(str, varin)
varout = sandbox(str)
varout = sandbox(str, varin)

Description
sandbox(str) executes the statements in string str. Functions which
might do harm if used improperly are disabled; they include those
related to the file system, to devices and to the network. Global and
persistent variables are forbidden as well; but local variables can be
created. The same restrictions apply to functions called directly or

248 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

indirectly by statements in str. The purpose of sandbox is to permit
the evaluation of code which comes from untrusted sources, such as
the Internet.

sandbox(str,varin) evaluates the statements in string str in a
context with local variables equal to the fields of structure varin.

With an output argument, sandbox collects the contents of all vari-
ables in the fields of a single structure.

An error is thrown when the argument of sandbox attempts to exe-
cute one of the functions which are disabled. This error can be caught
by a try/catch construct outside sandbox, but not inside its argument,
so that unsuccessful attempts to circumvent the sandbox are always
reported to the appropriate level.

Examples
Evaluation of two assignments; the second value is displayed, and the
variables are discarded at the end of the evaluation.

sandbox(’a=2; b=3:5’);
b =
3 4 5

Evaluation of two assignments; the contents of the variables are
stored in structure result.

result = sandbox(’a=2; b=3:5;’)
result =
a: 2
b: real 1x3

Evaluation with local variables x and y initialized with the field of a
structure. Variable z is local to the sandbox.

in.x = 12;
in.y = 1:10;
sandbox(’z = x + y’, in);
z =
13 14 15 16 17 18 19 20 21 22

Attempt to execute the untrusted function fopen and to hide it from
the outside. Both attempts fail: fopen is trapped and the security
violation error is propagated outside the sandbox.

sandbox(’try; fd=fopen(’/etc/passwd’); end’);
Security violation ’fopen’

See also
sandboxtrust, eval, variables

LME Reference — help function 249

sandboxtrust

Escape the sandbox restrictions.

Syntax
sandboxtrust(fun)

Description
sandboxtrust(fun) sets a flag associated with function fun so that
fun is executed without restriction, even when called from a sandbox.
All functions called directly or indirectly from a trusted function are
executed without restriction, except if a nested call to sandbox is per-
formed. Argument fun can be a function reference or the name of a
function as a string; the function must be a user function, not a built-in
one.

The purpose of sandboxtrust is to give back some of the capabili-
ties of unrestricted code to code executed in a sandbox. For instance,
if unsecure code must be able to read the contents of a specific file, a
trusted function should be written for that. It is very important for the
trusted function to check carefully its arguments, such as file paths or
URL.

Example
Function which reads the contents of file ’data.txt’:

function data = readFile
fd = fopen(’data.txt’);
data = fread(fd, inf, ’*char’);
fclose(fd);

Execution of unsecure code which may read this file:

sandboxtrust(@readFile);
sandbox(’d = readFile;’);

See also
sandbox

10.18 Help Function

help

Help about an LME function.

250 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
help functionname
help ’operator’
help
help(str, fd=fd)
b = help(str)

Description
help functionname displays a help message about function whose
name is functionname. help ’operator’ displays a help message
about an operator. For methods (functions for arguments of a spe-
cific class), the class should be specified as class::method, except
for constructors where both class and class::class are recognized.
Without argument, help displays a message about the help command
itself.

For user functions, help uses the first comment which immediately
follows the function header. The comment may be a continuous set
of lines beginning with % or //, or a single block of lines delimited
with /* and */. Lines which contain /* and */ cannot have any other
character, not even spaces. Alternatively for user functions, or for
built-in or extension functions, the help text is found in files with suffix
".hlp" in the same folders as libraries. For functions unknown to LME
(such as functions defined in libraries which have not been loaded
with use), help searches in file other.hlp, which typically includes
each library hlp files with includeifexists statements.

If no matching function is found, help has the same effect as
lookfor, i.e. it proposes a list of functions whose short description
contains the string passed as argument (or just the method name if
the argument has the syntax class::method).

A named argument fd can specify the output channel; in that case,
the command syntax cannot be used.

With an output argument, help returns true if help is found for its
input argument, false otherwise. Help is not displayed. The lookfor
fallback is not attempted.

Examples
Help about function sin:

help sin
Sine.

SYNTAX
y = sin(x)
...

Help about operator +:

LME Reference — help function 251

help ’+’
Addition.

SYNTAX
x + y
M1 + M2
...

Source code of function dctmtx with its help comment block:

function T = dctmtx(n)
/*
Discrete cosine transform matrix.

SYNTAX
T = dctmtx(n)

DESCRIPTION
dctmtx(n) returns an n-by-n square matrix T such that
Y=T*y is the discrete cosine transform of the columns
...
*/

T = [repmat(1/sqrt(n),1,n); ...
sqrt(2/n)*cos(pi/(2*n)*repmat(1:2:2*n,n-1,1)...

.*repmat((1:n-1)’,1,n))];

See also
lookfor, which

lookfor

Search functions.

Syntax
lookfor str
lookfor(’str’)
lookfor(’str’, fd=fd)

Description
lookfor str searches the characters str in the short description of
all commands and functions and displays all the matches. Case is
ignored. If str contains spaces or non-alphanumeric characters, the
syntax lookfor(’str’) must be used.

A named argument fd can specify the output channel; in that case,
the command syntax cannot be used.

252 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
lookfor arc
lookfor Search functions.
acos Arc cosine.
asin Arc sine.
atan Arc tangent.

See also
help

10.19 Operators

Operators are special functions with a syntax which mimics mathe-
matical arithmetic operations like the addition and the multiplication.
They can be infix (such as x+y), separating their two arguments (called
operands); prefix (such as -x), placed before their unique operand; or
postfix (such as M’), placed after their unique operand. In Sysquake,
their arguments are always evaluated from left to right. Since they
do not require parenthesis or comma, their priority matters. Priority
specifies when subexpressions are considered as a whole, as the argu-
ment of some operator. For instance, in the expression a+b*c, where
* denotes the multiplication, the evaluation could result in (a+b)*c or
a+(b*c); however, since operator *’s priority is higher than operator
+’s, the expression yields a+(b*c) without ambiguity.

Here is the list of operators, from higher to lower priority:

’ .’
ˆ .̂
- (unary)
* .* / ./ \ .\
+ -
== =̃ < > <= >= === =̃=
˜
&
|
&&
||
: ?
,
;

Most operators have also a functional syntax; for instance, a+b can
also be written plus(a,b). This enables their overriding with new
definitions and their use in function references or functions such as
feval which take the name of a function as an argument.

Here is the correspondence between operators and functions:

LME Reference — operators 253

[a;b] vertcat(a,b)
[a,b] horzcat(a,b)
a:b colon(a,b)
a:b:c colon(a,b,c)
a|b or(a,b)
a&b and(a,b)
a<=b le(a,b)
a<b lt(a,b)
a>=b ge(a,b)
a>b gt(a,b)
a==b eq(a,b)
ã =b ne(a,b)
a===b same(a,b)
ã ==b unsame(a,b)
a+b plus(a,b)

a-b minus(a,b)
a*b mtimes(a,b)
a/b mrdivide(a,b)
a\b mldivide(a,b)
a.*b times(a,b)
a./b rdivide(a,b)
a.\b ldivide(a,b)
â b mpower(a,b)
a.̂ b power(a,b)
ã not(a)
-a uminus(a)
+a uplus(a)
a’ ctranspose(a)
a.’ transpose(a)

Operator which do not have a corresponding function are ?:, &&
and || because unlike functions, they do not always evaluate all of
their operands.

Operator ()

Parenthesis.

Syntax
(expr)
v(:)
v(index)
v(index1, index2)
v(:, index)
v(index, :)
v(select)
v(select1, select2)
v(:,:)

Description
A pair of parenthesis can be used to change the order of evaluation.
The subexpression it encloses is evaluated as a whole and used as if
it was a single object. Parenthesis serve also to indicate a list of input
or output parameters; see the description of the function keyword.

The last use of parenthesis is for specifying some elements of an
array or list variable.

Arrays: In LME, any numeric object is considered as an array of
two dimensions or more. Therefore, at least two indices are required

254 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

to specify a single element; the first index specifies the row, the sec-
ond the column, and so on. In some circumstances, however, it is
convenient to consider an array as a vector, be it a column vector, a
row vector, or even a matrix whose elements are indexed row-wise (or
on some platforms). For this way of handling arrays, a single index is
specified.

The first valid value of an index is always 1. The array whose ele-
ments are extracted is usually a variable, but can be any expression:
an expression like [1,2;3,4](1,2) is valid and gives the 2nd element
of the first row, i.e. 3.

In all indexing operations, several indices can be specified simulta-
neously to extract more than one element along a dimension. A single
colon means all the elements along the corresponding dimension.

Instead of indices, the elements to be extracted can be selected by
the true values in a logical array of the same size as the variable (the
result is a column vector), or in a logical vector of the same size as the
corresponding dimension. Calculating a boolean expression based on
the variable itself used as a whole is the easiest way to get a logical
array.

Variable indexing can be used in an expression or in the left hand
side of an assignment. In this latter case, the right hand size can be
one of the following:

– An array of the same size as the extracted elements.

– A scalar, which is assigned to each selected element of the vari-
able.

– An empty matrix [], which means that the selected elements
should be deleted. Only whole rows or columns (or (hyper)planes
for arrays of more dimensions) can be deleted; i.e. a(2:5,:)
= [] and b([3,6:8]) = [] (if b is a row or column vector) are
legal, while c(2,3) = [] is not.

When indices are larger than the dimensions of the variable, the vari-
able is expanded; new elements are set to 0 for numeric arrays, false
for logical arrays, the nul character for character array, and the empty
array [] for cell arrays.

Lists: In LME, lists have one dimension; thus a single index is re-
quired. Be it with a single index or a vector of indices, indexed el-
ements are grouped in a list. New elements, also provided in a list,
can be assigned to indexed elements; if the list to be assigned has a
single element, the element is assigned to every indexed element of
the variable.

Cell arrays: cell arrays are subscripted like other arrays. The re-
sult, or the right-hand side of an assignment, is also a cell array, or
a list for the syntax v(select) (lists are to cell arrays what column

LME Reference — operators 255

vectors are to non-cell arrays). To create a single logical array for se-
lecting some elements, function cellfun may be useful. To remove
cells, the right-hand side of the assignment can be the empty list {}
or the empty array [].

Structure arrays: access to structure array fields combines sub-
scripting with parenthesis and structure field access with dot notation.
When the field is not specified, parenthesis indexing returns a struc-
ture or structure array. When indexing results in multiple elements
and a field is specified, the result is a value sequence.

Examples
Ordering evaluation:

(1+2)*3
9

Extracting a single element, a row, and a column:

a = [1,2,3; 4,5,6];
a(2,3)
6

a(2,:)
4 5 6

a(:,3)
3
6

Extracting a sub-array with contiguous rows and non-contiguous
columns:

a(1:2,[1,3])
1 3
4 6

Array elements as a vector:

a(3:5)
3
4
5

a(:)
1
2
3
4
5
6

Selections of elements where a logical expression is true:

256 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

a(a>=5)
5
6

a(:, sum(a,1) > 6)
2 3
5 6

Assignment:

a(1,5) = 99
a =
1 2 3 0 99
4 5 6 0 0

Extraction and assignment of elements in a list:

a = {1,[2,7,3],’abc’,magic(3),’x’};
a([2,5])
{[2,7,3],’x’}

a([2,5]) = {’ab’,’cde’}
a =
{1,’ab’,’abc’,[8,1,6;3,5,7;4,9,2],’cde’}

a([2,5]) = {[3,9]}
a =
{1,[3,9],’abc’,[8,1,6;3,5,7;4,9,2],[3,9]}

Removing elements in a list ({} and [] have the same effect here):

a(4) = {}
a =
{1,[3,9],’abc’,[3,9]}

a([1, 3]) = []
a =
{[3,9],[3,9]}

Replacing NaN with empty arrays in a cell array:

C = {’abc’, nan; 2, false};
C(cellfun(@(x) any(isnan(x(:))), C)) = {[]};

Element in a structure array:

SA = structarray(’a’,{1,[2,3]},’b’,{’ab’,’cde’});
SA(1).a
2 3

SA(2).b = ’X’;

When assigning a new field and/or a new element of a structure array,
the new field is added to each element and the size of the array is
expanded; fields are initialized to the empty array [].

SA(3).c = true;
SA(1).c
[]

LME Reference — operators 257

See also
Operator {}, operator ., end, reshape, variable assignment, operator
[], subsref, subsasgn, cellfun

Operator []

Brackets.

Syntax
[matrix_elements]

Description
A pair of brackets is used to define a 2-d array given by its elements
or by submatrices. The operator , (or spaces) is used to separate
elements on the same row, and the operator ; (or newline) is used to
separate rows. Since the space is considered as a separator when it is
in the direct scope of brackets, it should not be used at the top level
of expressions; as long as this rule is observed, each element can be
given by an expression.

Inside brackets, commas and semicolons are interpreted as calls to
horzcat and vertcat. Brackets themselves have no other effect than
changing the meaning of commas, semicolons, spaces, and new lines:
the expression [1], for instance, is strictly equivalent to 1. The empty
array [] is a special case.

Since horzcat and vertcat also accept cell arrays, brackets can
be used to concatenate cell arrays, too.

Examples
[1, 2, 3+5]
1 2 8

[1:3; 2 5 , 9]
1 2 3
2 5 9

[5-2, 3]
3 3

[5 -2, 3]
5 -2 3

[(5 -2), 3]
3 3

[1 2
3 4]
1 2
3 4

[]
[]

258 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Concatenation of two cell arrays:

C1 = {1; 2};
C2 = {’ab’; false};
[C1, C2]
2x2 cell array

Compare this with the effect of braces, where elements are not con-
catenated but used as cells:

{C1, C2}
1x2 cell array

See also
Operator {}, operator (), operator ,, operator ;

Operator {}

Braces.

Syntax
{list_elements}
{cells}
{struct_elements}
v{index}
v{index1, index2, ...}
v{index} = expr
fun(...,v{:},...)

Description
A pair of braces is used to define a list, a cell array, a struct, or an
n-by-1 struct array given by its elements. When no element has a
name (a named element is written name=value where value can be
any expression), the result is a list or a celle array; when all elements
have a name, the result is a struct or a struct array.

In a list, the operator , is used to separate elements. In a cell array,
the operator , is used to separate cells on the same row; the operator
; is used to separate rows. Braces without semicolons produce a list;
braces with semicolon(s) produce a cell array.

In a struct, the operator , is used to separate fields. In a struct
array, the operator ; is used to separate elements.

v{index} is the element of list variable v whose index is given.
index must be an integer between 1 (for the first element) and
length(v) (for the last element). v{index} may be used in an
expression to extract an element, or on the left hand-side of the
equal sign to assign a new value to an element. Unless it is the target

LME Reference — operators 259

of an assignment, v may also be the result of an expression. If v is a
cell array, v{index} is the element number index.

v{index1,index2,...} gives the specified cell of a cell array.
v itself may be an element or a field in a larger variable, provided

it is a list; i.e. complicated assignments like a{2}.f{3}(2,5)=3 are
accepted. In an assignment, when the index (or indices) are larger
than the list or cell array size, the variable is expanded with empty
arrays [].

In the list of the input arguments of a function call, v{:} is replaced
with its elements. v may be a list variable or the result of an expres-
sion.

Examples

x = {1, ’abc’, [3,5;7,1]}
x =
{1,string,real 2x2}

x{3}
3 5
7 1

x{2} = 2+3j
x =
{1,2+3j,real 2x2}

x{3} = {2}
x =
{1,2+3j,list}

x{end+1} = 123
x =
{1,2+3j,list,123}

C = {1, false; ’ab’, magic(3)}
2x2 cell array

C{2, 1}
ab

a = {1, 3:5};
fprintf(’%d ’, a{:}, 99);
1 3 4 5 99

s = {a=1, b=’abc’};
s.a
1

S = {a=1, b=’abc’; a=false, b=1:5};
size(S)
2 1

S(2).b
1 2 3 4 5

S = {a=1; b=2};
S(1).b
[]

260 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
operator ,, operator [], operator (), operator ;, operator ., subsref,
subsasgn

Operator . (dot)

Structure field access.

Syntax
v.field
v.field = expr

Description
A dot is used to access a field in a structure. In v.field, v is the name
of a variable which contains a structure, and field is the name of the
field. In expressions, v.field gives the value of the field; it is an error
if it does not exist. As the target of an assignment, the value of the
field is replaced if it exists, or a new field is added otherwise; if v itself
is not defined, a structure is created from scratch.

v itself may be an element or a field in a larger variable, provided
it is a structure (or does not exists in an assignment); i.e. complicated
assignments like a{2}.f{3}(2,5)=3 are accepted.

If V is a structure array, V.field is a value sequence which contains
the specified field of each element of V.

The syntax v.(expr) permits to specify the field name
dynamically at run-time, as the result of evaluating expression expr.
v(’f’) is equivalent to v.f. This syntax is more elegant than
functions getfield and setfield.

Examples
s.f = 2
s =
f: 2

s.g = ’hello’
s =
f: 2
s: string

s.f = 1:s.f
s =
f: real 1x2
g: string

See also
Operator (), operator {}, getfield, setfield, subsref, subsasgn

LME Reference — operators 261

Operator +

Addition.

Syntax
x + y
M1 + M2
M + x
plus(x, y)
+x
+M
uplus(x)

Description

With two operands, both operands are added together. If both
operands are matrices with a size different from 1-by-1, their size
must be equal; the addition is performed element-wise. If one
operand is a scalar, it is added to each element of the other operand.

With one operand, no operation is performed, except that the result
is converted to a number if it was a string or a logical value, like with all
mathematical operators and functions. For strings, each character is
replaced with its numeric encoding. The prefix + is actually a synonym
of double.

plus(x,y) is equivalent to x+y, and uplus(x) to +x. They can be
used to redefine these operators for objects.

Example
2 + 3

5
[1 2] + [3 5]
4 7

[3 4] + 2
5 6

See also

operator -, sum, addpol, double

Operator -

Subtraction or negation.

262 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
x - y
M1 - M2
M - x
minus(x, y)
-x
-M
uminus(x)

Description

With two operands, the second operand is subtracted from the first
operand. If both operands are matrices with a size different from 1-
by-1, their size must be equal; the subtraction is performed element-
wise. If one operand is a scalar, it is repeated to match the size of the
other operand.

With one operand, the sign of each element is changed.
minus(x,y) is equivalent to x-y, and uminus(x) to -x. They can

be used to redefine these operators for objects.

Example
2 - 3
-1

[1 2] - [3 5]
-2 -3

[3 4] - 2
1 2

-[2 2-3j]
-2 -2+3j

See also

operator +, conj

Operator *

Matrix multiplication.

Syntax
x * y
M1 * M2
M * x
mtimes(x, y)

LME Reference — operators 263

Description
x*y multiplies the operands together. Operands can be scalars (plain
arithmetic product), matrices (matrix product), or mixed scalar and
matrix.

mtimes(x,y) is equivalent to x*y. It can be used to redefine this
operator for objects.

Example
2 * 3
6

[1,2;3,4] * [3;5]
13
29

[3 4] * 2
6 8

See also
operator .*, operator /, prod

Operator .*

Scalar multiplication.

Syntax
x .* y
M1 .* M2
M .* x
times(x, y)

Description
x.*y is the element-wise multiplication. If both operands are matrices
with a size different from 1-by-1, their size must be equal; the mul-
tiplication is performed element-wise. If one operand is a scalar, it
multiplies each element of the other operand.

times(x,y) is equivalent to x.*y. It can be used to redefine this
operator for objects.

Example
[1 2] .* [3 5]
3 10

[3 4] .* 2
6 8

264 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
operator *, operator ./, operator .̂

Operator /

Matrix right division.

Syntax
a / b
A / B
A / b
mrdivide(a, b)

Description
a/b divides the first operand by the second operand. If the second
operand is a scalar, it divides each element of the first operand. Oth-
erwise, it must be a square matrix; M1/M2 is equivalent to M1*inv(M2).

mrdivide(x,y) is equivalent to x/y. It can be used to redefine this
operator for objects.

Example
9 / 3
3

[2,6] / [1,2;3,4]
5 -1

[4 10] / 2
2 5

See also
operator \, inv, operator ./, deconv

Operator ./

Scalar right division.

Syntax
x ./ y
M1 ./ M2
M ./ x
x ./ M
rdivide(x, y)

LME Reference — operators 265

Description
The first operand is divided by the second operand. If both operands
are matrices with a size different from 1-by-1, their size must be equal;
the division is performed element-wise. If one operand is a scalar, it is
repeated to match the size of the other operand.

rdivide(x,y) is equivalent to x./y. It can be used to redefine this
operator for objects.

Examples
[3 10] ./ [3 5]
1 2

[4 8] ./ 2
2 4

10 ./ [5 2]
2 5

See also
operator /, operator .*, operator .̂

Operator \
Matrix left division.

Syntax
x \ y
M1 \ M2
x \ M
mldivide(x, y)

Description
x\y divides the second operand by the first operand. If the first
operand is a scalar, it divides each element of the second operand.
Otherwise, it must be a square matrix; M1\M2 is equivalent to
inv(M1)*M2.

mldivide(x,y) is equivalent to x\y. It can be used to redefine this
operator for objects.

Examples
3 \ 9
3

[1,2;3,4] \ [2;6]
2
0

2 \ [4 10]
2 5

266 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
operator /, inv, operator .\

Operator .\

Scalar left division.

Syntax
M1 .\ M2
M1 .\ x
ldivide(x, y)

Description
The second operand is divided by the first operand. If both operands
are matrices with a size different from 1-by-1, their size must be equal;
the division is performed element-wise. If one operand is a scalar, it is
repeated to match the size of the other operand.

ldivide(x,y) is equivalent to x.\y. It can be used to redefine this
operator for objects.

Example
[1 2 3] .\ [10 11 12]
10 5.5 4

See also
operator \, operator ./

Operator ˆ

Matrix power.

Syntax
x ˆ y
M ˆ y
x ˆ M
mpower(x, y)

Description
x̂ y calculates x to the y power, provided that either

– both operands are scalar;

LME Reference — operators 267

– the first operand is a square matrix and the second operand is a
scalar;

– or the first operand is a scalar and the second operand is a square
matrix.

Other cases yield an error.
mpower(x,y) is equivalent to x̂ y. It can be used to redefine this

operator for objects.

Examples
2 ˆ 3
8

[1,2;3,4] ˆ 2
7 10
15 22

2 ˆ [1,2;3,4]
10.4827 14.1519
21.2278 31.7106

Algorithms
If the first operand is a scalar and the second a square matrix, the
matrix exponential is used. The result is expm(log(x)*M).

If the first operand is a square matrix and the second a scalar, un-
less for small real integers, the same algorithm as for matrix functions
is used, i.e. a complex Schur decomposition followed by the Parlett
method. The result is funm(M, @(x) x̂ y).

See also
operator .̂ , expm, funm

Operator .̂

Scalar power.

Syntax
M1 .̂ M2
x .̂ M
M .̂ x
power(x, y)

Description
M1.̂ M2 calculates M1 to the M2 power, element-wise. Both arguments
must have the same size, unless one of them is a scalar.

power(x,y) is equivalent to x.̂ y. It can be used to redefine this
operator for objects.

268 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
[1,2;3,4].̂ 2
1 4
9 16

[1,2,3].̂ [5,4,3]
1 16 27

See also
operator ,̂ exp

Operator ’

Complex conjugate transpose.

Syntax
M’
ctranspose(M)

Description
M’ is the transpose of the real matrix M, i.e. columns and rows are per-
muted. If M is complex, the result is the complex conjugate transpose
of M. If M is an array with multiple dimensions, the first two dimensions
are permuted.

ctranspose(M) is equivalent to M’. It can be used to redefine this
operator for objects.

Examples
[1,2;3,4]’
1 3
2 4

[1+2j, 3-4j]’
1-2j
3+4j

See also
operator .’, conj

Operator .’

Transpose.

Syntax
M.’
transpose(M)

LME Reference — operators 269

Description
M.’ is the transpose of the matrix M, i.e. columns and rows are per-
muted. M can be real or complex. If M is an array with multiple dimen-
sions, the first two dimensions are permuted.

transpose(M) is equivalent to M.’. It can be used to redefine this
operator for objects.

Example
[1,2;3,4].’
1 3
2 4

[1+2j, 3-4j].’
1+2j
3-4j

See also
operator ’, permute, fliplr, flipud, rot90

Operator ==

Equality.

Syntax
x == y
eq(x, y)

Description
x == y is true if x is equal to y, and false otherwise. Comparing NaN
(not a number) to any number yields false, including to NaN. If x and/or
y is an array, the comparison is performed element-wise and the result
has the same size.

eq(x,y) is equivalent to x==y. It can be used to redefine this oper-
ator for objects.

Example
1 == 1
true

1 == 1 + eps
false

1 == 1 + eps / 2
true

inf == inf
true

nan == nan

270 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

false
[1,2,3] == [1,3,3]
T F T

See also
operator =̃, operator <, operator <=, operator >, operator >=, opera-
tor ===, operator =̃=, strcmp

Operator ===

Object equality.

Syntax
a === b
same(a, b)

Description
a === b is true if a is the same as b, and false otherwise. a and b must
have exactly the same internal representation to be considered as
equal; with IEEE floating-point numbers, nan===nan is true and 0===-0
is false. Contrary to the equality operator ==, === returns a single
boolean even if its operands are arrays.

same(a,b) is equivalent to a===b.

Example
(1:5) === (1:5)
true

(1:5) == (1:5)
T T T T T

[1,2,3] === [4,5]
false

[1,2,3] == [4,5]
Incompatible size

nan === nan
true

nan == nan
false

See also
operator =̃=, operator ==, operator =̃, operator <, operator <=, oper-
ator >, operator >=, operator ==, operator =̃, strcmp

Operator =̃

Inequality.

LME Reference — operators 271

Syntax
x =̃ y
ne(x, y)

Description
x =̃ y is true if x is not equal to y, and false otherwise. Comparing
NaN (not a number) to any number yields true, including to NaN. If x
and/or y is an array, the comparison is performed element-wise and
the result has the same size.

ne(x,y) is equivalent to x̃ =y. It can be used to redefine this oper-
ator for objects.

Example
1 =̃ 1
false

inf =̃ inf
false

nan =̃ nan
true

[1,2,3] =̃ [1,3,3]
F T F

See also
operator ==, operator <, operator <=, operator >, operator >=, oper-
ator ===, operator =̃=, strcmp

Operator =̃=

Object inequality.

Syntax
a =̃= b
unsame(a, b)

Description
a =̃= b is true if a is not the same as b, and false otherwise. a and b
must have exactly the same internal representation to be considered
as equal; with IEEE numbers, nañ ==nan is false and 0̃ ==-0 is true.
Contrary to the inequality operator, =̃= returns a single boolean even
if its operands are arrays.

unsame(a,b) is equivalent to ã ==b.

272 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
(1:5) =̃= (1:5)
false

(1:5) =̃ (1:5)
F F F F F

[1,2,3] =̃= [4,5]
true

[1,2,3] =̃ [4,5]
Incompatible size

nan =̃= nan
false

nan =̃ nan
true

See also
operator ===, operator ==, operator =̃, operator <, operator <=, oper-
ator >, operator >=, strcmp

Operator <

Less than.

Syntax
x < y
lt(x, y)

Description
x < y is true if x is less than y, and false otherwise. Comparing NaN
(not a number) to any number yields false, including to NaN. If x and/or
y is an array, the comparison is performed element-wise and the result
has the same size.

lt(x,y) is equivalent to x<y. It can be used to redefine this oper-
ator for objects.

Example
[2,3,4] < [2,4,2]
F T F

See also
operator ==, operator =̃, operator <=, operator >, operator >=

Operator >

Greater than.

LME Reference — operators 273

Syntax
x > y
gt(x, y)

Description
x > y is true if x is greater than y, and false otherwise. Comparing
NaN (not a number) to any number yields false, including to NaN. If x
and/or y is an array, the comparison is performed element-wise and
the result has the same size.

gt(x,y) is equivalent to x>y. It can be used to redefine this oper-
ator for objects.

Example
[2,3,4] > [2,4,2]
F F T

See also
operator ==, operator =̃, operator <, operator <=, operator >=

Operator <=

Less or equal to.

Syntax
x <= y
le(x, y)

Description
x <= y is true if x is less than or equal to y, and false otherwise.
Comparing NaN (not a number) to any number yields false, including
to NaN. If x and/or y is an array, the comparison is performed element-
wise and the result has the same size.

le(x,y) is equivalent to x<=y. It can be used to redefine this op-
erator for objects.

Example
[2,3,4] <= [2,4,2]
T T F

See also
operator ==, operator =̃, operator <, operator >, operator >=

274 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Operator >=

Greater or equal to.

Syntax
x >= y
ge(x, y)

Description
x >= y is true if x is greater than or equal to y, and false otherwise.
Comparing NaN (not a number) to any number yields false, including
to NaN. If x and/or y is an array, the comparison is performed element-
wise and the result has the same size.

ge(x,y) is equivalent to x>=y. It can be used to redefine this op-
erator for objects.

Example
[2,3,4] >= [2,4,2]
T F T

See also
operator ==, operator =̃, operator <, operator <=, operator >

Operator ˜

Not.

Syntax
b̃
not(b)

Description
b̃ is false (logical 0) if b is different from 0 or false, and true otherwise.
If b is an array, the operation is performed on each element.

not(b) is equivalent to b̃. It can be used to redefine this operator
for objects.

Character ˜ can also be used as a placeholder for unused argu-
ments.

Examples
t̃rue
false

[̃1,0,3,false]
F T F T

LME Reference — operators 275

See also
operator =̃, bitcmp, function (unused arguments)

Operator &

And.

Syntax
b1 & b2
and(b1, b2)

Description
b1&b2 performs the logical AND operation between the corresponding
elements of b1 and b2; the result is true (logical 1) if both operands
are different from false or 0, and false (logical 0) otherwise.

and(b1,b2) is equivalent to b1&b2. It can be used to redefine this
operator for objects.

Example
[false, false, true, true] & [false, true, false, true]
F F F T

See also
operator |, xor, operator ,̃ operator &&, all

Operator &&

And with lazy evaluation.

Syntax
b1 && b2

Description
b1&&b2 is b1 if b1 is false, and b2 otherwise. Like with if and while
statements, b1 is true if it is a nonempty array with only non-zero
elements. b2 is evaluated only if b1 is true.

b1&&b2&&...&&bn returns the last operand which is false (remain-
ing operands are not evaluated), or the last one.

276 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Boolean value which is true if the vector v is made of pairs of equal
values:

mod(length(v),2) == 0 && v(1:2:end) == v(2:2:end)

The second operand of && is evaluated only if the length is even.

See also
operator ||, operator ?, operator &, if

Operator |

Or.

Syntax
b1 | b2
or(b1, b2)

Description
b1|b2 performs the logical OR operation between the corresponding
elements of b1 and b2; the result is false (logical 0) if both operands
are false or 0, and true (logical 1) otherwise.

or(b1,b2) is equivalent to b1|b2. It can be used to redefine this
operator for objects.

Example
[false, false, true, true] | [false, true, false, true]
F T T T

See also
operator &, xor, operator ,̃ operator ||, any

Operator ||

Or with lazy evaluation.

Syntax
b1 || b2

LME Reference — operators 277

Description
b1||b2 is b1 if b1 is true, and b2 otherwise. Like with if and while
statements, b1 is true if it is a nonempty array with only non-zero
elements. b2 is evaluated only if b1 is false.

b1||b2||...||bn returns the last operand which is true (remaining
operands are not evaluated), or the last one.

Example
Boolean value which is true if the vector v is empty or if its first ele-
ment is NaN:

isempty(v) || isnan(v(1))

See also
operator &&, operator ?, operator |, if

Operator ?

Alternative with lazy evaluation.

Syntax
b ? x : y

Description
b?x:y is x if b is true, and y otherwise. Like with if and while state-
ments, b is true if it is a nonempty array with only non-zero elements.
Only one of x and y is evaluated depending on b.

Operators ? and : have the same priority; parenthesis or brackets
should be used if e.g. x or y is a range.

Example
Element of a vector v, or default value 5 if the index ind is out of
range:

ind < 1 || ind > length(v) ? 5 : v(ind)

See also
operator &&, operator ||, if

Operator ,

Horizontal matrix concatenation.

278 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
[M1, M2, ...]
[M1 M2 ...]
horzcat(M1, M2, ...)

Description

Between brackets, the comma is used to separate elements on the
same row in a matrix. Elements can be scalars, vector, arrays, cell
arrays, or structures; their number of rows must be the same, unless
one of them is an empty array. For arrays with more than 2 dimen-
sions, all dimensions except dimension 2 (number of columns) must
match.

Outside brackets or between parenthesis, the comma is used to
separate statements or the arguments of functions.

horzcat(M1,M2,...) is equivalent to [M1,M2,...]. It can be used
to redefine this operator for objects. It accepts any number of in-
put arguments; horzcat() is the real double empty array [], and
horzcat(M) is M.

Between braces, the comma separates cells on the same row.

Examples
[1,2]
1 2

[[3;5],ones(2)]
3 1 1
5 1 1

[’abc’,’def’]
abcdef

See also

operator [], operator ;, cat, join, operator {}

Operator ;

Vertical matrix concatenation.

Syntax
[M1; M2]
vertcat(M1, M2)

LME Reference — operators 279

Description
Between brackets, the semicolon is used to separate rows in a matrix.
Rows can be scalars, vector, arrays, cell arrays, or structures; their
number of columns must be the same, unless one of them is an empty
array. For arrays with more than 2 dimensions, all dimensions except
dimension 1 (number of rows) must match.

Outside brackets, the comma is used to separate statements; they
loose any meaning between parenthesis and give a syntax error.

vertcat(M1,M2) is equivalent to [M1;M2]. It can be used to rede-
fine this operator for objects.

Between braces, the semicolon separates rows of cells.

Examples
[1;2]
1
2

[1:5;3,2,4,5,1]
1 2 3 4 5
3 2 4 5 1

[’abc’;’def’]
abc
def

See also
operator [], operator ,, join, operator {}

Operator :

Range.

Syntax
x1:x2
x1:step:x2
colon(x1,x2)
colon(x1,step,x2)

Description
x1:x2 gives a row vector with the elements x1, x1+1, x1+2, etc. until
x2. The last element is equal to x2 only if x2-x1 is an integer, and
smaller otherwise. If x2<x1, the result is an empty matrix.

x1:step:x2 gives a row vector with the elements x1, x1+step,
x1+2*step, etc. until x2. The last element is equal to x2 only if
(x2-x1)/step is an integer. With fractional numbers, rounding er-
rors may cause x2 to be discarded even if (x2-x1)/step is "almost"

280 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

an integer. If x2*sign(step)<x1*sign(step), the result is an empty
matrix.

If x1 or step is complex, a complex vector is produced, with the
expected contents. The following algorithm is used to generate each
element:

z = x1
while real((x2 - z) * conj(step)) >= 0

append z to the result
z = z + step

end

Values are added until they go beyond the projection of x2 onto the
straight line defined by x1 and direction step. If x2-x1 and step are
orthogonal, it is attempted to produce an infinite number of elements,
which will obviously trigger an out of memory error. This is similar to
having a null step in the real case.

Note that the default step value is always 1 for consistency with
real values. Choosing for instance sign(x2-x1) would have made the
generation of lists of indices more difficult. Hence for a vector of purely
imaginary numbers, always specify a step.

colon(x1,x2) is equivalent to x1:x2, and colon(x1,step,x2) to
x1:step:x2. It can be used to redefine this operator for objects.

The colon character is also used to separate the alternatives of a
conditional expression b?x:y.

Example
2:5
2 3 4 5

2:5.3
2 3 4 5

3:3
3

3:2
[]

2:2:8
2 4 6 8

5:-1:2
5 4 3 2

0:1j:10j
0 1j 2j 3j 4j 5j 6j 7j 8j 9j 10j

1:1+1j:5+4j
1 2+1j 3+2j 4+3j 5+4j

0:1+1j:5
0 1+1j 2+2j 3+3j 4+4j 5+5j

See also
repmat, operator ?

LME Reference — operators 281

Operator @

Function reference or anonymous function.

Syntax
@fun
@(arguments) expression

Description
@fun gives a reference to function fun which can be used wherever an
inline function can. Its main use is as the argument of functions like
feval or integral, but it may also be stored in lists, cell arrays, or
structures. A reference cannot be cast to a number (unlike characters
or logical values), nor can it be stored in a numeric array. The function
reference of an operator must use its function name, such as @plus.

Anonymous functions are an alternative, more compact syntax for
inline functions. In @(args) expr, args is a list of input arguments
and expr is an expression which contains two kinds of variables:

– input arguments, provided when the anonymous expression is
executed;

– captured variables (all variables which do not appear in the list
of input arguments), which have the value of variables of the
same name existing when and where the anonymous function is
created. These values are fixed.

If the top-level element of the anonymous function is itself a function,
multiple output arguments can be specified for the call of the anony-
mous function, as if a direct call was performed. Anonymous functions
which do not return any output are also valid.

Anonymous functions may not have input arguments with default
values (@(x=2)x+5 is invalid).

Anonymous functions are a convenient way to provide the glue be-
tween functions like fzero and ode45 and the function they accept as
argument. Additional parameters can be passed directly in the anony-
mous function with captured variables, instead of being supplied as
additional arguments; the code becomes clearer.

Examples
Function reference:

integral(@sin, 0, pi)
2

Anonymous function:

282 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

a = 2;
fun = @(x) sin(a * x);
fun(3)
-0.2794

integral(fun, 0, 2)
0.8268

Without anonymous function, parameter a should be passed as an ad-
ditional argument after all the input arguments defined for integral,
including those which are optional when parameters are missing:

integral(inline(’sin(a * x)’, ’x’, ’a’), 0, 2, [], false, a)
0.8268

Anonymous functions are actually stored as inline functions with all
captured variables:

dumpvar(fun)
inline(’function y=f(a,x);y=sin(a*x);’,2)

Anonymous function with multiple output arguments:

fun = @(A) size(A);
s = fun(ones(2,3))
s =
2 3

(m, n) = fun(ones(2,3))
m =
2

n =
3

See also
fun2str, str2fun, inline, feval, apply

10.20 Mathematical Functions

abs

Absolute value.

Syntax
x = abs(z)

Description
abs takes the absolute value of each element of its argument. The
result is an array of the same size as the argument; each element is
non-negative.

LME Reference — mathematical functions 283

Example
abs([2,-3,0,3+4j]
2 3 0 5

See also
angle, sign, real, imag, hypot

acos

Arc cosine.

Syntax
y = acos(x)

Description
acos(x) gives the arc cosine of x, which is complex if x is complex or
if abs(x)>1.

Examples
acos(2)
0+1.3170j

acos([0,1+2j])
1.5708 1.1437-1.5286j

See also
cos, asin, acosh

acosd acotd acscd asecd asind atand atan2d

Inverse trigonometric functions with angles in degrees.

Syntax
y = acosd(x)
y = acotd(x)
y = acscd(x)
y = asecd(x)
y = asind(x)
y = atand(x)
z = atan2d(y, x)

Description
Inverse trigonometric functions whose name ends with a d give a re-
sult expressed in degrees instead of radians.

284 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
acosd(0.5)
60.0000

acos(0.5) * 180 / pi
60.0000

See also
cosd, cotd, cscd, secd, sind, tand, acos, acot, acsc, asec, asin,
atan, atan2

acosh

Inverse hyperbolic cosine.

Syntax
y = acosh(x)

Description
acosh(x) gives the inverse hyperbolic cosine of x, which is complex if
x is complex or if x<1.

Examples
acosh(2)
1.3170

acosh([0,1+2j])
0+1.5708j 1.5286+1.1437j

See also
cosh, asinh, acos

acot

Inverse cotangent.

Syntax
y = acot(x)

Description
acot(x) gives the inverse cotangent of x, which is complex if x is.

See also
cot, acoth, cos

LME Reference — mathematical functions 285

acoth

Inverse hyperbolic cotangent.

Syntax
y = acoth(x)

Description
acoth(x) gives the inverse hyperbolic cotangent of x, which is complex
if x is complex or is in the range (-1,1).

See also
coth, acot, atanh

acsc

Inverse cosecant.

Syntax
y = acsc(x)

Description
acsc(x) gives the inverse cosecant of x, which is complex if x is com-
plex or is in the range (-1,1).

See also
csc, acsch, asin

acsch

Inverse hyperbolic cosecant.

Syntax
y = acsch(x)

Description
acsch(x) gives the inverse hyperbolic cosecant of x, which is complex
if x is.

See also
csc, acsc, asinh

286 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

angle

Phase angle of a complex number.

Syntax
phi = angle(z)

Description
angle(z) gives the phase of the complex number z, i.e. the angle be-
tween the positive real axis and a line joining the origin to z. angle(0)
is 0.

Examples
angle(1+3j)
1.2490

angle([0,1,-1])
0 0 3.1416

See also
abs, sign, atan2

asec

Inverse secant.

Syntax
y = asec(x)

Description
asec(x) gives the inverse secant of x, which is complex if x is complex
or is in the range (-1,1).

See also
sec, asech, acos

asech

Inverse hyperbolic secant.

Syntax
y = asech(x)

LME Reference — mathematical functions 287

Description
asech(x) gives the inverse hyperbolic secant of x, which is complex if
x is complex or strictly negative.

See also
sech, asec, acosh

asin

Arc sine.

Syntax
y = asin(x)

Description
asin(x) gives the arc sine of x, which is complex if x is complex or if
abs(x)>1.

Examples
asin(0.5)
0.5236

asin(2)
1.5708-1.317j

See also
sin, acos, asinh

asinh

Inverse hyperbolic sine.

Syntax
y = asinh(x)

Description
asinh(x) gives the inverse hyperbolic sine of x, which is complex if x
is complex.

Examples
asinh(2)
1.4436

asinh([0,1+2j])
0 1.8055+1.7359j

288 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
sinh, acosh, asin

atan

Arc tangent.

Syntax
y = atan(x)

Description
atan(x) gives the arc tangent of x, which is complex if x is complex.

Example
atan(1)
0.7854

See also
tan, asin, acos, atan2, atanh

atan2

Direction of a point given by its Cartesian coordinates.

Syntax
phi = atan2(y,x)

Description
atan2(y,x) gives the direction of a point given by its Cartesian coor-
dinates x and y. Imaginary component of complex numbers is ignored.
atan2(y,x) is equivalent to atan(y/x) if x>0.

Examples
atan2(1, 1)
0.7854

atan2(-1, -1)
-2.3562

atan2(0, 0)
0

See also
atan, angle

LME Reference — mathematical functions 289

atanh

Inverse hyperbolic tangent.

Syntax
y = atanh(x)

Description
atan(x) gives the inverse hyperbolic tangent of x, which is complex if
x is complex or if abs(x)>1.

Examples
atanh(0.5)
0.5493

atanh(2)
0.5493 + 1.5708j

See also
asinh, acosh, atan

beta

Beta function.

Syntax
y = beta(z,w)

Description
beta(z,w) gives the beta function of z and w. Arguments and result
are real (imaginary part is discarded). The beta function is defined as

B(z,) =
∫ 1

0
tz−1(1 − t)−1 dt

Example
beta(1,2)
0.5

See also
gamma, betaln, betainc

290 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

betainc

Incomplete beta function.

Syntax
y = betainc(x,z,w)

Description
betainc(x,z,w) gives the incomplete beta function of x, z and w.
Arguments and result are real (imaginary part is discarded). x must
be between 0 and 1. The incomplete beta function is defined as

(z,) =
1

B(z,)

∫ 

0
tz−1(1 − t)−1 dt

Example
betainc(0.2,1,2)
0.36

See also
beta, betaln, gammainc

betaln

Logarithm of beta function.

Syntax
y = betaln(z,w)

Description
betaln(z,w) gives the logarithm of the beta function of z and w. Ar-
guments and result are real (imaginary part is discarded).

Example
betaln(0.5,2)
0.2877

See also
beta, betainc, gammaln

LME Reference — mathematical functions 291

cart2pol

Cartesian to polar coordinates transform.

Syntax
(phi, r) = cart2pol(x, y)
(phi, r, z) = cart2pol(x, y, z)

Description
(phi,r)=cart2pol(x,y) transforms Cartesian coordinates x and y to
polar coordinates phi and r such that  = r cos(φ) and  = r sin(φ).

(phi,r,z)=cart2pol(x,y,z) transform Cartesian coordinates to
cylindrical coordinates, leaving z unchanged.

Example
(phi, r) = cart2pol(1, 2)
phi =
1.1071

r =
2.2361

See also
cart2sph, pol2cart, sph2cart, abs, angle

cart2sph

Cartesian to spherical coordinates transform.

Syntax
(phi, theta, r) = cart2sph(x, y, z)

Description
(phi,theta,r)=cart2sph(x,y,z) transforms Cartesian coordinates
x, y, and z to polar coordinates phi, theta, and r such that  =
r cos(φ) cos(ϑ), y = r sin(φ) cos(ϑ), and z = r sin(ϑ).

Example
(phi, theta, r) = cart2sph(1, 2, 3)
phi =
1.1071

theta =
0.9303

r =
3.7417

292 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
cart2pol, pol2cart, sph2cart

cast

Type conversion.

Syntax
Y = cast(X, type)

Description
cast(X,type) converts the numeric array X to the type given by string
type, which can be ’double’, ’single’, ’int8’ or any other signed
or unsigned integer type, ’char’, or ’logical’. The number value
is preserved when possible; conversion to integer types discards most
significant bytes. If X is an array, conversion is performed on each
element; the result has the same size. The imaginary part, if any, is
discarded only with conversions to integer types.

Example
cast(pi, ’int8’)
3int8

See also
uint8 and related functions, double, single, typecast

cdf

Cumulative distribution function.

Syntax
y = cdf(distribution,x)
y = cdf(distribution,x,a1)
y = cdf(distribution,x,a1,a2)

Description
cdf(distribution,x) calculates the integral of a probability density
function from −∞ to x. The distribution is specified with the first argu-
ment, a string; case is ignored (’t’ and ’T’ are equivalent). Additional
arguments must be provided for some distributions. The distributions
are given in the table below. Default values for the parameters, when
mentioned, mean that the parameter may be omitted.

LME Reference — mathematical functions 293

Distribution Name Parameters
beta beta a and b
Cauchy cauchy a and b
χ chi deg. of freedom ν
χ2 chi2 deg. of freedom ν
γ gamma shape α and λ
exponential exp mean
F f deg. of freedom ν1 and ν2
half-normal half-normal ϑ
Laplace laplace mean and scale
lognormal logn mean (0) and st. dev. (1)
Nakagami nakagami μ and ω
normal norm mean (0) and st. dev. (1)
Rayleigh rayl b
Student’s T t deg. of freedom ν
uniform unif limits of the range (0 and 1)
Weibull weib shape k and scale λ

Example
cdf(’chi2’, 2.5, 3)
0.5247

integral(@(x) pdf(’chi2’,x,3), 0, 2.5, AbsTol=1e-4)
0.5247

See also
pdf, icdf, random, erf

ceil

Rounding towards +infinity.

Syntax
y = ceil(x)

Description
ceil(x) gives the smallest integer larger than or equal to x. If the
argument is a complex number, the real and imaginary parts are han-
dled separately.

Examples
ceil(2.3)
3

ceil(-2.3)

294 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

-2
ceil(2.3-4.5j)
3-4j

See also
floor, fix, round, roundn

complex

Make a complex number.

Syntax
z = complex(x, y)

Description
complex(x,y) makes a complex number from its real part x and imag-
inary part y. The imaginary part of its input arguments is ignored.

Examples
complex(2, 3)
2 + 3j

complex(1:5, 2)
1+2j 2+2j 3+2j 4+2j 5+2j

See also
real, imag, i

conj

Complex conjugate value.

Syntax
w = conj(z)

Description
conj(z) changes the sign of the imaginary part of the complex num-
ber z.

Example
conj([1+2j,-3-5j,4,0])
1-2j -3+5j 4 0

LME Reference — mathematical functions 295

See also
imag, angle, j, operator -

cos

Cosine.

Syntax
y = cos(x)

Description
cos(x) gives the cosine of x, which is complex if x is complex.

Example
cos([0, 1+2j])
1 2.0327-3.0519j

See also
sin, acos, cosh

cosd cotd cscd secd sind tand

Trigonometric functions with angles in degrees.

Syntax
y = cosd(x)
y = cotd(x)
y = cscd(x)
y = secd(x)
y = sind(x)
y = tand(x)

Description
Trigonometric functions whose name ends with a d have an argument
expressed in degrees instead of radians.

Examples
cosd(20)
0.9397

cos(20 * pi / 180)
0.9397

296 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
acosd, acotd, acscd, asecd, asind, atand, atan2d, cos, cot, csc,
sec, sin, tan

cosh

Hyperbolic cosine.

Syntax
y = cosh(x)

Description
cos(x) gives the hyperbolic cosine of x, which is complex if x is com-
plex.

Example
cosh([0, 1+2j])
1 -0.6421+1.0686j

See also
sinh, acosh, cos

cot

Cotangent.

Syntax
y = cot(x)

Description
cot(x) gives the cotangent of x, which is complex if x is.

See also
acot, coth, tan

coth

Hyperbolic cotangent.

Syntax
y = coth(x)

LME Reference — mathematical functions 297

Description
coth(x) gives the hyperbolic cotangent of x, which is complex if x is.

See also
acoth, cot, tanh

csc

Cosecant.

Syntax
y = csc(x)

Description
csc(x) gives the cosecant of x, which is complex if x is.

See also
acsc, csch, sin

csch

Hyperbolic cosecant.

Syntax
y = csch(x)

Description
csch(x) gives the hyperbolic cosecant of x, which is complex if x is.

See also
acsch, csc, sinh

diln

Dilogarithm.

Syntax
y = diln(x)

298 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
diln(x) gives the dilogarithm, or Spence’s integral, of x. Argument
and result are real (imaginary part is discarded). The dilogarithm is
defined as

diln() =
∫ 

1

log(t)

t − 1
dt

Example
diln([0.2, 0.7, 10])
-1.0748 -0.3261 3.9507

double

Conversion to double-precision numbers.

Syntax
B = double(A)

Description
double(A) converts number or array A to double precision. A can be
any kind of numeric value (real, complex, or integer), or a character
or logical array.

To keep the integer type of logical and character arrays, the unitary
operator + should be used instead.

Examples
double(uint8(3))
3

double(’AB’)
65 66

islogical(double(1>2))
false

See also
uint8 and related functions, single, cast, operator +, setstr, char,
logical

ellipam

Jacobi elliptic amplitude.

LME Reference — mathematical functions 299

Syntax
phi = ellipam(u, m)
phi = ellipam(u, m, tol)

Description
ellipam(u,m) gives the Jacobi elliptic amplitude phi. Parameter m
must be in [0,1]. The Jacobi elliptic amplitude is the inverse of the
Jacobi integral of the first kind, such that  = F(φ|m).

ellipam(u,m,tol) uses tolerance tol; the default tolerance is
eps.

Example
phi = ellipam(2.7, 0.6)
phi =
2.0713

u = ellipf(phi, 0.6)
u =
2.7

See also
ellipf, ellipj

ellipe

Jacobi elliptic integral of the second kind.

Syntax
u = ellipe(phi, m)

Description
ellipe(phi,m) gives the Jacobi elliptic integral of the second kind,
defined as

E(φ|m) =
∫ φ

0

q

1 −m sin2 t dt

Complete elliptic integrals of first and second kinds, with phi=pi/2,
can be obtained with ellipke.

See also
ellipf, ellipke

300 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

ellipf

Jacobi elliptic integral of the first kind.

Syntax
u = ellipf(phi, m)

Description
ellipf(phi,m) gives the Jacobi elliptic integral of the first kind, de-
fined as

F(φ|m) =
∫ φ

0

dt
Æ

1 −m sin2 t

Complete elliptic integrals of first and second kinds, with phi=pi/2,
can be obtained with ellipke.

See also
ellipe, ellipke, ellipam

ellipj

Jacobi elliptic functions.

Syntax
(sn, cn, dn) = ellipj(u, m)
(sn, cn, dn) = ellipj(u, m, tol)

Description
ellipj(u,m) gives the Jacobi elliptic function sn, cn, and dn. Parame-
ter m must be in [0,1]. These functions are based on the Jacobi elliptic
amplitude φ, the inverse of the Jacobi elliptic integral of the first kind
which can be obtained with ellipam):

 = F(φ|m)

sn(|m) = sin(φ)

cn(|m) = cos(φ)

dn(|m) =
Ç

1 −m sin2 φ

ellipj(u,m,tol) uses tolerance tol; the default tolerance is eps.

LME Reference — mathematical functions 301

Examples
(sn, cn, dn) = ellipj(2.7, 0.6)
sn =
0.8773

cn =
-0.4799

dn =
0.7336

sin(ellipam(2.7, 0.6))
0.8773

ellipj(0:5, 0.3)
0.0000 0.8188 0.9713 0.4114 -0.5341 -0.9930

See also
ellipam, ellipke

ellipke

Complete elliptic integral.

Syntax
(K, E) = ellipke(m)
(K, E) = ellipke(m, tol)

Description
(K,E)=ellipke(m) gives the complete elliptic integrals of the first
kind K=F(m) and second kind E=E(m), defined as

F(m) =
∫ π/2

0

dt
Æ

1 −m sin2 t

E(m) =
∫ π/2

0

q

1 −m sin2 t dt

Parameter m must be in [0,1].
ellipke(m,tol) uses tolerance tol; the default tolerance is eps.

Example
(K, E) = ellipke(0.3)
K =
1.7139

E =
1.4454

302 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
ellipj

eps

Difference between 1 and the smallest number x such that x > 1.

Syntax
e = eps
e = eps(x)
e = eps(type)

Description
Because of the floating-point encoding of "real" numbers, the absolute
precision depends on the magnitude of the numbers. The relative
precision is characterized by the number given by eps, which is the
smallest double positive number such that 1+eps can be distinguished
from 1.

eps(x) gives the smallest number e such that x+e has the same
sign as x and can be distinguished from x. It takes into account
whether x is a double or a single number. If x is an array, the re-
sult has the same size; each element corresponds to an element of
the input.

eps(’single’) gives the smallest single positive number e such
that 1single+e can be distinguished from 1single. eps(’double’)
gives the same value as eps without input argument.

Examples
eps
2.2204e-16

1 + eps - 1
2.2204e-16

eps / 2
1.1102e-16

1 + eps / 2 - 1
0

See also
inf, realmin, pi, i, j

erf

Error function.

LME Reference — mathematical functions 303

Syntax
y = erf(x)

Description
erf(x) gives the error function of x. Argument and result are real
(imaginary part is discarded). The error function is defined as

erf() =
2
p
π

∫ 

0
e−t

2
dt

Example
erf(1)
0.8427

See also
erfc, erfinv

erfc

Complementary error function.

Syntax
y = erfc(x)

Description
erfc(x) gives the complementary error function of x. Argument and
result are real (imaginary part is discarded). The complementary error
function is defined as

erfc() = 1 − erf() =
2
p
π

∫ ∞


e−t

2
dt

Example
erfc(1)
0.1573

See also
erf, erfcx, erfcinv

erfcinv

Inverse complementary error function.

304 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
x = erfcinv(y)

Description
erfcinv(y) gives the value x such that y=erfc(x). Argument and
result are real (imaginary part is discarded). y must be in the range
[0,2]; values outside this range give nan.

Example
y = erfc(0.8)
y =
0.2579

erfcinv(y)
0.8

See also
erfc, erfinv

erfcx

Scaled complementary error function.

Syntax
y = erfcx(x)

Description
erfcx(x) gives the scaled complementary error function of x, defined
as exp(x̂ 2)*erfc(x). Argument and result are real (imaginary part is
discarded).

Example
erfcx(1)
0.4276

See also
erfc

erfinv

Inverse error function.

LME Reference — mathematical functions 305

Syntax
x = erfinv(y)

Description
erfinv(y) gives the value x such that y=erf(x). Argument and result
are real (imaginary part is discarded). y must be in the range [-1,1];
values outside this range give nan.

Example
y = erf(0.8)
y =
0.7421

erfinv(y)
0.8

See also
erf, erfcinv

exp

Exponential.

Syntax
y = exp(x)

Description
exp(x) is the exponential of x, i.e. 2.7182818284590446...̂ x.

Example
exp([0,1,0.5j*pi])
1 2.7183 1j

See also
log, expm1, expm, operator .̂

expm1

Exponential minus one.

Syntax
y = expm1(x)

306 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
expm1(x) is exp(x)-1 with improved precision for small x.

Example
expm1(1e-15)
1e-15

exp(1e-15)-1
1.1102e-15

See also
exp, log1p

factor

Prime factors.

Syntax
v = factor(n)

Description
factor(n) gives a row vector which contains the prime factors of n in
ascending order. Multiple prime factors are repeated.

Example
factor(350)
2 5 5 7

See also
isprime

factorial

Factorial.

Syntax
y = factorial(n)

Description
factorial(n) gives the factorial n! of nonnegative integer n. If the
input argument is negative or noninteger, the result is NaN. The imag-
inary part is ignored.

LME Reference — mathematical functions 307

Examples
factorial(5)
120

factorial([-1,0,1,2,3,3.14])
nan 1 1 2 6 nan

See also
gamma, nchoosek

fix

Rounding towards 0.

Syntax
y = fix(x)

Description
fix(x) truncates the fractional part of x. If the argument is a complex
number, the real and imaginary parts are handled separately.

Examples
fix(2.3)
2

fix(-2.6)
-2

See also
floor, ceil, round

flintmax

Largest of the set of consecutive integers stored as floating point.

Syntax
x = flintmax
x = flintmax(type)

Description
flintmax gives the largest positive integer number in double precision
such that all smaller integers can be represented in double precision.

flintmax(type) gives the largest positive integer number in
double precision if type is ’double’, or in single precision if type is
’single’. flintmax is 2̂ 53 and flintmax(’single’) is 2̂ 24.

308 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
flintmax
9007199254740992

flintmax - 1
9007199254740991

flintmax + 1
9007199254740992

flintmax + 2
9007199254740994

See also
realmax, intmax

floor

Rounding towards -infinity.

Syntax
y = floor(x)

Description
floor(x) gives the largest integer smaller than or equal to x. If the
argument is a complex number, the real and imaginary parts are han-
dled separately.

Examples
floor(2.3)
2

floor(-2.3)
-3

See also
ceil, fix, round, roundn

gamma

Gamma function.

Syntax
y = gamma(x)

LME Reference — mathematical functions 309

Description
gamma(x) gives the gamma function of x. Argument and result are
real (imaginary part is discarded). The gamma function is defined as

() =
∫ ∞

0
t−1e−t dt

For positive integer values, (n) = (n − 1)!.

Examples
gamma(5)
24

gamma(-3)
inf

gamma(-3.5)
0.2701

See also
beta, gammaln, gammainc, factorial

gammainc

Incomplete gamma function.

Syntax
y = gammainc(x,a)

Description
gammainc(x,a) gives the incomplete gamma function of x and a. Ar-
guments and result are real (imaginary part is discarded). x must be
nonnegative. The incomplete gamma function is defined as

gmminc(, ) =
1

()

∫ 

0
t−1e−t dt

Example
gammainc(2,1.5)

0.7385

See also
gamma, gammaln, betainc

310 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

gammaln

Logarithm of gamma function.

Syntax
y = gammaln(x)

Description
gammaln(x) gives the logarithm of the gamma function of x. Argument
and result are real (imaginary part is discarded). gammaln does not rely
on the computation of the gamma function to avoid overflows for large
numbers.

Examples
gammaln(1000)
5905.2204

gamma(1000)
inf

See also
gamma, gammainc, betaln

gcd

Greatest common divisor.

Syntax
q = gcd(a, b)

Description
gcd(a,b) gives the greatest common divisor of integer numbers a and
b.

Example
gcd(72, 56)
8

See also
lcm

LME Reference — mathematical functions 311

goldenratio

Golden ratio constant.

Syntax
x = goldenratio

Description
goldenratio is the golden ration (

p
5+ 1)/2, up to the precision of its

floating-point representation.

Example
goldenratio
1.6180

See also
pi, eps

hypot

Hypotenuse.

Syntax
c = hypot(a, b)

Description
hypot(a,b) gives the square root of the square of a and b, or of their
absolute value if they are complex. The result is always real. hypot
avoids overflow when the result itself does not overflow.

Examples
hypot(3, 4)
5

hypot([1,2,3+4j,inf], 5)
5.099 5.3852 5.831 inf

See also
sqrt, abs, norm

i j

Imaginary unit.

312 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
i
j
1.23e4i
1.23e4j

Description

i or j are the imaginary unit, i.e. the pure imaginary number whose
square is -1. i and j are equivalent.

Used as a suffix appended without space to a number, i or j mark
an imaginary number. They must follow the fractional part and the
exponent, if any; for single-precision numbers, they must precede the
single suffix.

To obtain a complex number i, you can write either i or 1i (or j or
1j). The second way is safer, because variables i and j are often used
as indices and would hide the meaning of the built-in functions. The
expression 1i is always interpreted as an imaginary constant number.

Imaginary numbers are displayed with i or j depending on the op-
tion set with the format command.

Examples
i
1j

format i
2i
2i

2single + 5jsingle
2+5i (single)

See also

imag, complex

icdf

Inverse cumulative distribution function.

Syntax
x = icdf(distribution,p)
x = icdf(distribution,p,a1)
x = icdf(distribution,p,a1,a2)

LME Reference — mathematical functions 313

Description
icdf(distribution,p) calculates the value of x such that
cdf(distribution,x) is p. The distribution is specified with the first
argument, a string; case is ignored (’t’ and ’T’ are equivalent).
Additional arguments must be provided for some distributions. The
distributions are given in the table below. Default values for the
parameters, when mentioned, mean that the parameter may be
omitted.
Distribution Name Parameters
beta beta a and b
χ2 chi2 deg. of freedom ν
γ gamma shape α and scale λ
F f deg. of freedom ν1 and ν2
lognormal logn mean (0) and st. dev. (1)
normal norm mean (0) and st. dev. (1)
Student’s T t deg. of freedom ν
uniform unif limits of the range (0 and 1)

Example
x = icdf(’chi2’, 0.6, 3)
x =
2.9462

cdf(’chi2’, x, 3)
0.6000

See also
cdf, pdf, random

imag

Imaginary part of a complex number.

Syntax
im = imag(z)

Description
imag(z) is the imaginary part of the complex number z, or 0 if z is
real.

Examples
imag(1+2j)
2

imag(1)
0

314 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
real, complex, i, j

inf

Infinity.

Syntax
x = inf
x = Inf
x = inf(n)
x = inf(n1,n2,...)
x = inf([n1,n2,...])
x = inf(..., type)

Description
inf is the number which represents infinity. Most mathematical func-
tions accept infinity as input argument and yield an infinite result if
appropriate. Infinity and minus infinity are two different quantities.

With integer non-negative arguments, inf creates arrays whose
elements are infinity. Arguments are interpreted the same way as
zeros and ones.

The last argument of inf can be a string to specify the type of
the result: ’double’ for double-precision (default), or ’single’ for
single-precision.

Examples
1/inf
0

-inf
-inf

See also
isfinite, isinf, nan, zeros, ones

iscolumn

Test for a column vector.

Syntax
b = iscolumn(x)

LME Reference — mathematical functions 315

Description
iscolumn(x) is true if the input argument is a column vector (real
or complex 2-dimension array of any floating-point or integer type,
character or logical value with second dimension equal to 1, or empty
array), and false otherwise.

Examples
iscolumn([1, 2, 3])
false

iscolumn([1; 2])
true

iscolumn(7)
true

iscolumn([1, 2; 3, 4])
false

See also
isrow, ismatrix, isscalar, isnumeric, size, ndims, length

isfinite

Test for finiteness.

Syntax
b = isfinite(x)

Description
isfinite(x) is true if the input argument is a finite number (neither
infinite nor nan), and false otherwise. The result is performed on each
element of the input argument, and the result has the same size.

Example
isfinite([0,1,nan,inf])
T T F F

See also
isinf, isnan

isfloat

Test for a floating-point object.

316 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
b = isfloat(x)

Description
isfloat(x) is true if the input argument is a floating-point type (dou-
ble or single), and false otherwise.

Examples
isfloat(2)
true

isfloat(2int32)
false

See also
isnumeric, isinteger

isinf

Test for infinity.

Syntax
b = isinf(x)

Description
isinf(x) is true if the input argument is infinite (neither finite nor
nan), and false otherwise. The result is performed on each element of
the input argument, and the result has the same size.

Example
isinf([0,1,nan,inf])
F F F T

See also
isfinite, isnan, inf

isinteger

Test for an integer object.

Syntax
b = isinteger(x)

LME Reference — mathematical functions 317

Description
isinteger(x) is true if the input argument is an integer type (includ-
ing char and logical), and false otherwise.

Examples
isinteger(2int16)
true

isinteger(false)
true

isinteger(’abc’)
true

isinteger(3)
false

See also
isnumeric, isfloat

ismatrix

Test for a matrix.

Syntax
b = ismatrix(x)

Description
ismatrix(x) is true if the input argument is a matrix (real or complex
2-dimension array of any floating-point or integer type, character or
logical value with, or empty array), and false otherwise.

Examples
ismatrix([1, 2, 3])
true

ismatrix([1; 2])
true

ismatrix(7)
true

ismatrix([1, 2; 3, 4])
true

ismatrix(ones([2,2,1])
true

ismatrix(ones([1,2,2])
false

318 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
isrow, iscolumn, isscalar, isnumeric, isscalar, size, ndims,
length

isnan

Test for Not a Number.

Syntax
b = isnan(x)

Description
isnan(x) is true if the input argument is nan (not a number), and
false otherwise. The result is performed on each element of the input
argument, and the result has the same size.

Example
isnan([0,1,nan,inf])
F F T F

See also
isinf, nan

isnumeric

Test for a numeric object.

Syntax
b = isnumeric(x)

Description
isnumeric(x) is true if the input argument is numeric (real or complex
scalar, vector, or array), and false otherwise.

Examples
isnumeric(pi)
true

isnumeric(’abc’)
false

See also
ischar, isfloat, isinteger, isscalar

LME Reference — mathematical functions 319

isprime

Prime number test.

Syntax
b = isprime(n)

Description
isprime(n) returns true if n is a prime number, or false otherwise.
If n is a matrix, the test is applied to each element and the result is a
matrix the same size.

Examples
isprime(7)
true

isprime([0, 2, 10])
F T F

See also
factor

isrow

Test for a row vector.

Syntax
b = isrow(x)

Description
isrow(x) is true if the input argument is a row vector (real or complex
2-dimension array of any floating-point or integer type, character or
logical value with first dimension equal to 1, or empty array), and
false otherwise.

Examples
isrow([1, 2, 3])
true

isrow([1; 2])
false

isrow(7)
true

isrow([1, 2; 3, 4])
false

320 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also

iscolumn, ismatrix, isscalar, isnumeric, size, ndims, length

isscalar

Test for a scalar number.

Syntax
b = isscalar(x)

Description

isscalar(x) is true if the input argument is scalar (real or complex
number of any floating-point or integer type, character or logical
value), and false otherwise.

Examples
isscalar(2)
true

isscalar([1, 2, 5])
false

See also

isnumeric, isvector, ismatrix, size

isvector

Test for a vector.

Syntax
b = isvector(x)

Description

isvector(x) is true if the input argument is a row or column vec-
tor (real or complex 2-dimension array of any floating-point or inte-
ger type, character or logical value with one dimension equal to 1, or
empty array), and false otherwise.

LME Reference — mathematical functions 321

Examples
isvector([1, 2, 3])
true

isvector([1; 2])
true

isvector(7)
true

isvector([1, 2; 3, 4])
false

See also
isnumeric, isscalar, iscolumn, isrow, size, ndims, length

lcm

Least common multiple.

Syntax
q = lcm(a, b)

Description
lcm(a,b) gives the least common multiple of integer numbers a and
b.

Example
lcm(72, 56)
504

See also
gcd

log

Natural (base e) logarithm.

Syntax
y = log(x)

Description
log(x) gives the natural logarithm of x. It is the inverse of exp. The
result is complex if x is not real positive.

322 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
log([-1,0,1,10,1+2j])
0+3.1416j inf 0 2.3026 0.8047+1.1071j

See also
log10, log2, log1p, reallog, exp

log10

Decimal logarithm.

Syntax
y = log10(x)

Description
log10(x) gives the decimal logarithm of x, defined by log10(x) =
log(x)/log(10). The result is complex if x is not real positive.

Example
log10([-1,0,1,10,1+2j])
0+1.3644j inf 0 1 0.3495+0.4808j

See also
log, log2

log1p

Logarithm of x plus one.

Syntax
y = log1p(x)

Description
log1p(x) is log(1+x) with improved precision for small x.

Example
log1p(1e-15)
1e-15

log(1 + 1e-15)
1.1102e-15

LME Reference — mathematical functions 323

See also
log, expm1

log2

Base 2 logarithm.

Syntax
y = log2(x)

Description
log2(x) gives the base 2 logarithm of x, defined as
log2(x)=log(x)/log(2). The result is complex if x is not real
positive.

Example
log2([1, 2, 1024, 2000, -5])
0 1 10 10.9658 2.3219+4.5324j

See also
log, log10

mod

Modulo.

Syntax
m = mod(x, y)

Description
mod(x,y) gives the modulo of x divided by y, i.e. a number m between
0 and y such that x = q*y+m with integer q. Imaginary parts, if they
exist, are ignored.

Examples
mod(10,7)
3

mod(-10,7)
4

mod(10,-7)
-4

mod(-10,-7)
-3

324 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
rem

nan

Not a Number.

Syntax
x = nan
x = NaN
x = nan(n)
x = nan(n1,n2,...)
x = nan([n1,n2,...])
x = nan(..., type)

Description
NaN (Not a Number) is the result of the primitive floating-point func-
tions or operators called with invalid arguments. For example, 0/0,
inf-inf and 0*inf all result in NaN. When used in an expression, NaN
propagates to the result. All comparisons involving NaN result in false,
except for comparing NaN with any number for inequality, which re-
sults in true.

Contrary to built-in functions usually found in the underlying oper-
ating system, many functions which would result in NaNs give complex
numbers when called with arguments in a certain range.

With integer non-negative arguments, nan creates arrays whose
elements are NaN. Arguments are interpreted the same way as zeros
and ones.

The last argument of nan can be a string to specify the type of
the result: ’double’ for double-precision (default), or ’single’ for
single-precision.

Examples
nan
nan

0*nan
nan

nan==nan
false

nañ =nan
true

log(-1)
0+3.1416j

LME Reference — mathematical functions 325

See also
inf, isnan, zeros, ones

nchoosek

Binomial coefficient.

Syntax
b = nchoosek(n, k)

Description
nchoosek(n,k) gives the number of combinations of n objects taken
k at a time. Both n and k must be nonnegative integers with k<n.

Examples
nchoosek(10,4)
210

nchoosek(10,6)
210

See also
factorial, gamma

nthroot

Real nth root.

Syntax
y = nthroot(x,n)

Description
nthroot(x,n) gives the real nth root of real number x. If x is positive,
it is x.̂ (1./n); if x is negative, it is -abs(x).̂ (1./n) if n is an odd
integer, or NaN otherwise.

Example
nthroot([-2,2], 3)
-1.2599 1.2599

[-2,2] .̂ (1/3)
0.6300+1.0911i 1.2599

326 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
operator .̂ , realsqrt, sqrt

pdf

Probability density function.

Syntax
y = pdf(distribution,x)
y = pdf(distribution,x,a1)
y = pdf(distribution,x,a1,a2)

Description
pdf(distribution,x) gives the probability of a density function. The
distribution is specified with the first argument, a string; case is ig-
nored (’t’ and ’T’ are equivalent). Additional arguments must be pro-
vided for some distributions. See cdf for the list of distributions.

See also
cdf, random

pi

Constant π.

Syntax
x = pi

Description
pi is the number π, up to the precision of its floating-point represen-
tation.

Example
exp(1j * pi)
-1

See also
goldenratio, i, j, eps

pol2cart

Polar to Cartesian coordinates transform.

LME Reference — mathematical functions 327

Syntax
(x, y) = pol2cart(phi, r)
(x, y, z) = pol2cart(phi, r, z)

Description
(x,y)=pol2cart(phi,r) transforms polar coordinates phi and r to
Cartesian coordinates x and y such that  = r cos(φ) and  = r sin(φ).

(x,y,z)=pol2cart(phi,r,z) transforms cylindrical coordinates to
Cartesian coordinates, leaving z unchanged.

Example
(x, y) = pol2cart(1, 2)
x =
1.0806

y =
1.6829

See also
cart2pol, cart2sph, sph2cart

random

Random generator for distribution function.

Syntax
x = random(distribution)
x = random(distribution, a1)
x = random(distribution, a1, a2)
x = random(..., size)

Description
random(distribution,a1,a2) calculates a pseudo-random number
whose distribution function is specified by name distribution and
parameters a1 and a2 (some distributions have a single parameter).
The distributions are given in the table below. Unlike in functions pdf,
cdf and icdf, parameters do not have default values and must be
specified.

Additional input arguments specify the size of the result, either as
a vector (or a single scalar for a square matrix) or as scalar values.
The result is an array of the specified size where each value is an
independent pseudo-random variable. The default size is 1 (scalar).

If the parameters are arrays, the result is an array of the same size
and each element is an independent pseudo-random variable whose

328 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

distribution has its parameters at the corresponding position. The size,
if specified, must be the same.

Distribution Name Parameters
beta beta a and b
Cauchy cauchy a and b
χ chi deg. of freedom ν
χ2 chi2 deg. of freedom ν
γ gamma shape α and λ
exponential exp mean
F f deg. of freedom ν1 and ν2
half-normal half-normal ϑ
Laplace laplace mean and scale
lognormal logn mean and st. dev.
Nakagami nakagami μ and ω
normal norm mean and st. dev.
Rayleigh rayl b
Student’s T t deg. of freedom ν
uniform unif limits of the range
Weibull weib shape a and scale b

Example
Array of 5 pseudo-random numbers whose distribution is χ2 with 3
degrees of freedom:

random(’chi2’, 3, [1, 5])
1.6442 0.4164 2.0272 2.7962 4.5896

See also
pdf, cdf, icdf, rand, randn, rng

rat

Rational approximation.

Syntax
(num, den) = rat(x)
(num, den) = rat(x, tol)
(num, den) = rat(x, tol=tol)

Description
rat(x,tol) returns the numerator and the denominator of a rational
approximation of real number x with the smallest integer numerator

LME Reference — mathematical functions 329

and denominator which fulfil absolute tolerance tol. If the input ar-
gument x is an array, output arguments are arrays of the same size.
Negative numbers give a negative numerator. The tolerance can be
passed as a named argument.

With one input argument, rat(x) uses tolerance
tol=1e-6*norm(x,1). With one output argument, rat(x) gives the
rational approximation itself as a floating-point number.

With command format rat, all numeric results as displayed as
rational aproximations with the default tolerance, including complex
numbers.

Example
(num,den) = rat(pi)
num =
355

den =
113

num/den
3.141592920353982

See also
format

real

Real part of a complex number.

Syntax
re = real(z)

Description
real(z) is the real part of the complex number z, or z if z is real.

Examples
real(1+2j)
1

real(1)
1

See also
imag, complex

330 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

reallog

Real natural (base e) logarithm.

Syntax
y = reallog(x)

Description
reallog(x) gives the real natural logarithm of x. It is the inverse of
exp for real numbers. The imaginary part of x is ignored. The result is
NaN if x is negative.

Example
reallog([-1,0,1,10,1+2j])
nan inf 0 2.3026 0

See also
log, realpow, realsqrt, exp

realmax realmin

Largest and smallest real numbers.

Syntax
x = realmax
x = realmax(n)
x = realmax(n1,n2,...)
x = realmax([n1,n2,...])
x = realmax(..., type)
x = realmin
x = realmin(...)

Description
realmax gives the largest positive real number in double precision.
realmin gives the smallest positive real number in double precision
which can be represented in normalized form (i.e. with full mantissa
precision).

With integer non-negative arguments, realmax and realmin create
arrays whose elements are all set to the respective value. Arguments
are interpreted the same way as zeros and ones.

The last argument of realmax and realmin can be a string to spec-
ify the type of the result: ’double’ for double-precision (default), or
’single’ for single-precision.

LME Reference — mathematical functions 331

Examples
realmin
2.2251e-308

realmin(’single’)
1.1755e-38

realmax
1.7977e308

realmax(’single’)
3.4028e38single

realmax + eps(realmax)
inf

See also
inf, ones, zeros, eps, flintmax

realpow

Real power.

Syntax
z = realpow(x, y)

Description
realpow(x,y) gives the real value of x to the power y. The imaginary
parts of x and y are ignored. The result is NaN if it is not defined for the
input arguments. If the arguments are arrays, their size must match
or one of them must be a scalar number; the power is performed
element-wise.

See also
operator .̂ , reallog, realsqrt

realsqrt

Real square root.

Syntax
y = realsqrt(x)

Description
realsqrt(x) gives the real square root of x. The imaginary part of x
is ignored. The result is NaN if x is negative.

332 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
realsqrt([-1,0,1,10,1+2j])
nan 0 1 3.1623 1

See also
sqrt, reallog, realpow, nthroot

rem

Remainder of a real division.

Syntax
r = rem(x, y)

Description
rem(x,y) gives the remainder of x divided by y, i.e. a number r be-
tween 0 and sign(x)*abs(y) such that x = q*y+r with integer q.
Imaginary parts, if they exist, are ignored.

Examples
rem(10,7)
3

rem(-10,7)
-3

rem(10,-7)
3

rem(-10,-7)
-3

See also
mod

round

Rounding to the nearest integer.

Syntax
y = round(x)

Description
round(x) gives the integer nearest to x. If the argument is a complex
number, the real and imaginary parts are handled separately.

LME Reference — mathematical functions 333

Examples
round(2.3)
2

round(2.6)
3

round(-2.3)
-2

See also
floor, ceil, fix, roundn

roundn

Rounding to a specified precision.

Syntax
y = roundn(x, n)

Description
roundn(x,n) rounds x to the nearest multiple of 10̂ n. If argument x
is a complex number, the real and imaginary parts are handled sepa-
rately. roundn(x,0) gives the same result as round(x).

Argument n must be a real integer. If x and/or n are arrays, round-
ing is performed separately on each element.

Examples
roundn(pi, -2)
3.1400

roundn(1000 * pi, 1)
3140

roundn(pi, [-3, -1])
3.1420 3.1000

See also
round, floor, ceil, fix

sign

Sign of a real number or direction of a complex number.

Syntax
s = sign(x)
z2 = sign(z1)

334 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
With a real argument, sign(x) is 1 if x>0, 0 if x==0, or -1 if x<0. With a
complex argument, sign(z1) is a complex value with the same phase
as z1 and whose magnitude is 1.

Examples
sign(-2)
-1

sign(1+1j)
0.7071+0.7071j

sign([0, 5])
0 1

See also
abs, angle

sec

Secant.

Syntax
y = sec(x)

Description
sec(x) gives the secant of x, which is complex if x is.

See also
asec, sech, cos

sech

Hyperbolic secant.

Syntax
y = sech(x)

Description
acot(x) gives the hyperbolic secant of x, which is complex if x is.

See also
asech, sec, cosh

LME Reference — mathematical functions 335

sin

Sine.

Syntax
y = sin(x)

Description
sin(x) gives the sine of x, which is complex if x is complex.

Example
sin(2)
0.9093

See also
cos, asin, sinh

sinc

Sinc.

Syntax
y = sinc(x)

Description
sinc(x) gives the sinc of x, i.e. sin(pi*x)/(pi*x) if x̃ =0 or 1 if x==0.
The result is complex if x is complex.

Example
sinc(1.5)
-0.2122

See also
sin, sinh

single

Conversion to single-precision numbers.

Syntax
B = single(A)

336 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
single(A) converts number or array A to single precision. A can be
any kind of numeric value (real, complex, or integer), or a character
or logical array.

Single literal numbers can be entered as a floating-point number
with the single suffix.

Examples
single(pi)
3.1416single

single(’AB’)
1x2 single array
65 66

3.7e4single
37000single

See also
double, uint8 and related functions, operator +, setstr, char,
logical

sinh

Hyperbolic sine.

Syntax
y = sinh(x)

Description
sinh(x) gives the hyperbolic sine of x, which is complex if x is com-
plex.

Example
sinh(2)
3.6269

See also
cosh, asinh, sin

sph2cart

Spherical to Cartesian coordinates transform.

LME Reference — mathematical functions 337

Syntax
(x, y, z) = sph2cart(phi, theta, r)

Description
(x,y,z)=sph2cart(phi,theta,r) transforms polar coordinates
phi, theta, and r to Cartesian coordinates x, y, and z such that
 = r cos(φ) cos(ϑ), y = r sin(φ) cos(ϑ), and z = r sin(ϑ).

Example
(x, y, z) = sph2cart(1, 2, 3)

x =
-0.6745

y =
-1.0505

z =
2.7279

See also
cart2pol, cart2sph, pol2cart

sqrt

Square root.

Syntax
r = sqrt(z)

Description
sqrt(z) gives the square root of z, which is complex if z is not real
positive.

Examples
sqrt(4)
2

sqrt([1 4 -9 3+4j])
1 2 3j 2+1j

See also
realsqrt, sqrtm, chol

swapbytes

Conversion between big-endian and little-endian representation.

338 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
Y = swapbytes(X)

Description
swapbytes(X) swaps the bytes representing number X. If X is an array,
each number is swapped separately. The imaginary part, if any, is
discarded. X can be of any numeric type. swapbytes is its own inverse
for real numbers.

Example
swapbytes(1uint32)
16777216uint32

See also
typecast, cast

tan

Tangent.

Syntax
y = tan(x)

Description
tan(x) gives the tangent of x, which is complex if x is complex.

Example
tan(2)
-2.185

See also
atan, tanh

tanh

Hyperbolic tangent.

Syntax
y = tanh(x)

LME Reference — linear algebra 339

Description
tanh(x) gives the hyperbolic tangent of x, which is complex if x is
complex.

Example
tanh(2)
0.964

See also
atanh, tan

typecast

Type conversion with same binary representation.

Syntax
Y = typecast(X, type)

Description
typecast(X,type) changes the numeric array X to the type given by
string type, which can be ’double’, ’single’, ’int8’ or any other
signed or unsigned integer type, ’char’, or ’logical’. The binary
representation in memory is preserved. The imaginary part, if any, is
discarded. Depending on the conversion, the number of elements is
changed, so that the array size in bytes in preserved. The result is a
row vector if X is a scalar or a row vector, or a column vector otherwise.
The result depends on the computer architecture.

Example
typecast(1uint32, ’uint8’)

1x4 uint8 array
0 0 0 1

typecast(pi, ’uint8’)
1x8 uint8 array
64 9 33 251 84 68 45 24

See also
swapbytes, bwrite, sread, cast

10.21 Linear Algebra

addpol

Addition of two polynomials.

340 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
p = addpol(p1,p2)

Description
addpol(p1,p2) adds two polynomials p1 and p2. Each polynomial is
given as a vector of coefficients, with the highest power first; e.g.,
2 + 2 − 3 is represented by [1,2,-3]. Row vectors and column
vectors are accepted, as well as matrices made of row vectors or col-
umn vectors, provided one matrix is not larger in one dimension and
smaller in the other one. addpol is equivalent to the plain addition
when both arguments have the same size.

Examples
addpol([1,2,3], [2,5])
1 4 8

addpol([1,2,3], -[2,5]) % subtraction
1 0 -2

addpol([1,2,3;4,5,6], [1;1])
1 2 4
4 5 7

See also
conv, deconv, operator +

balance

Diagonal similarity transform for balancing a matrix.

Syntax
B = balance(A)
(T, B) = balance(A)

Description
balance(A) applies a diagonal similarity transform to the square ma-
trix A to make the rows and columns as close in norm as possible.
Balancing may reduce the 1-norm of the matrix, and improves the
accuracy of the computed eigenvalues and/or eigenvectors. To avoid
round-off errors, balance scales A with powers of 2.

balance returns the balanced matrix B which has the same eigen-
values and singular values as A, and optionally the diagonal scaling
matrix T such that T\A*T=B.

LME Reference — linear algebra 341

Example
A = [1,2e6;3e-6,4];
(T,B) = balance(A)
T =
16384 0

0 3.125e-2
B =

1 3.8147
1.5729 4

See also
eig

care

Continuous-time algebraic Riccati equation.

Syntax
(X, L, K) = care(A, B, Q)
(X, L, K) = care(A, B, Q, R)
(X, L, K) = care(A, B, Q, R, S)
(X, L) = care(A, S, Q, true)

Description
care(A,B,Q) calculates the stable solution X of the following
continuous-time algebraic Riccati equation:

A′X + XA − XBB′X + Q = 0

All matrices are real; Q and X are symmetric.
With four input arguments, care(A,B,Q,R) (with R real symmetric)

solves the following Riccati equation:

A′X + XA − XBR−1B′X + Q = 0

With five input arguments, care(A,B,Q,R,S) solves the following
equation:

A′X + XA − (S + XB)R−1(S′ + B′X) + Q = 0

With two or three output arguments, (X,L,K) = care(...) also re-
turns the gain matrix K defined as

K = R−1B′X

and the column vector of closed-loop eigenvalues

L = eig(A − BK)

care(A,S,Q,true) with up to two output arguments is equivalent to
care(A,B,Q) or care(A,B,Q,false) with S=B*B’.

342 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
A = [-4,2;1,2];
B = [0;1];
C = [2,-1];
Q = C’ * C;
R = 5;
(X, L, K) = care(A, B, Q, R)
X =

1.07 3.5169
3.5169 23.2415

L =
-4.3488
-2.2995

K =
0.7034 4.6483

A’ * X + X * A - X * B / R * B’ * X + Q
1.7319e-14 1.1369e-13
8.5265e-14 6.2528e-13

See also
dare

chol

Cholesky decomposition.

Syntax
M2 = chol(M1)

Description
If a square matrix M1 is symmetric (or hermitian) and positive definite,
it can be decomposed into the following product:

M1 = M′2M2
where M2 is an upper triangular matrix. The Cholesky decomposi-

tion can be seen as a kind of square root.
The part of M1 below the main diagonal is not used, because M1

is assumed to be symmetric or hermitian. An error occurs if M1 is not
positive definite.

Example
M = chol([5,3;3,8])
M =
2.2361 1.3416
0 2.4900

M’*M
5 3
3 8

LME Reference — linear algebra 343

See also
inv, sqrtm

cond

Condition number of a matrix.

Syntax
x = cond(M)

Description
cond(M) returns the condition number of matrix M, i.e. the ratio of its
largest singular value divided by the smallest one, or infinity for singu-
lar matrices. The larger the condition number, the more ill-conditioned
the inversion of the matrix.

Examples
cond([1, 0; 0, 1])
1
cond([1, 1; 1, 1+1e-3])
4002.0008

See also
svd, rank

conv

Convolution or polynomial multiplication.

Syntax
v = conv(v1,v2)
M = conv(M1,M2)
M = conv(M1,M2,dim)
M = conv(...,kind)

Description
conv(v1,v2) convolves the vectors v1 and v2, giving a vector whose
length is length(v1)+length(v2)-1, or an empty vector if v1 or v2 is
empty. The result is a row vector if both arguments are row vectors,
and a column vector if both arguments are column vectors. Otherwise,
arguments are considered as matrices.

344 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

conv(M1,M2) convolves the matrices M1 and M2 column by columns.
conv(M1,M2,dim) convolves along the dimension dim, 1 for columns
and 2 for rows. If one of the matrices has only one column, or one row,
it is repeated to match the size of the other argument.

Let n1 and n2 be the number of elements in M1 and M2, respectively,
along the convolution dimension. By default, the result has n1+n2-1
elements along the convolution dimension. An additional string ar-
gument kind can specify a different number of elements in the re-
sult: with kind=’same’, the result has n1 elements (M has the same
size as M1, i.e. M1 is filtered by the finite impulse response filter M2).
With kind=’valid’, the result has n1-n2+1 elements, i.e. result ele-
ments impacted by boundaries are discarded. kind=’full’ produce
the same result as if kind is missing.

Examples
conv([1,2],[1,2,3])
1 4 7 6

conv([1,2],[1,2,3;4,5,6],2)
1 4 7 6
4 13 16 12

conv([1,2,5,8,3],[1,2,1],’full’)
1 4 10 20 24 14 3

conv([1,2,5,8,3],[1,2,1],’same’)
4 10 20 24 14

conv([1,2,5,8,3],[1,2,1],’valid’)
10 20 24

See also
deconv, filter, addpol, conv2

conv2

Two-dimensions convolution of matrices.

Syntax
M = conv2(M1,M2)
M = conv2(M1,M2,kind)

Description
conv2(M1,M2) convolves the matrices M1 and M2 along both
directions. The optional third argument specifies how to crop the
result. Let (nr1,nc1)=size(M1) and (nr2,nc2)=size(M2). With
kind=’full’ (default value), the result M has nr1+nr2-1 lines and
nc1+nc2-1 columns. With kind=’same’, the result M has nr1 lines

LME Reference — linear algebra 345

and nc1 columns; this options is very useful if M1 represents
equidistant samples in a plane (e.g. pixels) to be filtered with the
finite-impulse response 2-d filter M2. With kind=’valid’, the result M
has nr1-nr2+1 lines and nc1-nc2+1 columns, or is the empty matrix
[]; if M1 represents data filtered by M2, the borders where the
convolution sum is not totally included in M1 are removed.

Examples
conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1])
1 3 6 5 3
5 12 21 16 9

12 27 45 33 18
11 24 39 28 15
7 15 24 17 9

conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1],’same’)
12 21 16
27 45 33
24 39 28
conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1],’valid’)
45

See also
conv

cov

Covariance.

Syntax
M = cov(data)
M = cov(data, false)
M = cov(data, true)

Description
cov(data) returns the best unbiased estimate m-by-m covariance ma-
trix of the n-by-m matrix data for a normal distribution. Each row of
data is an observation where n quantities were measured. The co-
variance matrix is symmetric if data is real, and hermitian if data is
complex (i.e. M==M’). The diagonal is the variance of each column of
data.

cov(data,false) is the same as cov(data).
cov(data,true) returns the m-by-m covariance matrix of the n-by-

m matrix data which contains the whole population.

346 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
A = [1,2;2,4;3,5];
cov(A)
1 1.5
1.5 2.3333

The diagonal elements are the variance of the columns of A:

var(A)
1 2.3333

The covariance matrix can be computed as follows:

n = size(A, 1);
A1 = A - repmat(mean(A, 1), n, 1);
(A1’ * A1) / (n - 1)
1 1.5
1.5 2.3333

See also
mean, var

cross

Cross product.

Syntax
v3 = cross(v1, v2)
v3 = cross(v1, v2, dim)

Description
cross(v1,v2) gives the cross products of vectors v1 and v2. v1 and
v2 must be row or columns vectors of three components, or arrays of
the same size containing several such vectors. When there is ambi-
guity, a third argument dim may be used to specify the dimension of
vectors: 1 for column vectors, 2 for row vectors, and so on.

Examples
cross([1; 2; 3], [0; 0; 1])
2

-1
0

cross([1, 2, 3; 7, 1, -3], [4, 0, 0; 0, 2, 0], 2)
0 12 -8
6 0 14

LME Reference — linear algebra 347

See also
dot, operator *, det

cummax

Cumulative maximum.

Syntax
M2 = cummax(M1)
M2 = cummax(M1,dim)
M2 = cummax(...,dir)

Description
cummax(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the maximum of all the elements M1(k,j) with
k<=i. cummax(M1,dim) operates along the dimension dim (column-
wise if dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cummax processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

Examples
cummax([1,2,3;5,1,4;2,8,7])
1 2 3
5 2 4
5 8 7

cummax([1,2,3;5,1,4;2,8,7], 2)
1 2 3
5 5 5
2 8 8

See also
max, cummin, cumsum, cumprod

cummin

Cumulative minimum.

Syntax
M2 = cummin(M1)
M2 = cummin(M1,dim)
M2 = cummin(...,dir)

348 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
cummin(M1) returns a matrix M2 of the same size as M1, whose el-
ements M2(i,j) are the minimum of all the elements M1(k,j) with
k<=i. cummin(M1,dim) operates along the dimension dim (column-
wise if dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cummin processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

See also
min, cummax, cumsum, cumprod

cumprod

Cumulative products.

Syntax
M2 = cumprod(M1)
M2 = cumprod(M1,dim)
M2 = cumprod(...,dir)

Description
cumprod(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the product of all the elements M1(k,j) with k<=i.
cumprod(M1,dim) operates along the dimension dim (column-wise if
dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cumprod processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

Examples
cumprod([1,2,3;4,5,6])
1 2 3
4 10 18

cumprod([1,2,3;4,5,6],2)
1 2 6
4 20 120

See also
prod, cumsum, cummax, cummin

LME Reference — linear algebra 349

cumsum

Cumulative sums.

Syntax
M2 = cumsum(M1)
M2 = cumsum(M1,dim)
M2 = cumsum(...,dir)

Description
cumsum(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the sum of all the elements M1(k,j) with k<=i.
cumsum(M1,dim) operates along the dimension dim (column-wise if
dim is 1, row-wise if dim is 2).

An optional string argument dir specifies the processing direction.
If it is ’reverse’ or begins with ’r’, cumsum processes elements in
reverse order, from the last one to the first one, along the processing
dimension. If it is ’forward’ or begins with ’f’, it processes elements
as if not specified, in the forward direction.

Examples
cumsum([1,2,3;4,5,6])
1 2 3
5 7 9

cumsum([1,2,3;4,5,6],2)
1 3 6
4 9 15

cumsum([1,2,3;4,5,6],2,’r’)
6 5 3
15 11 6

See also
sum, diff, cumprod, cummax, cummin

dare

Discrete-time algebraic Riccati equation.

Syntax
(X, L, K) = dare(A, B, Q)
(X, L, K) = dare(A, B, Q, R)

350 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
dare(A,B,Q) calculates the stable solution X of the following discrete-
time algebraic Riccati equation:

X = A′XA − A′XB(B′XB + )−1B′XA + Q

All matrices are real; Q and X are symmetric.
With four input arguments, dare(A,B,Q,R) (with R real symmetric)

solves the following Riccati equation:

X = A′XA − A′XB(B′XB + R)−1B′XA + Q

With two or three output arguments, (X,L,K) = dare(...) also re-
turns the gain matrix K defined as

K = (B′XB + R)−1B′XA

and the column vector of closed-loop eigenvalues

L = eig(A − BK)

Example
A = [-4,2;1,2];
B = [0;1];
C = [2,-1];
Q = C’ * C;
R = 5;
(X, L, K) = dare(A, B, Q, R)
X =
2327.9552 -1047.113

-1047.113 496.0624
L =

-0.2315
0.431

K =
9.3492 -2.1995

-X + A’*X*A - A’*X*B/(B’*X*B+R)*B’*X*A + Q
1.0332e-9 -4.6384e-10

-4.8931e-10 2.2101e-10

See also
care

deconv

Deconvolution or polynomial division.

LME Reference — linear algebra 351

Syntax
q = deconv(a,b)
(q,r) = deconv(a,b)

Description
(q,r)=deconv(a,b) divides the polynomial a by the polynomial b, re-
sulting in the quotient q and the remainder r. All polynomials are
given as vectors of coefficients, highest power first. The degree of
the remainder is strictly smaller than the degree of b. deconv is the
inverse of conv: a = addpol(conv(b,q),r).

Examples
[q,r] = deconv([1,2,3,4,5],[1,3,2])
q =
1 -1 4

r =
-6 -3

addpol(conv(q,[1,3,2]),r)
1 2 3 4 5

See also
conv, filter, addpol

det

Determinant of a square matrix.

Syntax
d = det(M)

Description
det(M) is the determinant of the square matrix M, which is 0 (up to
the rounding errors) if M is singular. The function rank is a numerically
more robust test for singularity.

Examples
det([1,2;3,4])
-2

det([1,2;1,2])
0

See also
poly, rank

352 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

diff

Differences.

Syntax
dm = diff(A)
dm = diff(A,n)
dm = diff(A,n,dim)
dm = diff(A,[],dim)

Description
diff(A) calculates the differences between each elements of the
columns of matrix A, or between each elements of A if it is a row
vector.

diff(A,n) calculates the n:th order differences, i.e. it repeats n
times the same operation. Up to a scalar factor, the result is an ap-
proximation of the n:th order derivative based on equidistant samples.

diff(A,n,dim) operates along dimension dim. If the second argu-
ment n is the empty matrix [], the default value of 1 is assumed.

Examples
diff([1,3,5,4,8])
2 2 -1 4

diff([1,3,5,4,8],2)
0 -3 5

diff([1,3,5;4,8,2;3,9,8],1,2)
2 2
4 -6
6 -1

See also
cumsum

dlyap

Discrete-time Lyapunov equation.

Syntax
X = dlyap(A, C)

Description
dlyap(A,C) calculates the solution X of the following discrete-time
Lyapunov equation:

AXA′ − X + C = 0

All matrices are real.

LME Reference — linear algebra 353

Example
A = [3,1,2;1,3,5;6,2,1];
C = [7,1,2;4,3,5;1,2,1];
X = dlyap(A, C)
X =
-1.0505 3.2222 -1.2117
3.2317 -11.213 4.8234

-1.4199 5.184 -2.7424

See also
lyap, dare

dot

Scalar product.

Syntax
v3 = dot(v1, v2)
v3 = dot(v1, v2, dim)

Description
dot(v1,v2) gives the scalar products of vectors v1 and v2. v1 and v2
must be row or columns vectors of same length, or arrays of the same
size; then the scalar product is performed along the first dimension not
equal to 1. A third argument dim may be used to specify the dimension
the scalar product is performed along.

With complex values, complex conjugate values of the first array
are multiplied with values of the second array.

Examples
dot([1; 2; 3], [0; 0; 1])
3

dot([1, 2, 3; 7, 1, -3], [4, 0, 0; 0, 2, 0], 2)
4
2

dot([1; 2i], [3i; 5])
0 - 7i

See also
cross, operator *, det

eig

Eigenvalues and eigenvectors of a matrix.

354 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
e = eig(M)
(V,D) = eig(M)

Description
eig(M) returns the vector of eigenvalues of the square matrix M.

(V,D) = eig(M) returns a diagonal matrix D of eigenvalues and a
matrix V whose columns are the corresponding eigenvectors. They are
such that M*V = V*D.

Examples
Eigenvalues as a vector:

eig([1,2;3,4])
-0.3723
5.3723

Eigenvectors, and eigenvalues as a diagonal matrix:

(V,D) = eig([1,2;2,1])
V =
0.7071 0.7071
-0.7071 0.7071

D =
-1 0
0 3

Checking that the result is correct:

[1,2;2,1] * V
-0.7071 2.1213
0.7071 2.1213

V * D
-0.7071 2.1213
0.7071 2.1213

See also
schur, svd, det, roots

expm

Exponential of a square matrix.

Syntax
M2 = expm(M1)

LME Reference — linear algebra 355

Description
expm(M) is the exponential of the square matrix M, which is usually
different from the element-wise exponential of M given by exp.

Examples
expm([1,1;1,1])
4.1945 3.1945
3.1945 4.1945

exp([1,1;1,1])
2.7183 2.7183
2.7183 2.7183

See also
logm, operator ,̂ exp

fft

Fast Fourier Transform.

Syntax
F = fft(f)
F = fft(f,n)
F = fft(f,n,dim)

Description
fft(f) returns the discrete Fourier transform (DFT) of the vector f, or
the DFT’s of each columns of the array f. With a second argument
n, the n first values are used; if n is larger than the length of the
data, zeros are added for padding. An optional argument dim gives
the dimension along which the DFT is performed; it is 1 for calculating
the DFT of the columns of f, 2 for its rows, and so on. fft(f,[],dim)
specifies the dimension without resizing the array.

fft is based on a mixed-radix Fast Fourier Transform if the data
length is non-prime. It can be very slow if the data length has large
prime factors or is a prime number.

The coefficients of the DFT are given from the zero frequency to
the largest frequency (one point less than the inverse of the sampling
period). If the input f is real, its DFT has symmetries, and the first half
contain all the relevant information.

Examples
fft(1:4)
10 -2+2j -2 -2-2j

fft(1:4, 3)
6 -1.5+0.866j -1.5-0.866j

356 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
ifft

fft2

2-d Fast Fourier Transform.

Syntax
F = fft2(f)
F = fft2(f, size)
F = fft2(f, nr, nc)
F = fft2(f, n)

Description
fft2(f) returns the 2-d Discrete Fourier Transform (DFT along dimen-
sions 1 and 2) of array f.

With two or three input arguments, fft2 resizes the two first dimen-
sions by cropping or by padding with zeros. fft2(f,nr,nc) resizes
first dimension to nr rows and second dimension to nc columns. In
fft2(f,size), the new size is given as a two-element vector [nr,nc].
fft2(F,n) is equivalent to fft2(F,n,n).

If the first argument is an array with more than two dimensions,
fft2 performs the 2-d DFT along dimensions 1 and 2 separately for
each plane along remaining dimensions; fftn performs an DFT along
each dimension.

See also
ifft2, fft, fftn

fftn

n-dimension Fast Fourier Transform.

Syntax
F = fftn(f)
F = fftn(f, size)

Description
fftn(f) returns the n-dimension Discrete Fourier Transform of array f
(DFT along each dimension of f).

With two input arguments, fftn(f,size) resizes f by cropping or
by padding f with zeros.

LME Reference — linear algebra 357

See also

ifftn, fft, fft2

filter

Digital filtering of data.

Syntax
y = filter(b,a,u)
y = filter(b,a,u,x0)
y = filter(b,a,u,x0,dim)
(y, xf) = filter(...)

Description

filter(b,a,u) filters vector u with the digital filter whose coefficients
are given by polynomials b and a. The filtered data can also be an
array, filtered along the first non-singleton dimension or along the
dimension specified with a fifth input argument. The fourth argu-
ment, if provided and different than the empty matrix [], is a ma-
trix whose columns contain the initial state of the filter and have
max(length(a),length(b))-1 element. Each column correspond to
a signal along the dimension of filtering. The result y, which has the
same size as the input, can be computed with the following code if u
is a vector:

b = b / a(1);
a = a / a(1);
if length(a) > length(b)
b = [b, zeros(1, length(a)-length(b))];

else
a = [a, zeros(1, length(b)-length(a))];

end
n = length(x);
for i = 1:length(u)
y(i) = b(1) * u(i) + x(1);
for j = 1:n-1
x(j) = b(j + 1) * u(i) + x(j + 1) - a(j + 1) * y(i);

end
x(n) = b(n + 1) * u(i) - a(n + 1) * y(i);

end

The optional second output argument is set to the final state of the
filter.

358 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
filter([1,2], [1,2,3], ones(1,10))
1 1 -2 4 1 -11 22 -8 -47 121

u = [5,6,5,6,5,6,5];
p = 0.8;
filter(1-p, [1,-p], u, p*u(1))

% low-pass with matching initial state
5 5.2 5.16 5.328 5.2624 5.4099 5.3279

See also
conv, deconv, conv2

funm

Matrix function.

Syntax
Y = funm(X, fun)
(Y, err) = funm(X, fun)

Description
funm(X,fun) returns the matrix function of square matrix X specified
by function fun. fun takes a scalar input argument and gives a scalar
output. It is either specified by its name or given as an anonymous or
inline function or a function reference.

With a second output argument err, funm also returns an estimate
of the relative error.

Examples
funm([1,2;3,4], @sin)
-0.4656 -0.1484
-0.2226 -0.6882

X = [1,2;3,4];
funm(X, @(x) (1+x)/(2-x))

-0.25 -0.75
-1.125 -1.375

(eye(2)+X)/(2*eye(2)-X)
-0.25 -0.75

-1.125 -1.375

See also
expm, logm, sqrtm, schur

LME Reference — linear algebra 359

householder

Householder transform.

Syntax
(nu, beta) = householder(x)

Description
The householder transform is an orthogonal matrix transform which
sets all the elements of a column to zero, except the first one. It is the
elementary step used by QR decomposition.

The matrix transform can be written as a product by an orthog-
onal square matrix P=I-beta*nu*nu’, where I is the identity ma-
trix, beta is a scalar, and nu is a column vector where nu(1) is 1.
householder(x), where x is a real or complex non-empty column vec-
tor, gives nu and beta such that P*x=[y;Z], where y is a scalar and Z
a zero column vector.

Example
x = [2; 5; 10];
(nu, beta) = householder(x)
nu =
1.0000

0.3743
0.7486
beta =
1.1761

P = eye(3) - beta * nu * nu’
P =
-0.1761 -0.4402 -0.8805
-0.4402 0.8352 -0.3296
-0.8805 -0.3296 0.3409

P * x
ans =
-11.3578
0.0000
0.0000

It is more efficient to avoid calculating P explicitly. Multiplication by P,
either as P*A (to set elements to zero) or B*P’ (to accumulate
transforms), can be performed by passing nu and beta to
householderapply:

householderapply(x, nu, beta)
ans =
-11.3578
0.0000
0.0000

360 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
householderapply, qr

householderapply

Apply Householder transform.

Syntax
B = householderapply(A, nu, beta)
B = householderapply(A, nu, beta, ’r’)

Description
householderapply(A,nu,beta) apply the Householder transform
defined by column vector nu (where nu(1) is 1) and real scalar
beta, as obtained by householder, to matrix A; i.e. it computes
A-nu*beta*nu’*A.

householderapply(A,nu,beta,’r’) apply the inverse
Householder transform to matrix A; i.e. it computes
A-A*nu*beta*nu’.

See also
householder

ifft

Inverse Fast Fourier Transform.

Syntax
f = ifft(F)
f = ifft(F, n)
f = ifft(F, n, dim)

Description
ifft returns the inverse Discrete Fourier Transform (inverse DFT). Up
to the sign and a scaling factor, the inverse DFT and the DFT are the
same operation: for a vector, ifft(d) = conj(fft(d))/length(d).
ifft has the same syntax as fft.

Examples
F = fft([1,2,3,4])
F =
10 -2+2j -2 -2-2j

ifft(F)
1 2 3 4

LME Reference — linear algebra 361

See also

fft, ifft2, ifftn

ifft2

Inverse 2-d Fast Fourier Transform.

Syntax
f = ifft2(F)
f = ifft2(F, size)
f = ifft2(F, nr, nc)
f = ifft2(F, n)

Description

ifft2 returns the inverse 2-d Discrete Fourier Transform (inverse DFT
along dimensions 1 and 2).

With two or three input arguments, ifft2 resizes the two first di-
mensions by cropping or by padding with zeros. ifft2(F,nr,nc) re-
sizes first dimension to nr rows and second dimension to nc columns.
In ifft2(F,size), the new size is given as a two-element vector
[nr,nc]. ifft2(F,n) is equivalent to ifft2(F,n,n).

If the first argument is an array with more than two dimensions,
ifft2 performs the inverse 2-d DFT along dimensions 1 and 2 sepa-
rately for each plane along remaining dimensions; ifftn performs an
inverse DFT along each dimension.

Up to the sign and a scaling factor, the inverse 2-d DFT and the 2-d
DFT are the same operation. ifft2 has the same syntax as fft2.

See also

fft2, ifft, ifftn

ifftn

Inverse n-dimension Fast Fourier Transform.

Syntax
f = ifftn(F)
f = ifftn(F, size)

362 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
ifftn(F) returns the inverse n-dimension Discrete Fourier Transform
of array F (inverse DFT along each dimension of F).

With two input arguments, ifftn(F,size) resizes F by cropping or
by padding F with zeros.

Up to the sign and a scaling factor, the inverse n-dimension DFT
and the n-dimension DFT are the same operation. ifftn has the same
syntax as fftn.

See also
fftn, ifft, ifft2

hess

Hessenberg reduction.

Syntax
(P,H) = hess(A)
H = hess(A)

Description
hess(A) reduces the square matrix A A to the upper Hessenberg form
H using an orthogonal similarity transformation P*H*P’=A. The result
H is zero below the first subdiagonal and has the same eigenvalues as
A.

Example
(P,H)=hess([1,2,3;4,5,6;7,8,9])
P =
1 0 0
0 -0.4961 -0.8682
0 -0.8682 0.4961

H =
1 -3.597 -0.2481
-8.0623 14.0462 2.8308
0 0.8308 -4.6154e-2

P*H*P’
ans =
1 2 3
4 5 6
7 8 9

See also
lu, qr, schur

LME Reference — linear algebra 363

inv

Inverse of a square matrix.

Syntax
M2 = inv(M1)

Description
inv(M1) returns the inverse M2 of the square matrix M1, i.e. a matrix of
the same size such that M2*M1 = M1*M2 = eye(size(M1)). M1 must
not be singular; otherwise, its elements are infinite.

To solve a set of linear of equations, the operator \ is more efficient.

Example
inv([1,2;3,4])
-2 1
1.5 -0.5

See also
operator /, operator \, pinv, lu, rank, eye

kron

Kronecker product.

Syntax
M = kron(A, B)

Description
kron(A,B) returns the Kronecker product of matrices A (size m1 by
n1) and B (size m2 by n2), i.e. an m1*m2-by-n1*n2 matrix made of
m1 by n1 submatrices which are the products of each element of A
with B.

Example
kron([1,2;3,4],ones(2))
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

See also
repmat

364 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

kurtosis

Kurtosis of a set of values.

Syntax
k = kurtosis(A)
k = kurtosis(A, dim)

Description
kurtosis(A) gives the kurtosis of the columns of array A or of the
row vector A. The dimension along which kurtosis proceeds may be
specified with a second argument.

The kurtosis measures how much values are far away from the
mean. It is 3 for a normal distribution, and positive for a distribution
which has more values far away from the mean.

Example
kurtosis(rand(1, 10000))
1.8055

See also
mean, var, skewness, moment

linprog

Linear programming.

Syntax
x = linprog(c, A, b)
x = linprog(c, A, b, xlb, xub)

Description
linprog(c,A,b) solves the following linear programming problem:

min c
s.t. A ≤ b

The optimum x is either finite, infinite if there is no bounded solution,
or not a number if there is no feasible solution.

Additional arguments may be used to constrain x between lower
and upper bounds. linprog(c,A,b,xlb,xub) solves the following lin-
ear programming problem:

LME Reference — linear algebra 365

min c
s.t. A ≤ b

 ≥ lb
 ≤ b

If xub is missing, there is no upper bound. xlb and xub may have less
elements than x, or contain -inf or +inf; corresponding elements
have no lower and/or upper bounds.

Examples
Maximize 3 + 2y subject to  + y ≤ 9, 3 + y ≤ 18,  ≤ 7, and y ≤ 6:

c = [-3,-2];
A = [1,1; 3,1; 1,0; 0,1];
b = [9; 18; 7; 6];
x = linprog(c, A, b)
x =
4.5
4.5

A more efficient way to solve the problem, with bounds on variables:

c = [-3,-2];
A = [1,1; 3,1];
b = [9; 18];
xlb = [];
xub = [7; 6];
x = linprog(c, A, b, xlb, xub)
x =
4.5
4.5

Check that the solution is feasible and bounded:

all(isfinite(x))
true

logm

Matrix logarithm.

Syntax
Y = logm(X)
(Y, err) = logm(X)

366 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
logm(X) returns the matrix logarithm of X, the inverse of the matrix
exponential. X must be square. The matrix logarithm does not always
exist.

With a second output argument err, logm also returns an estimate
of the relative error norm(expm(logm(X))-X)/norm(X).

Example
Y = logm([1,2;3,4])
Y =
-0.3504 + 2.3911j 0.9294 - 1.0938j
1.394 - 1.6406j 1.0436 + 0.7505j

expm(Y)
1 - 5.5511e-16j 2 -7.7716e-16j
3 - 8.3267e-16j 4

See also
expm, sqrtm, funm, schur, log

lu

LU decomposition.

Syntax
(L, U, P) = lu(A)
(L2, U) = lu(A)
Y = lu(A)

Description
With three output arguments, lu(A) computes the LU decomposition
of matrix A with partial pivoting, i.e. a lower triangular matrix L, an up-
per triangular matrix U, and a permutation matrix P such that P*A=L*U.
If A in an m-by-n mytrix, L is m-by-min(m,n), U is min(m,n)-by-n and P
is m-by-m. A can be rank-deficient.

With two output arguments, lu(A) permutes the lower triangular
matrix and gives L2=P’*L, such that A=L2*U.

With a single output argument, lu gives Y=L+U-eye(n).

Example
X = [1,2,3;4,5,6;7,8,8];
(L,U,P) = lu(X)
L =
1 0 0
0.143 1 0

LME Reference — linear algebra 367

0.571 0.5 1
U =
7 8 8
0 0.857 1.857
0 0 0.5
P =
0 0 1
1 0 0
0 1 0
P*X-L*U
ans =
0 0 0
0 0 0
0 0 0

See also
inv, qr, svd

lyap

Continuous-time Lyapunov equation.

Syntax
X = lyap(A, B, C)
X = lyap(A, C)

Description
lyap(A,B,C) calculates the solution X of the following continuous-time
Lyapunov equation:

AX + XB + C = 0

All matrices are real.
With two input arguments, lyap(A,C) solves the following Lya-

punov equation:

AX + XA′ + C = 0

Example
A = [3,1,2;1,3,5;6,2,1];
B = [2,7;8,3];
C = [2,1;4,5;8,9];
X = lyap(A, B, C)
X =
0.1635 -0.1244

-0.2628 0.1311
-0.7797 -0.7645

368 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
dlyap, care

max

Maximum value of a vector or of two arguments.

Syntax
x = max(v)
(v,ind) = max(v)
v = max(M,[],dim)
(v,ind) = max(M,[],dim)
M3 = max(M1,M2)

Description
max(v) returns the largest number of vector v. NaN’s are ignored. The
optional second output argument is the index of the maximum in v; if
several elements have the same maximum value, only the first one is
obtained. The argument type can be double, single, or integer of any
size.

max(M) operates on the columns of the matrix M and returns a row
vector. max(M,[],dim) operates along dimension dim (1 for columns,
2 for rows).

max(M1,M2) returns a matrix whose elements are the maximum
between the corresponding elements of the matrices M1 and M2. M1
and M2 must have the same size, or be a scalar which can be compared
against any matrix.

Examples
(mx,ix) = max([1,3,2,5,8,7])
mx =
8

ix =
5

max([1,3;5,nan], [], 2)
3
5

max([1,3;5,nan], 2)
2 3
5 2

See also
min

LME Reference — linear algebra 369

mean

Arithmetic mean of a vector.

Syntax
x = mean(v)
v = mean(M)
v = mean(M,dim)

Description

mean(v) returns the arithmetic mean of the elements of vector v.
mean(M) returns a row vector whose elements are the means of the
corresponding columns of matrix M. mean(M,dim) returns the mean of
matrix M along dimension dim; the result is a row vector if dim is 1, or
a column vector if dim is 2.

Examples
mean(1:5)
7.5

mean((1:5)’)
7.5

mean([1,2,3;5,6,7])
3 4 5

mean([1,2,3;5,6,7],1)
3 4 5

mean([1,2,3;5,6,7],2)
2
6

See also

cov, std, var, median, sum, prod

median

Median.

Syntax
x = median(v)
v = median(M)
v = median(M, dim)

370 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

median(v) gives the median of vector v, i.e. the value x such that half
of the elements of v are smaller and half of the elements are larger.
The result is NaN if any value is NaN.

median(M) gives a row vector which contains the median of the
columns of M. With a second argument, median(M,dim) operates along
dimension dim.

Example
median([1, 2, 5, 6, inf])
5

See also

mean, sort

min

Minimum value of a vector or of two arguments.

Syntax
x = min(v)
(v,ind) = min(v)
v = min(M,[],dim)
(v,ind) = min(M,[],dim)
M3 = min(M1,M2)

Description

min(v) returns the largest number of vector v. NaN’s are ignored. The
optional second smallest argument is the index of the minimum in v;
if several elements have the same minimum value, only the first one
is obtained. The argument type can be double, single, or integer of
any size.

min(M) operates on the columns of the matrix M and returns a row
vector. min(M,[],dim) operates along dimension dim (1 for columns,
2 for rows).

min(M1,M2) returns a matrix whose elements are the minimum be-
tween the corresponding elements of the matrices M1 and M2. M1 and
M2 must have the same size, or be a scalar which can be compared
against any matrix.

LME Reference — linear algebra 371

Examples
(mx,ix) = min([1,3,2,5,8,7])
mx =
1

ix =
1

min([1,3;5,nan], [], 2)
1
5

min([1,3;5,nan], 2)
1 2
2 2

See also
max

moment

Central moment of a set of values.

Syntax
m = moment(A, order)
m = moment(A, order, dim)

Description
moment(A,order) gives the central moment (moment about the
mean) of the specified order of the columns of array A or of the row
vector A. The dimension along which moment proceeds may be
specified with a third argument.

Example
moment(randn(1, 10000), 3)
3.011

See also
mean, var, skewness, kurtosis

norm

Norm of a vector or matrix.

372 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
x = norm(v)
x = norm(v,kind)
x = norm(M)
x = norm(M,kind)

Description
With one argument, norm calculates the 2-norm of a vector or the
induced 2-norm of a matrix. The optional second argument specifies
the kind of norm.
Kind Vector Matrix
none or 2 sqrt(sum(abs(v).̂ 2)) largest singular value

(induced 2-norm)
1 sum(abs(V)) largest column sum of abs
inf or ’inf’ max(abs(v)) largest row sum of abs
-inf min(abs(v)) invalid
p sum(abs(V).̂ p)̂ (1/p) invalid
’fro’ sqrt(sum(abs(v).̂ 2)) sqrt(sum(diag(M’*M)))

Examples
norm([3,4])
5

norm([2,5;9,3])
10.2194

norm([2,5;9,3],1)
11

See also
abs, hypot, svd

null

Null space.

Syntax
Z = null(A)
Z = null(A, tol=tol)

Description
null(A) returns a matrix Z whose columns are an orthonormal basis
for the null space of m-by-n matrix A. Z has n-rank(A) columns, which
are the last right singular values of A; that is, those corresponding to

LME Reference — linear algebra 373

the singular values below a small tolerance. This tolerance can be
specified with a named argument tol.

Without input argument, null gives the null value (the unique
value of the special null type, not related to linear algebra).

Example
null([1,2,3;1,2,4;1,2,5])
-0.8944
0.4472
8.0581e-17

See also
svd, orth, null (null value)

orth

Orthogonalization.

Syntax
Q = orth(A)
Q = orth(A, tol=tol)

Description
orth(A) returns a matrix Q whose columns are an orthonormal basis
for the range of those of matrix A. Q has rank(A) columns, which are
the first left singular vectors of A (that is, those corresponding to the
largest singular values).

Orthogonalization is based on the singular-value decomposition,
where only the singular values larger than some small threshold are
considered. This threshold can be specified with an optional named
argument.

Example
orth([1,2,3;1,2,4;1,2,5])
-0.4609 0.788
-0.5704 8.9369e-2
-0.6798 -0.6092

See also
svd, null

pinv

Pseudo-inverse of a matrix.

374 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
M2 = pinv(M1)
M2 = pinv(M1, tol)
M2 = pinv(M1, tol=tol)

Description
pinv(M1) returns the pseudo-inverse of matrix M. For a nonsingular
square matrix, the pseudo-inverse is the same as the inverse. For an
arbitrary matrix (possibly nonsquare), the pseudo-inverse M2 has the
following properties: size(M2) = size(M1’), M1*M2*M1 = M1,
M2*M1*M2 = M2, and the norm of M2 is minimum. The pseudo-inverse
is based on the singular-value decomposition, where only the singular
values larger than some small threshold are considered. This
threshold can be specified with an optional second argument tol or
as a named argument.

If M1 is a full-rank matrix with more rows than columns, pinv returns
the least-square solution pinv(M1)*y = (M1’*M1)\M1’*y of the over-
determined system M1*x = y.

Examples
pinv([1,2;3,4])

-2 1
1.5 -0.5

M2 = pinv([1;2])
M2 =
0.2 0.4

[1;2] * M2 * [1;2]
1
2

M2 * [1;2] * M2
0.2 0.4

See also
inv, svd

poly

Characteristic polynomial of a square matrix or polynomial coefficients
based on its roots.

Syntax
pol = poly(M)
pol = poly(r)

LME Reference — linear algebra 375

Description
With a matrix argument, poly(M) returns the characteristic polyno-
mial det(x*eye(size(M))-M) of the square matrix M. The roots of the
characteristic polynomial are the eigenvalues of M.

With a vector argument, poly(r) returns the polynomial whose
roots are the elements of the vector r. The first coefficient of the
polynomial is 1. If the complex roots form conjugate pairs, the result
is real.

Examples
poly([1,2;3,4]
1 -5 -2

roots(poly([1,2;3,4]))
5.3723

-0.3723
eig([1,2;3,4])
-0.3723
5.3723

poly(1:3)
1 -6 11 -6

See also
roots, det

polyder

Derivative of a polynomial or a polynomial product or ratio.

Syntax
A1 = polyder(A)
C1 = polyder(A, B)
(N1, D1) = polyder(N, D)

Description
polyder(A) returns the polynomial which is the derivative of the poly-
nomial A. Both polynomials are given as vectors of coefficients, highest
power first. The result is a row vector.

With a single output argument, polyder(A,B) returns the
derivative of the product of polynomials A and B. It is equivalent to
polyder(conv(A,B)).

With two output arguments, (N1,D1)=polyder(N,D) returns the
derivative of the polynomial ratio N/D as N1/D1. Input and output ar-
guments are polynomial coefficients.

376 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
Derivative of 3 + 22 + 5 + 2:

polyder([1, 2, 5, 2])
3 4 5

Derivative of (3 + 22 + 5 + 2)/(2 + 3):

(N, D) = polyder([1, 2, 5, 2], [2, 3])
N =
4 13 12 11

D =
4 12 9

See also
polyint, polyval, poly, addpol, conv

polyint

Integral of a polynomial.

Syntax
pol2 = polyint(pol1)
pol2 = polyint(pol1, c)

Description
polyint(pol1) returns the polynomial which is the integral of the
polynomial pol1, whose zero-order coefficient is 0. Both polynomi-
als are given as vectors of coefficients, highest power first. The result
is a row vector. A second input argument can be used to specify the
integration constant.

Example
Y = polyint([1, 2, 3, 4, 5])
Y =
0.2 0.5 1 2 5 0

y = polyder(Y)
y =
1 2 3 4 5

Y = polyint([1, 2, 3, 4, 5], 10)
Y =
0.2 0.5 1 2 5 10

See also
polyder, polyval, poly, addpol, conv

LME Reference — linear algebra 377

polyval

Numeric value of a polynomial evaluated at some point.

Syntax
y = polyval(pol, x)

Description
polyval(pol,x) evaluates the polynomial pol at x, which can be a
scalar or a matrix of arbitrary size. The polynomial is given as a vector
of coefficients, highest power first. The result has the same size as x.

Examples
polyval([1,3,8], 2)
18

polyval([1,2], 1:5)
3 4 5 6 7

See also
polyder, polyint, poly, addpol, conv

prod

Product of the elements of a vector.

Syntax
x = prod(v)
v = prod(M)
v = prod(M,dim)

Description
prod(v) returns the product of the elements of vector v. prod(M)
returns a row vector whose elements are the products of the corre-
sponding columns of matrix M. prod(M,dim) returns the product of
matrix M along dimension dim; the result is a row vector if dim is 1, or
a column vector if dim is 2.

Examples
prod(1:5)
120

prod((1:5)’)
120

prod([1,2,3;5,6,7])

378 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

5 12 21
prod([1,2,3;5,6,7],1)
5 12 21

prod([1,2,3;5,6,7],2)
6
210

See also
sum, mean, operator *

qr

QR decomposition.

Syntax
(Q, R, E) = qr(A)
(Q, R) = qr(A)
R = qr(A)
(Qe, Re, e) = qr(A, false)
(Qe, Re) = qr(A, false)
Re = qr(A, false)

Description
With three output arguments, qr(A) computes the QR decomposition
of matrix A with column pivoting, i.e. a square unitary matrix Q and
an upper triangular matrix R such that A*E=Q*R. With two output argu-
ments, qr(A) computes the QR decomposition without pivoting, such
that A=Q*R. With a single output argument, qr gives R.

With a second input argument with the value false, if A has m rows
and n columns with m>n, qr produces an m-by-n Q and an n-by-n R.
Bottom rows of zeros of R, and the corresponding columns of Q, are
discarded. With column pivoting, the third output argument e is a
permutation vector: A(:,e)=Q*R.

Examples
(Q,R) = qr([1,2;3,4;5,6])
Q =

-0.169 0.8971 0.4082
-0.5071 0.276 -0.8165
-0.8452 -0.345 0.4082

R =
-5.9161 -7.4374

0 0.8281
0 0

(Q,R) = qr([1,2;3,4;5,6],false)

LME Reference — linear algebra 379

Q =
0.169 0.8971
0.5071 0.276
0.8452 -0.345

R =
5.9161 7.4374
0 0.8281

See also
lu, schur, hess, svd

rank

Rank of a matrix.

Syntax
x = rank(M)
x = rank(M, tol)
x = rank(M, tol=tol)

Description
rank(M) returns the rank of matrix M, i.e. the number of lines or
columns linearly independent. To obtain it, the singular values are
computed and the number of values significantly larger than 0 is
counted. The value below which they are considered to be 0 can be
specified with the optional second argument or named argument.

Examples
rank([1,1;0,0])
1
rank([1,1;0,1j])
2

See also
svd, cond, pinv, det

roots

Roots of a polynomial.

Syntax
r = roots(pol)
r = roots(M)
r = roots(M,dim)

380 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
roots(pol) calculates the roots of the polynomial pol. The polyno-
mial is given by the vector of its coefficients, highest power first, while
the result is a column vector.

With a matrix as argument, roots(M) calculates the roots of the
polynomials corresponding to each column of M. An optional second
argument is used to specify in which dimension roots operates (1 for
columns, 2 for rows). The roots of the i:th polynomial are in the i:th
column of the result, whatever the value of dim is.

Examples
roots([1, 0, -1])
1

-1
roots([1, 0, -1]’)
1

-1
roots([1, 1; 0, 5; -1, 6])
1 -2

-1 -3
roots([1, 0, -1]’, 2)
[]

See also
poly, eig

schur

Schur factorization.

Syntax
(U,T) = schur(A)
T = schur(A)
(U,T) = schur(A, ’c’)
T = schur(A, ’c’)

Description
schur(A) computes the Schur factorization of square matrix A, i.e. a
unitary matrix U and a square matrix T (the Schur matrix) such that
A=U*T*U’. If A is complex, the Schur matrix is upper triangular, and its
diagonal contains the eigenvalues of A; if A is real, the Schur matrix is
real upper triangular, except that there may be 2-by-2 blocks on the
main diagonal which correspond to the complex eigenvalues of A. To
force a complex Schur factorization with an upper triangular matrix T,
schur is given a second input argument ’c’ or ’complex’.

LME Reference — linear algebra 381

Examples

Schur factorization:

A = [1,2;3,4];
(U,T) = schur(A)
U =
-0.8246 -0.5658
0.5658 -0.8246

T =
-0.3723 -1

0 5.3723

Since T is upper triangular, its diagonal contains the eigenvalues of A:

eig(A)
ans =
-0.3723
5.3723

For a matrix with complex eigenvalues, the real Schur factorization
has 2x2 blocks on its diagonal:

T = schur([1,0,0;0,1,2;0,-3,1])
T =

1 0 0
0 1 2
0 -3 1

T = schur([1,0,0;0,1,2;0,-3,1],’c’)
T =

1 0 0
0 1 + 2.4495j 1
0 0 1 - 2.4495j

See also

lu, hess, qr, eig

skewness

Skewness of a set of values.

Syntax
s = skewness(A)
s = skewness(A, dim)

382 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
skewness(A) gives the skewness of the columns of array A or of the
row vector A. The dimension along which skewness proceeds may be
specified with a second argument.

The skewness measures how asymmetric a distribution is. It is 0
for a symmetric distribution, and positive for a distribution which has
more values much larger than the mean.

Example
skewness(randn(1, 10000).̂ 2)
2.6833

See also
mean, var, kurtosis, moment

sqrtm

Matrix square root.

Syntax
Y = sqrtm(X)
(Y, err) = sqrtm(X)

Description
sqrtm(X) returns the matrix square root of X, such that sqrtm(X)̂ 2=X.
X must be square. The matrix square root does not always exist.

With a second output argument err, sqrtm also returns an estimate
of the relative error norm(sqrtm(X)̂ 2-X)/norm(X).

Example
Y = sqrtm([1,2;3,4])
Y =
0.5537 + 0.4644j 0.807 - 0.2124j
1.2104 - 0.3186j 1.7641 + 0.1458j

Ŷ 2
1 2
3 4

See also
expm, logm, funm, schur, chol, sqrt

std

Standard deviation.

LME Reference — linear algebra 383

Syntax
x = std(v)
x = std(v, p)
v = std(M)
v = std(M, p)
v = std(M, p, dim)

Description
std(v) gives the standard deviation of vector v, normalized by
length(v)-1. With a second argument, std(v,p) normalizes by
length(v)-1 if p is false, or by length(v) if p is true.

std(M) gives a row vector which contains the standard deviation
of the columns of M. With a third argument, std(M,p,dim) operates
along dimension dim.

Example
std([1, 2, 5, 6, 10, 12])
4.3359

See also
mean, var, cov

sum

Sum of the elements of a vector.

Syntax
x = sum(v)
v = sum(M)
v = sum(M,dim)

Description
sum(v) returns the sum of the elements of vector v. sum(M) returns a
row vector whose elements are the sums of the corresponding
columns of matrix M. sum(M,dim) returns the sum of matrix M along
dimension dim; the result is a row vector if dim is 1, or a column
vector if dim is 2.

Examples
sum(1:5)
15

sum((1:5)’)
15

384 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

sum([1,2,3;5,6,7])
6 8 10

sum([1,2,3;5,6,7],1)
6 8 10

sum([1,2,3;5,6,7],2)
6
18

See also
prod, mean, operator +

svd

Singular value decomposition.

Syntax
s = svd(M)
(U,S,V) = svd(M)
(U,S,V) = svd(M,false)

Description
The singular value decomposition (U,S,V) = svd(M) decomposes the
m-by-n matrix M such that M = U*S*V’, where S is an m-by-n diagonal
matrix with decreasing positive diagonal elements (the singular values
of M), U is an m-by-m unitary matrix, and V is an n-by-n unitary matrix.
The number of non-zero diagonal elements of S (up to rounding errors)
gives the rank of M.

When M is rectangular, in expression U*S*V’, some columns of U or
V are multiplied by rows or columns of zeros in S, respectively. (U,S,V)
= svd(M,false) produces U, S and V where these columns or rows are
discarded (relationship M = U*S*V’ still holds):

Size of A Size of U Size of S Size of V
m by n, m <= n m by m m by m n by m
m by n, m > n m by n n by n n by n

svd(M,true) produces the same result as svd(M).
With one output argument, s = svd(M) returns the vector of sin-

gular values s=diag(S).
The singular values of M can also be computed with s =

sqrt(eig(M’*M)), but svd is faster and more robust.

Examples
(U,S,V)=svd([1,2;3,4])
U =

LME Reference — linear algebra 385

0.4046 0.9145
0.9145 -0.4046

S =
5.465 0
0 0.366

V =
0.576 -0.8174
0.8174 0.576

U*S*V’
1 2
3 4

svd([1,2;1,2])
3.1623
3.4697e-19

See also
eig, pinv, rank, cond, norm

trace

Trace of a matrix.

Syntax
tr = trace(M)

Description
trace(M) returns the trace of the matrix M, i.e. the sum of its diagonal
elements.

Example
trace([1,2;3,4])
5

See also
norm, diag

var

Variance of a set of values.

Syntax
s2 = var(A)
s2 = var(A, p)
s2 = var(A, p, dim)

386 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
var(A) gives the variance of the columns of array A or of the row
vector A. The variance is normalized with the number of observations
minus 1, or by the number of observations if a second argument is
true. The dimension along which var proceeds may be specified with
a third argument.

See also
mean, std, cov, kurtosis, skewness, moment

10.22 Array Functions

arrayfun

Function evaluation for each element of an array.

Syntax
(B1, ...) = arrayfun(fun, A1, ...)

Description
arrayfun(fun,A) evaluates function fun for each element of numeric
array A. Each evaluation must give a scalar result of numeric (or logical
or char) type; results are returned as a numeric array the same size
as A. First argument is a function reference, an inline function, or the
name of a function as a string.

With more than two input arguments, arrayfun calls function fun
as feval(fun,A1(i),A2(i),...). All array arguments must have the
same size, but their type can be different.

With two output arguments or more, arrayfun evaluates function
fun with the same number of output arguments and builds a separate
array for each output. Without output argument, arrayfun evaluates
fun without output argument.

arrayfun differs from cellfun: all input arguments of arrayfun
are arrays of any type (not necessarily cell arrays), and corresponding
elements are provided provided to fun. With map, input arguments as
well as output arguments are cell arrays.

Examples
arrayfun(@isempty, {1, ’’; {}, ones(5)})
F T
T F

map(@isempty, {1, ’’; {}, ones(5)})
2x2 cell array

LME Reference — arrays 387

(m, n) = arrayfun(@size, {1, ’’; {}, ones(2, 5)})
m =
1 0
0 2

n =
1 0
0 5

See also
cellfun, map, fevalx

cat

Array concatenation.

Syntax
cat(dim, A1, A2, ...)

Description
cat(dim,A1,A2,...) concatenates arrays A1, A2, etc. along dimen-
sion dim. Other dimensions must match. cat is a generalization of the
comma and the semicolon inside brackets.

Examples
cat(2, [1,2;3,4], [5,6;7,8])
1 2 5 6
3 4 7 8

cat(3, [1,2;3,4], [5,6;7,8])
2x2x2 array
(:,:,1) =
1 2
3 4

(:,:,2) =
5 6
7 8

See also
operator [], operator ;, operator ,

cell

Cell array of empty arrays.

388 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
C = cell(n)
C = cell(n1,n2,...)
C = cell([n1,n2,...])

Description
cell builds a cell array whose elements are empty arrays []. The
size of the cell array is specified by one integer for a square array, or
several integers (either as separate arguments or in a vector) for a
cell array of any size.

Example
cell(2, 3)
2x3 cell array

See also
zeros, operator {}, iscell

cellfun

Function evaluation for each cell of a cell array.

Syntax
A = cellfun(fun, C)
A = cellfun(fun, C, ...)
A = cellfun(fun, S)
A = cellfun(fun, S, ...)

Description
cellfun(fun,C) evaluates function fun for each cell of cell array C.
Each evaluation must give a scalar result of numeric, logical, or char-
acter type; results are returned as a non-cell array the same size as C.
First argument is a function reference, an inline function, or the name
of a function as a string.

With more than two input arguments, cellfun calls function fun
as feval(fun,C{i},other), where C{i} is each cell of C in turn, and
other stands for the remaining arguments of cellfun.

The second argument can be a structure array S instead of a cell
array. In that case, fun is called with S(i).

cellfun differs from map in two ways: the result is a non-cell array,
and remaining arguments of cellfun are provided directly to fun.

LME Reference — arrays 389

Examples
cellfun(@isempty, {1, ’’; {}, ones(5)})
F T
T F

map(@isempty, {1, ’’; {}, ones(5)})
2x2 cell array

cellfun(@size, {1, ’’; {}, ones(5)}, 2)
1 0
0 5

See also
map, arrayfun

diag

Creation of a diagonal matrix or extraction of the diagonal elements
of a matrix.

Syntax
M = diag(v)
M = diag(v,k)
v = diag(M)
v = diag(M,k)

Description
With a vector input argument, diag(v) creates a square diagonal ma-
trix whose main diagonal is given by v. With a second argument, the
diagonal is moved by that amount in the upper right direction for pos-
itive values, and in the lower left direction for negative values.

With a matrix input argument, the main diagonal is extracted and
returned as a column vector. A second argument can be used to spec-
ify another diagonal.

Examples
diag(1:3)
1 0 0
0 2 0
0 0 3

diag(1:3,1)
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

M = magic(3)
M =

390 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

8 1 6
3 5 7
4 9 2

diag(M)
8
5
2

diag(M,1)
1
7

See also
tril, triu, eye, trace

eye

Identity matrix.

Syntax
M = eye(n)
M = eye(m,n)
M = eye([m,n])
M = eye(..., type)

Description
eye builds a matrix whose diagonal elements are 1 and other elements
0. The size of the matrix is specified by one integer for a square ma-
trix, or two integers (either as two arguments or in a vector of two
elements) for a rectangular matrix.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Examples
eye(3)
1 0 0
0 1 0
0 0 1

eye(2, 3)
1 0 0
0 1 0

eye(2, ’int8’)
2x2 int8 array
1 0
0 1

LME Reference — arrays 391

See also

ones, zeros, diag

fevalx

Function evaluation with array expansion.

Syntax
(Y1,...) = fevalx(fun,X1,...)

Description

(Y1,Y2,...)=fevalx(fun,X1,X2,...) evaluates function fun with
input arguments X1, X2, etc. Arguments must be arrays, which are ex-
panded if necessary along singleton dimensions so that all dimensions
match. For instance, three arguments of size 3x1x2, 1x5 and 1x1 are
replicated into arrays of size 3x5x2. Output arguments are assigned
to Y1, Y2, etc. Function fun is specified either by its name as a string,
by a function reference, or by an inline or anonymous function.

Example
fevalx(@plus, 1:5, (10:10:30)’)

11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

See also

feval, meshgrid, repmat, inline, operator @

find

Find the indices of the non-null elements of an array.

Syntax
ix = find(v)
[s1,s2] = find(M)
[s1,s2,x] = find(M)
... = find(..., n)
... = find(..., n, dir)

392 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

With one output argument, find(v) returns a vector containing the
indices of the nonzero elements of v. v can be an array of any dimen-
sion; the indices correspond to the internal storage ordering and can
be used to access the elements with a single subscript.

With two output arguments, find(M) returns two vectors contain-
ing the subscripts (row in the first output argument, column in the
second output argument) of the nonzero elements of 2-dim array M.
To obtain subscripts for an array of higher dimension, you can convert
the single output argument of find to subscripts with ind2sub.

With three output arguments, find(M) returns in addition the
nonzero values themselves in the third output argument.

With a second input argument n, find limits the maximum number
of elements found. It searches forward by default; with a third input
argument dir, find gives the n first nonzero values if dir is ’first’
or ’f’, and the n last nonzero values if dir is ’last’ or ’l’.

Examples
ix = find([1.2,0;0,3.6])
ix =
1
4

[s1,s2] = find([1.2,0;0,3.6])
s1 =
1
2

s2 =
1
2

[s1,s2,x] = find([1.2,0;0,3.6])
s1 =
1
2

s2 =
1
2

x =
1.2
3.6

A = rand(3)
A =
0.5599 0.3074 0.5275
0.3309 0.8077 0.3666
0.7981 0.6424 0.6023

find(A > 0.7, 2, ’last’)
7
5

LME Reference — arrays 393

See also
nnz, sort

flipdim

Flip an array along any dimension.

Syntax
B = flipdim(A, dim)

Description
flipdim(A,dim) gives an array which has the same size as A, but
where indices of dimension dim are reversed.

Examples
flipdim(cat(3, [1,2;3,4], [5,6;7,8]), 3)
2x2x2 array
(:,:,1) =
5 6
7 8

(:,:,2) =
1 2
3 4

See also
fliplr, flipud, rot90, reshape

fliplr

Flip an array or a list around its vertical axis.

Syntax
A2 = fliplr(A1)
list2 = fliplr(list1)

Description
fliplr(A1) gives an array A2 which has the same size as A1, but
where all columns are placed in reverse order.

fliplr(list1) gives a list list2 which has the same length as
list1, but where all top-level elements are placed in reverse order.
Elements themselves are left unchanged.

394 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
fliplr([1,2;3,4])
2 1
4 3

fliplr({1, ’x’, {1,2,3}})
{{1,2,3}, ’x’, 1}

See also
flipud, flipdim, rot90, reshape

flipud

Flip an array upside-down.

Syntax
A2 = flipud(A1)

Description
flipud(A1) gives an array A2 which has the same size as A1, but
where all lines are placed in reverse order.

Example
flipud([1,2;3,4])
3 4
1 2

See also
fliplr, flipdim, rot90, reshape

ind2sub

Conversion from single index to row/column subscripts.

Syntax
(i, j, ...) = ind2sub(size, ind)

Description
ind2sub(size,ind) gives the subscripts of the element which would
be retrieved from an array whose size is specified by size by the single
index ind. size must be either a scalar for square matrices or a vector
of two elements or more for arrays. ind can be an array; the result is
calculated separately for each element and has the same size.

LME Reference — arrays 395

Example
M = [3, 6; 8, 9];
M(3)
8

(i, j) = ind2sub(size(M), 3)
i =
2

j =
1

M(i, j)
8

See also

sub2ind, size

interp1

1D interpolation.

Syntax
yi = interp1(x, y, xi)
yi = interp1(x, y, xi, method)
yi = interp1(y, xi)
yi = interp1(y, xi, method)
yi = interp1(..., method, extraval)

Description

interp1(x,y,xi) interpolates data along one dimension. Input data
are defined by vector y, where element y(i) corresponds to coordi-
nates x(i). Interpolation is performed at points defined in vector xi;
the result is a vector of the same size as xi.

If y is an array, interpolation is performed along dimension 1 (i.e.
along its columns), and size(y,1) must be equal to length(x). Then
if xi is a vector, interpolation is performed at the same points for
each remaining dimensions of y, and the result is an array of size
[length(xi),size(y)(2:end)]; if xi is an array, all sizes must match
y except for the first one.

If x is missing, it defaults to 1:size(y,1).
The default interpolation method is piecewise linear. An additional

input argument can be provided to specify it with a string (only the
first character is considered):

396 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Argument Meaning
’0’ or ’nearest’ nearest value
’<’ lower coordinate
’>’ higher coordinate
’1’ or ’linear’ piecewise linear
’3’ or ’cubic’ piecewise cubic
’p’ or ’pchip’ pchip

Cubic interpolation gives continuous values and first derivatives,
and null second derivatives at end points. Pchip (piecewise cubic Her-
mite interpolation) also gives continuous values and first derivatives,
but guarantees that the interpolant stays within the limits of the data
in each interval (in particular monotonicity is preserved) at the cost of
larger second derivatives.

With vectors, interp1 produces the same result as interpn; vector
orientations do not have to match, though.

When the method is followed by a scalar number extraval, that
value is assigned to all values outside the range defined by x (i.e.
extrapolated values). The default is NaN.

Examples
One-dimension interpolation:

interp1([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7])
nan 0.2000 0.3000 0.8333

interp1([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7], ’0’)
nan 0.2000 0.2000 1.0000

Interpolation of multiple values:

t = 0:10;
y = [sin(t’), cos(t’)];
tnew = 0:0.4:8;
ynew = interp1(t, y, tnew)
ynew =
0.0000 1.0000
0.3366 0.8161
...
0.8564 0.2143
0.9894 -0.1455

See also
interpn

interpn

Multidimensional interpolation.

LME Reference — arrays 397

Syntax
Vi = interpn(x1, ..., xn, V, xi1, ..., xin)
Vi = interpn(x1, ..., xn, V, xi1, ..., xin, method)
Vi = interpn(..., method, extraval)

Description
interpn(x1,...,xn,V,xi1,...,xin) interpolates data in a
space of n dimensions. Input data are defined by array V, where
element V(i,j,...) corresponds to coordinates x1(i), x2(j), etc.
Interpolation is performed for each coordinates defined by arrays
xi1, xi2, etc., which must all have the same size; the result is an
array of the same size.

Length of vectors x1, x2, ... must match the size of V along the
corresponding dimension. Vectors x1, x2, ... must be sorted (mono-
tonically increasing or decreasing), but they do not have to be spaced
uniformly. Interpolated points outside the input volume are set to nan.
Input and output data can be complex. Imaginary parts of coordinates
are ignored.

The default interpolation method is multilinear. An additional input
argument can be provided to specify it with a string (only the first
character is considered):

Argument Meaning
’0’ or ’nearest’ nearest value
’<’ lower coordinates
’>’ higher coordinates
’1’ or ’linear’ multilinear

Method ’<’ takes the sample where each coordinate has its in-
dex as large as possible, lower or equal to the interpolated value,
and smaller than the last coordinate. Method ’>’ takes the sample
where each coordinate has its index greater or equal to the interpo-
lated value.

When the method is followed by a scalar number extraval, that
value is assigned to all values outside the input volume (i.e. extrapo-
lated values). The default is NaN.

Examples
One-dimension interpolation:

interpn([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7])
nan 0.2000 0.3000 0.8333

interpn([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7], ’0’)
nan 0.2000 0.2000 1.0000

Three-dimension interpolation:

398 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

D = cat(3,[0,1;2,3],[4,5;6,7]);
interpn([0,1], [0,1], [0,1], D, 0.2, 0.7, 0.5)
3.1000

Image rotation (we define original coordinates between -0.5 and 0.5
in vector c and arrays X and Y, and the image as a linear gradient
between 0 and 1):

c = -0.5:0.01:0.5;
X = repmat(c, 101, 1);
Y = X’;
phi = 0.2;
Xi = cos(phi) * X - sin(phi) * Y;
Yi = sin(phi) * X + cos(phi) * Y;
D = 0.5 + X;
E = interpn(c, c, D, Xi, Yi);
E(isnan(E)) = 0.5;

See also
interp1

intersect

Set intersection.

Syntax
c = intersect(a, b)
(c, ia, ib) = intersect(a, b)

Description
intersect(a,b) gives the intersection of sets a and b, i.e. it gives the
set of members of both sets a and b. Sets are any type of numeric,
character or logical arrays, or lists or cell arrays of character strings.
Multiple elements of input arguments are considered as single mem-
bers; the result is always sorted and has unique elements.

The optional second and third output arguments are vectors of in-
dices such that if (c,ia,ib)=intersect(a,b), then c is a(ia) as well
as b(ib).

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = intersect(a, b)
c =
{’bbb’,’bc’}

LME Reference — arrays 399

ia =
3 2

ib =
4 2

a(ia)
{’bbb’,’bc’}

b(ib)
{’bbb’,’bc’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also
unique, union, setdiff, setxor, ismember

inthist

Histogram of an integer array.

Syntax
h = inthist(A, n)

Description
inthist(A,n) computes the histogram of the elements of integer ar-
ray A between 0 and n-1. A must have an integer type (int8/16/32/64
or uint8/16/32/64). The result is a row vector h of length n, where h(i)
is the number of elements in A with value i-1.

Example
A = map2int(rand(100), 0, 1, ’uint8’);
h = inthist(A, 10)
h =
37 31 34 34 32 35 38 36 36 32

See also
hist

ipermute

Inverse permutation of the dimensions of an array.

400 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
B = ipermute(A, perm)

Description
ipermute(A,perm) returns an array with the same elements as A, but
where dimensions are permuted according to the vector of dimensions
perm. It performs the inverse permutation of permute. perm must
contain integers from 1 to n; dimension i in A becomes dimension
perm(i) in the result.

Example
size(ipermute(rand(3,4,5), [2,3,1]))
5 3 4

See also
permute, ndims, squeeze

isempty

Test for empty array, list or struct.

Syntax
b = isempty(A)
b = isempty(list)
b = isempty(S)

Description
isempty(obj) gives true if obj is the empty array [] of any type (nu-
meric, char, logical or cell array) or the empty struct, and false other-
wise.

Examples
isempty([])
true

isempty(0)
false

isempty(’’)
true

isempty({})
true

isempty({{}})
false

isempty(struct)
true

LME Reference — arrays 401

See also
size, length

iscell

Test for cell arrays.

Syntax
b = iscell(X)

Description
iscell(X) gives true if X is a cell array or a list, and false otherwise.

Examples
iscell({1;2})
true

iscell({1,2})
true

islist({1;2})
false

See also
islist

ismember

Test for set membership.

Syntax
b = ismember(m, s)
(b, ix) = ismember(m, s)

Description
ismember(m,s) tests if elements of array m are members of set s. The
result is a logical array the same size as m; each element is true if the
corresponding element of m is a member of s, or false otherwise. m
must be a numeric array or a cell array, matching type of set s.

With a second output argument ix, ismember also gives the index
of the corresponding element of m in s, or 0 if the element is not a
member of s.

402 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
s = {’a’,’bc’,’bbb’,’de’};
m = {’d’,’a’,’x’;’de’,’a’,’z’};
(b, ix) = ismember(m, s)
b =
F T F
T T F

ix =
0 1 0

4 1 0

See also
intersect, union, setdiff, setxor

length

Length of a vector or a list.

Syntax
n = length(v)
n = length(list)

Description
length(v) gives the length of vector v. length(A) gives the num-
ber of elements along the largest dimension of array A. length(list)
gives the number of elements in a list.

Examples
length(1:5)
5

length((1:5)’)
5

length(ones(2,3))
3

length({1, 1:6, ’abc’})
3

length({{}})
1

See also
size, numel, end

linspace

Sequence of linearly-spaced elements.

LME Reference — arrays 403

Syntax
v = linspace(x1, x2)
v = linspace(x1, x2, n)

Description
linspace(x1,x2) produces a row vector of 50 values spaced linearly
from x1 to x2 inclusive. With a third argument, linspace(x1,x2,n)
produces a row vector of n values.

Examples
linspace(1,10)
1.0000 1.1837 1.3673 ... 9.8163 10.0000

linspace(1,2,6)
1.0 1.2 1.4 1.6 1.8 2.0

See also
logspace, operator :

logspace

Sequence of logarithmically-spaced elements.

Syntax
v = logspace(x1, x2)
v = logspace(x1, x2, n)

Description
logspace(x1,x2) produces a row vector of 50 values spaced log-
arithmically from 10̂ x1 to 10̂ x2 inclusive. With a third argument,
logspace(x1,x2,n) produces a row vector of n values.

Example
logspace(0,1)
1.0000 1.0481 1.0985 ... 9.1030 9.5410 10.0000

See also
linspace, operator :

magic

Magic square.

404 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
M = magic(n)

Description
A magic square is a square array of size n-by-n which contains each
integer between 1 and n2, and whose sum of each column and of each
line is equal. magic(n) returns magic square of size n-by-n.

There is no 2-by-2 magic square. If the size is 2, the matrix [1,3;4,2]
is returned instead.

Example
magic(3)
8 1 6
3 5 7
4 9 2

See also
zeros, ones, eye, rand, randn

meshgrid

Arrays of X-Y coordinates.

Syntax
(X, Y) = meshgrid(x, y)
(X, Y) = meshgrid(x)

Description
meshgrid(x,y) produces two arrays of x and y coordinates suitable
for the evaluation of a function of two variables. The input argument
x is copied to the rows of the first output argument, and the input
argument y is copied to the columns of the second output argument,
so that both arrays have the same size. meshgrid(x) is equivalent to
meshgrid(x,x).

Example
(X, Y) = meshgrid(1:5, 2:4)
X =
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Y =
2 2 2 2 2

LME Reference — arrays 405

3 3 3 3 3
4 4 4 4 4

Z = atan2(X, Y)
Z =
0.4636 0.7854 0.9828 1.1071 1.1903
0.3218 0.5880 0.7854 0.9273 1.0304
0.2450 0.4636 0.6435 0.7854 0.8961

See also
ndgrid, repmat

ndgrid

Arrays of N-dimension coordinates.

Syntax
(X1, ..., Xn) = ndgrid(x1, ..., xn)
(X1, ..., Xn) = ndgrid(x)

Description
ndgrid(x1,...,xn) produces n arrays of n dimensions. Array i is
obtained by reshaping input argument i as a vector along dimension
i and replicating it along all other dimensions to match the length of
other input vectors. All output arguments have the same size.

With one input argument, ndgrid reuses it to match the number of
output arguments.

(Y,X)=ndgrid(y,x) is equivalent to (X,Y)=meshgrid(x,y).

Example
(X1, X2) = ndgrid(1:3)
X1 =
1 1 1
2 2 2
3 3 3

X2 =
1 2 3
1 2 3
1 2 3

See also
meshgrid, repmat

ndims

Number of dimensions of an array.

406 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
n = ndims(A)

Description
ndims(A) returns the number of dimensions of array A, which is at
least 2. Scalars, row and column vectors, and matrices have 2 dimen-
sions.

Examples
ndims(magic(3))
2

ndims(rand(3,4,5))
3

See also
size, squeeze, permute, ipermute

nnz

Number of nonzero elements.

Syntax
n = nnz(A)

Description
nnz(A) returns the number of nonzero elements of array A. Argument
A must be a numeric, char or logical array.

Examples
nnz(-2:2)
4

nnz(magic(3) > 3)
6

See also
find

num2cell

Conversion from numeric array to cell array.

LME Reference — arrays 407

Syntax
C = num2cell(A)
C = num2cell(A, dims)

Description
num2cell(A) creates a cell array the same size as numeric array A.
The value of each cell is the corresponding elements of A.

num2cell(A,dims) cuts array A along the dimensions not in dims
and creates a cell array with the result. Dimensions of cell array are
the same as dimensions of A for dimensions not in dims, and 1 for
dimensions in dims; dimensions of cells are the same as dimensions
of A for dimensions in dims, and 1 for dimensions not in dims.

Argument A can be a numeric array of any dimension and class, a
logical array, or a char array.

Examples
num2cell([1, 2; 3, 4])

{1, 2; 3, 4}
num2cell([1, 2; 3, 4], 1)
{[1; 3], [2; 4]}

num2cell([1, 2; 3, 4], 2)
{[1, 2]; [3, 4]}

See also
num2list, permute

numel

Number of elements of an array.

Syntax
n = numel(A)

Description
numel(A) gives the number of elements of array A. It is equivalent to
prod(size(A)).

Examples
numel(1:5)
5

numel(ones(2, 3))
6

numel({1, 1:6; ’abc’, []})
4

numel({2, ’vwxyz’})
2

408 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
size, length

ones

Array of ones.

Syntax
A = ones(n)
A = ones(n1, n2, ...)
A = ones([n1, n2, ...])
A = ones(..., type)

Description
ones builds an array whose elements are 1. The size of the array is
specified by one integer for a square matrix, or several integers (either
as separate arguments or in a vector) for an array of any size.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Examples
ones(2,3)
1 1 1
1 1 1

ones(2, ’int32’)
2x2 int32 array
1 1
1 1

See also
zeros, eye, rand, randn, repmat

permute

Permutation of the dimensions of an array.

Syntax
B = permute(A, perm)

LME Reference — arrays 409

Description
permute(A,perm) returns an array with the same elements as A, but
where dimensions are permuted according to the vector of dimensions
perm. It is a generalization of the matrix transpose operator. perm
must contain integers from 1 to n; dimension perm(i) in A becomes
dimension i in the result.

Example
size(permute(rand(3,4,5), [2,3,1]))
4 5 3

See also
ndims, squeeze, ipermute, num2cell

rand

Uniformly-distributed random number.

Syntax
x = rand
A = rand(n)
A = rand(n1, n2, ...)
A = rand([n1, n2, ...])
A = rand(..., type)
rand(’seed’, s);

Description
rand builds a scalar pseudo-random number uniformly distributed be-
tween 0 and 1. The lower bound 0 may be reached, but the upper
bound 1 is never. The default generator is based on a scalar 64-bit
seed, which theoretically has a period of 2̂ 64-2̂ 32 numbers. This
seed can be set with the arguments rand(’seed’,s), where s is a
scalar. rand(’seed’,s) returns the empty array [] as output argu-
ment. To discard it, the statement should be followed by a semicolon.
The generator can be changed with rng.

rand(n), rand(n1,n2,...) and rand([n1,n2,...]) return an n-
by-n square array or an array of arbitrary size whose elements are
pseudo-random numbers uniformly distributed between 0 and 1.

An additional input argument can be used to specify the type of
the result, ’double’ (default) or ’single’. With the special value
’raw’, rand returns an unscaled integer result of type double which
corresponds to the uniform output of the random generator before it
is mapped to the range between 0 and 1. The scaling factor can be
retrieved in the field rawmax of the structure returned by rng.

410 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
rand
0.2361

rand(1, 3)
0.6679 0.8195 0.2786

rand(’seed’,0);
rand
0.2361

See also
randn, randi, rng

randi

Uniformly-distributed integer random number.

Syntax
x = randi(nmax)
x = randi(range)
M = randi(..., n)
M = randi(..., n1, n2, ...)
M = randi(..., [n1, n2, ...])
M = randi(..., class)

Description
randi(nmax) produces a scalar pseudo-random integer number uni-
formly distributed between 1 and nmax. randi(range), where range is
a two-element vector [nmin,nmax], produces a scalar pseudo-random
integer number uniformly distributed between nmin and nmax.

With more numeric input arguments, randi produces arrays of
pseudo-random integer numbers. randi(range,n) produces
an n-by-n square array, and randi(range,[n1,n2,...]) or
randi(range,n1,n2,...) produces an array of the specified size.

The number class of the result can be specified with a final string
argument. The default is ’double’.

Examples
randi(10)
3

randi(10, [1, 5])
3 4 6 8 1

randi([10,15], [1, 5])
12 14 13 10 13

randi(8, [1, 5], ’uint8’)
1x5 uint8 array
3 4 5 7 2

LME Reference — arrays 411

See also
rand, randn, rng

randn

Normally-distributed random number

Syntax
x = randn
A = randn(n)
A = randn(n1, n2, ...)
A = randn([n1, n2, ...])
A = randn(..., type)
randn(’seed’, s);

Description
randn builds a scalar pseudo-random number chosen from a normal
distribution with zero mean and unit variance. The default genera-
tor is based on a scalar 64-bit seed, which theoretically has a pe-
riod of 2̂ 64-2̂ 32 numbers. This seed can be set with the arguments
randn(’seed’,s), where s is a scalar. The seed is the same as the
seed of rand and rng. randn(’seed’,s) returns the empty array [] as
output argument. To discard it, the statement should be followed by a
semicolon. The generator can be changed with rng.

randn(n), randn(n1,n2,...) and randn([n1,n2,...]) return an
n-by-n square array or an array of arbitrary size whose elements are
pseudo-random numbers chosen from a normal distribution.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’ (default) or ’single’.

Examples
randn
1.5927

randn(1, 3)
0.7856 0.6489 -0.8141

randn(’seed’,0);
randn
1.5927

See also
rand, randi, rng

repmat

Replicate an array.

412 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
B = repmat(A, n)
B = repmat(A, m, n)
B = repmat(A, [n1,...])

Description
repmat creates an array with multiple copies of its first argument. It
can be seen as an extended version of ones, where 1 is replaced by
an arbitrary array.

With 3 input arguments, repmat(A,m,n) replicates array A m times
vertically and n times horizontally. The type of the first argument
(number, character, logical, cell, or structure array) is preserved.

With two input arguments, repmat(A,n) produces the same result
as repmat(A,n,n).

With a vector as second argument, the array can be replicated
along more than two dimensions; repmat(A,m,n) produces the same
result as repmat(A,[m,n]).

Examples
repmat([1,2;3,4], 1, 2)
1 2 1 2
3 4 3 4

repmat(’abc’, 3)
abcabcabc
abcabcabc
abcabcabc

See also
zeros, ones, operator :, kron, replist

reshape

Rearrange the elements of an array to change its shape.

Syntax
A2 = reshape(A1)
A2 = reshape(A1, n1, n2, ...)
A2 = reshape(A1, [n1, n2, ...])

Description
reshape(A1) gives a column vector with all the elements of array A1.
If A1 is a variable, reshape(A1) is the same as A1(:).

reshape(A1,n1,n2,...) or reshape(A1,[n1,n2,...]) changes
the dimensions of array A1 so that the result has m rows and n columns.

LME Reference — arrays 413

A1 must have n1*n2*... elements; read row-wise, both A1 and the
result have the same elements.

When dimensions are given as separate elements, one of them can
be replaced with the empty array []; it is replaced by the value such
that the number of elements of the result matches the size of input
array.

Remark: code should not rely on the internal data layout. Ar-
ray elements are currently stored row-wise, but this may change in
the future. reshape will remain consistant with indexing, though;
reshape(A,s)(i)==A(i) for any compatible size s.

Example
reshape([1,2,3;10,20,30], 3, 2)
1 2
3 10
20 30

reshape(1:12, 3, [])
1 2 3 4
5 6 7 8
9 10 11 12

See also
operator ()

rng

State of random number generator.

Syntax
rng(type)
rng(seed)
rng(seed, type)
rng(state)
state = rng

Description
Random (actually pseudo-random) number generators produce se-
quences of numbers whose statistics make them difficult to distinguish
from true random numbers. They are used by functions rand, randi,
randn and random. They are characterized by a type string and a
state.

With a numeric input argument, rng(seed) sets the state based
on a seed. The state is usually an array of unsigned 32-bit integer
numbers. rng uses the seed to produce an internal state which is
valid for the type of random number generator. The default seed is 0.

414 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

With a string input argument, rng(type) sets the type of the ran-
dom number generator and resets the state to its initial value (default
seed). The following types are recognized:

’original’ Original generator used until LME 6.

’mcg16807’ Multiplicative congruential generator. The state is de-
fined by s(i+1)=mod(a*s(i),m) with a=7̂ 5 and m=2̂ 31-1, and the
generated value is s(i)/m.

’mwc’ Concatenation of two 16-bit multiply-with-carry generators.
The period is about 2̂ 60.

’kiss’ or ’default’ Combination of mwc, a 3-shift register, and
a congruential generator. The period is about 2̂ 123.

With two input arguments, rng(seed,type) sets both the seed and
the type of the random number generator.

With an output argument, state=rng gets the current state, which
can be restored later by calling rng(state). The state is a structure.

Examples
rng(123);
R = rand(1,2)
R =
0.2838 0.4196

s = rng
s =
type: ’original’
state: real 2x1
rawmax: 4294967296

R = rand
R =
0.5788

rng(s)
R = rand
R =
0.5788

Reference
The MWC and KISS generators are described in George Marsaglia, Ran-
dom numbers for C: The END?, Usenet, sci.stat.math, 20 Jan 1999.

See also
rand, randn, randi

LME Reference — arrays 415

rot90

Array rotation.

Syntax
A2 = rot90(A1)
A2 = rot90(A1, k)

Description
rot90(A1) rotates array A1 90 degrees counter-clockwise; the top left
element of A1 becomes the bottom left element of A2. If A1 is an array
with more than two dimensions, each plane corresponding to the first
two dimensions is rotated.

In rot90(A1,k), the second argument is the number of times the
array is rotated 90 degrees counter-clockwise. With k = 2, the array
is rotated by 180 degrees; with k = 3 or k = -1, the array is rotated
by 90 degrees clockwise.

Examples
rot90([1,2,3;4,5,6])
3 6
2 5
1 4

rot90([1,2,3;4,5,6], -1)
4 1
5 2
6 3

rot90([1,2,3;4,5,6], -1)
6 5 4
3 2 1

fliplr(flipud([1,2,3;4,5,6]))
6 5 4
3 2 1

See also
fliplr, flipud, reshape

setdiff

Set difference.

Syntax
c = setdiff(a, b)
(c, ia) = setdiff(a, b)

416 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

setdiff(a,b) gives the difference between sets a and b, i.e. the set
of members of set a which do not belong to b. Sets are any type of
numeric, character or logical arrays, or lists or cell arrays of character
strings. Multiple elements of input arguments are considered as single
members; the result is always sorted and has unique elements.

The optional second output argument is a vector of indices such
that if (c,ia)=setdiff(a,b), then c is a(ia).

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia) = setdiff(a, b)
c =
{’a’,’de’}

ia =
1 4

a(ia)
{’a’,’de’}

See also

unique, union, intersect, setxor, ismember

setxor

Set exclusive or.

Syntax
c = setxor(a, b)
(c, ia, ib) = setxor(a, b)

Description

setxor(a,b) performs an exclusive or operation between sets a and
b, i.e. it gives the set of members of sets a and b which are not mem-
bers of the intersection of a and b. Sets are any type of numeric,
character or logical arrays, or lists or cell arrays of character strings.
Multiple elements of input arguments are considered as single mem-
bers; the result is always sorted and has unique elements.

The optional second and third output arguments are vectors of
indices such that if (c,ia,ib)=setxor(a,b), then c is the union of
a(ia) and b(ib).

LME Reference — arrays 417

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = setxor(a, b)
c =
{’a’,’aa’,’de’,’z’}

ia =
1 4

ib =
3 1

union(a(ia),b(ib))
{’a’,’aa’,’de’,’z’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also
unique, union, intersect, setdiff, ismember

size

Size of an array.

Syntax
v = size(A)
(m, n) = size(A)
m = size(A, i)

Description
size(A) returns the number of rows and the number of elements
along each dimension of array A, either in a row vector or as scalars if
there are two output arguments or more.

size(A,i) gives the number of elements in array A along dimen-
sion i: size(A,1) gives the number of rows and size(A,2) the num-
ber of columns.

Examples
M = ones(3, 5);
size(M)
3 5

(m, n) = size(M)
m =

418 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

3
n =
5

size(M, 1)
3

size(M, 2)
5

See also
length, numel, ndims, end

sort

Array sort.

Syntax
(A_sorted, ix) = sort(A)
(A_sorted, ix) = sort(A, dim)
(A_sorted, ix) = sort(A, dir)
(A_sorted, ix) = sort(A, dim, dir)
(list_sorted, ix) = sort(list)
(list_sorted, ix) = sort(list, dir)

Description
sort(A) sorts separately the elements of each column of array A, or
the elements of A if it is a row vector. The result has the same size as
A. Elements are sorted in ascending order, with NaNs at the end. For
complex arrays, numbers are sorted by magnitude.

The optional second output argument gives the permutation array
which transforms A into the sorted array. It can be used to reorder
elements in another array or to sort the rows of a matrix with respect
to one of its columns, as shown in the last example below. Order of
consecutive identical elements is preserved.

If a second numeric argument dim is provided, the sort is performed
along dimension dim (columns if dim is 1, rows if 2, etc.)

An additional argument can specify the ordering direction. It
must be the string ’ascending’ (or ’a’) for ascending order, or
’descending’ (or ’d’) for descending order. In both cases, NaNs are
moved to the end.

sort(list) sorts the elements of a list, which must be strings. Cell
arrays are sorted like lists, not column-wise like numeric arrays. The
second output argument is a row vector. The direction can be specified
with a second input argument.

LME Reference — arrays 419

Examples
sort([3,6,2,3,9,1,2])
1 2 2 3 3 6 9

sort([2,5,3;nan,4,2;6,1,1])
2 1 1
6 4 2
nan 5 3

sort([2,5,3;nan,4,2;6,1,1], ’d’)
6 5 3
2 4 2
nan 1 1

sort({’def’, ’abcd’, ’abc’})
{’abc’, ’abcd’, ’def’}

To sort the rows of an array after the first column, one can obtain the
permutation vector by sorting the first column, and use it as subscripts
on the array rows:

M = [2,4; 5,1; 3,9; 4,0]
2 4
5 1
3 9
4 0

(Ms, ix) = sort(M(:,1));
M(ix,:)
2 4
3 9
4 0
5 1

Algorithm
Shell sort.

See also
unique

squeeze

Suppression of singleton dimensions of an array.

Syntax
B = squeeze(A)

Description
squeeze(A) returns an array with the same elements as A, but where
dimensions equal to 1 are removed. The result has at least 2 dimen-
sions; row and column vectors keep their dimensions.

420 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
size(squeeze(rand(1,2,3,1,4)))
2 3 4

size(squeeze(1:5))
1 5

See also
permute, ndims

sub2ind

Conversion from row/column subscripts to single index.

Syntax
ind = sub2ind(size, i, j)
ind = sub2ind(size, i, j, k, ...)

Description
sub2ind(size,i,j) gives the single index which can be used to re-
trieve the element corresponding to the i:th row and the j:th column
of an array whose size is specified by size. size must be either a
scalar for square matrices or a vector of two elements or more for
other arrays. If i and j are arrays, they must have the same size:
the result is calculated separately for each element and has the same
size.

sub2ind also accepts sizes and subscripts for arrays with more than
2 dimensions. The number of indices must match the length of size.

Example
M = [3, 6; 8, 9];
M(2, 1)
8

sub2ind(size(M), 2, 1)
7

M(3)
8

See also
ind2sub, size

tril

Extraction of the lower triangular part of a matrix.

LME Reference — arrays 421

Syntax
L = tril(M)
L = tril(M,k)

Description
tril(M) extracts the lower triangular part of a matrix; the result is
a matrix of the same size where all the elements above the main di-
agonal are set to zero. A second argument can be used to specify
another diagonal: 0 is the main diagonal, positive values are above
and negative values below.

Examples
M = magic(3)
M =
8 1 6
3 5 7
4 9 2

tril(M)
8 0 0
3 5 0
4 9 2

tril(M,1)
8 1 0
3 5 7
4 9 2

See also
triu, diag

triu

Extraction of the upper triangular part of a matrix.

Syntax
U = triu(M)
U = triu(M,k)

Description
tril(M) extracts the upper triangular part of a matrix; the result is
a matrix of the same size where all the elements below the main di-
agonal are set to zero. A second argument can be used to specify
another diagonal; 0 is the main diagonal, positive values are above
and negative values below.

422 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
M = magic(3)
M =
8 1 6
3 5 7
4 9 2

triu(M)
8 1 6
0 5 7
0 0 2

triu(M,1)
0 1 6
0 0 7
0 0 0

See also
tril, diag

union

Set union.

Syntax
c = union(a, b)
(c, ia, ib) = union(a, b)

Description
union(a,b) gives the union of sets a and b, i.e. it gives the set of
members of sets a or b or both. Sets are any type of numeric, charac-
ter or logical arrays, or lists or cell arrays of character strings. Multiple
elements of input arguments are considered as single members; the
result is always sorted and has unique elements.

The optional second and third output arguments are vectors of in-
dices such that if (c,ia,ib)=union(a,b), then elements of c are the
elements of a(ia) or b(ib); the intersection of a(ia) and b(ib) is
empty.

Example
a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = union(a, b)
c =
{’a’,’aa’,’bbb’,’bc’,’de’,’z’}

ia =
1 3 2 4

LME Reference — arrays 423

ib =
3 1

a(ia)
{’a’,’bbb’,’bc’,’de’}

b(ib)
{’aa’,’z’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also
unique, intersect, setdiff, setxor, ismember

unique

Keep unique elements.

Syntax
v2 = unique(v1)
list2 = unique(list1)
(b, ia, ib) = unique(a)

Description
With an array argument, unique(v1) sorts its elements and removes
duplicate elements. Unless v1 is a row vector, v1 is considered as a
column vector.

With an argument which is a list of strings, unique(list) sorts its
elements and removes duplicate elements.

The optional second output argument is set to a vector of indices
such that if (b,ia)=unique(a), then b is a(ia).

The optional third output argument is set to a vector of indices such
that if (b,ia,ib)=unique(a), then a is b(ib).

Examples
(b,ia,ib) = unique([4,7,3,8,7,1,3])
b =
1 3 4 7 8

ia =
6 3 1 2 4

ib =
3 4 2 5 4 1 2

unique({’def’, ’ab’, ’def’, ’abc’})
{’ab’, ’abc’, ’def’}

424 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
sort, union, intersect, setdiff, setxor, ismember

unwrap

Unwrap angle sequence.

Syntax
a2 = unwrap(a1)
a2 = unwrap(a1, tol)
A2 = unwrap(A1, tol, dim)

Description
unwrap(a1), where a1 is a vector of angles in radians, returns a vector
a2 of the same length, with the same values modulo 2π, starting with
the same value, and where differences between consecutive values do
not exceed π. It is useful for interpolation in a discrete set of angles
and for plotting.

With two input arguments, unwrap(a1,tol) reduces the difference
between two consecutive values only if it is larger (in absolute value)
than tol. If tol is smaller than π, or the empty array [], the default
value of π is used.

With three input arguments, unwrap(A1,tol,dim) operates along
dimension dim. The result is an array of the same size as A1. The
default dimension for arrays is 1.

Example
unwrap([0, 2, 4, 6, 0, 2])
0.00 2.00 4.00 6.00 6.28 8.28

See also
mod, rem

zeros

Zero array.

Syntax
A = zeros(n)
A = zeros(n1,n2,...)
A = zeros([n1,n2,...])
A = zeros(..., type)

LME Reference — triangulation 425

Description
zeros builds an array whose elements are 0. The size of the array is
specified by one integer for a square matrix, or several integers (either
as separate arguments or in a vector) for an array of any size.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Examples
zeros([2,3])
0 0 0
0 0 0

zeros(2)
0 0
0 0

zeros(1, 5, ’uint16’)
1x5 uint16 array
0 0 0 0 0

See also
ones, cell, eye, rand, randn, repmat

10.23 Triangulation Functions

delaunay

2-d Delaunay triangulation.

Syntax
t = delaunay(x, y)
(t, e) = delaunay(x, y)

Description
delaunay(x,y) calculates the Delaunay triangulation of 2-d points
given by arrays x and y. Both arrays must have the same number
of values, m. The result is an array of three columns. Each row corre-
sponds to a triangle; values are indices in x and y.

The second output argument, if requested, is a logical vector of size
m-by-1; elements are true if the corresponding point in x and y belongs
to the convex hull of the set of points.

The Delaunay triangulation is a net of triangles which link all the
starting points in such a way that no point is included in the circum-
scribed circle of any other triangle. Triangles are "as equilateral" as
possible.

426 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Delaunay triangulation of 20 random points:

x = rand(20, 1);
y = rand(20, 1);
(t, e) = delaunay(x, y);

With Sysquake graphical functions, points belonging to the convex hull
are displayed as crosses and interior points as circles:

clf;
scale equal;
plot(x(e), y(e), ’x’);
plot(x(̃ e), y(̃ e), ’o’);

Array of vertex indices is modified to have closed triangles:

t = [t, t(:, 1)];

Triangles are displayed:

plot(x(t), y(t));

See also
delaunayn, voronoi

delaunayn

N-d Delaunay triangulation.

Syntax
t = delaunayn(x)
(t, e) = delaunayn(x)

Description
delaunayn(x) calculates the Delaunay triangulation of points given
by the rows of array x in a space of dimension size(x,2). The result
is an array with one more column. Each row corresponds to a simplex;
values are row indices in x and give the vertices of each polyhedron.

The second output argument, if requested, is a logical vector with
as many elements as rows in x; elements are true if the corresponding
point in x belongs to the convex hull of the set of points.

See also
delaunay, tsearchn, voronoin

LME Reference — triangulation 427

griddata

Data interpolation in 2-d plane.

Syntax
vi = griddata(x, y, v, xi, yi)
vi = griddata(x, y, v, xi, yi, method)

Description
griddata(x,y,v,xi,yi) interpolates values at coordinates given by
the corresponding elements of arrays xi and yi in a 2-dimension
plane. Original data are defined by corresponding elements of ar-
rays x, y, and v (which must have the same size), such that the
value at coordinate [x(i);y(i)] is v(i). The result is an array with
the same size as xi and yi where vi(j) is the value interpolated at
[xi(j);yi(j)].

All coordinates are real (imaginary components are ignored). Val-
ues v and vi can be real or complex. The result for coordinates outside
the convex hull defined by x and y is NaN.

griddata is based on Delaunay triangulation. The interpolation
method used in each triangle is linear by default, or can be specified
with an additional input argument, a string:

Argument Meaning
’0’ or ’nearest’ nearest value
’1’ or ’linear’ linear

Example
Nearest value interpolation in 2D plane of a few values v(x,y). The
plane is sampled with a regular grid with meshgrid.

x = [0.2; 1.8; 0.7; 0.9; 1.6];
y = [0.2; 0.7; 1.8; 1.1; 1.7];
v = [0.1; 0.3; 0.9; 0.5; 0.4];
(xi, yi) = meshgrid(0:0.01:2);
vi = griddata(x, y, v, xi, yi, ’0’);

In Sysquake, the result can be displayed as a contour plot. For loca-
tions where the values cannot be interpolated, i.e. outside the convex
hull defined by x and y, values are set to 0.

vi(isnan(vi)) = 0;
contour(vi, [], 20);

See also
delaunay, tsearch, griddatan, interpn

428 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

griddatan

Data interpolation in N-d space.

Syntax
vi = griddatan(x, v, xi)
vi = griddatan(x, v, xi, method)

Description
griddatan(x,v,xi) interpolates values at coordinates given by the
p rows of p-by-n array xi in an n-dimension space. Original data are
defined by m-by-n array x and m-by-1 column vector v, such that the
value at coordinate x(i,:)’ is v(i). The result is a p-by-1 column
vector vi where vi(j) is the value interpolated at xi(j,:)’.

Coordinates x and xi are real (imaginary components are ignored).
Values v and vi can be real or complex. The result for coordinates
outside the convex hull defined by x is NaN.

griddatan is based on Delaunay triangulation. The interpolation
method used in each simplex is linear by default, or can be specified
with an additional input argument, a string:

Argument Meaning
’0’ or ’nearest’ nearest value
’1’ or ’linear’ linear

Example
Linear interpolation in 2D plane of a few values v(x,y). The plane is
sampled with a regular grid with meshgrid. Since griddatan interpo-
lates a 1-dim array of points, the result is reshaped to match x and y
(compare with the example of griddata).

x = [0.2; 1.8; 0.7; 0.9; 1.6];
y = [0.2; 0.7; 1.8; 1.1; 1.7];
v = [0.1; 0.3; 0.9; 0.5; 0.4];
(xi, yi) = meshgrid(0:0.01:2);
vi = griddatan([x,y], v, [xi(:),yi(:)], ’1’);
vi = reshape(vi, size(xi));

In Sysquake, the result can be displayed as a contour plot. For loca-
tions where the values cannot be interpolated, i.e. outside the convex
hull defined by x and y, values are set to 0.

vi(isnan(vi)) = 0;
contour(vi, [], 20);

See also
delaunayn, tsearchn, griddata, interpn

LME Reference — triangulation 429

tsearch

Search of points in triangles.

Syntax
ix = tsearch(x, y, t, xi, yi)

Description

tsearch(x,y,t,xi,yi) searches in which triangle is located each
point given by the corresponding elements of arrays xi and yi.
Corresponding elements of arrays x and y represent the vertices of
the triangles, and rows of array t represent their indices in x and y;
array t is usually the result of delaunay. Dimensions of x and y, and
of xi and yi, must be equal. The result is an array with the same size
as xi and yi where each element is the row index in t of the first
triangle which contains the point, or NaN if the point is outside all
triangles (i.e. outside the convex hull of points defined by x and y if t
is a proper triangulation such as the one computed with delaunay).

Example

Search for triangles containing points [0,0] and [0,1] corresponding to
Delaunay triangulation of 20 random points:

x = randn(20, 1);
y = randn(20, 1);
t = delaunay(x, y);
xi = [0, 0];
yi = [0, 1];
ix = tsearch(x, y, t, xi, yi);

See also

tsearchn, delaunay, voronoi, griddata

tsearchn

Search of points in triangulation simplices.

Syntax
ix = tsearchn(x, t, xi)

430 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
tsearchn(x,t,xi) searches in which simplex each point given by the
rows of array xi is located. Rows of array x represent the vertices of
the simplices, and rows of array t represent their indices in x; array t
is usually the result of delaunayn. Dimensions must match: in a space
of n dimensions, x and xi have n columns, and t has n+1 columns. The
result is a column vector with one element for each row of xi, which
is the row index in t of the first simplex which contains the point, or
NaN if the point is outside all simplices (i.e. outside the convex hull of
points x if t is a proper triangulation of x such as the one computed
with delaunayn).

Example
Search for simplices containing points [0,0] and [0,1] corresponding to
Delaunay triangulation of 20 random points:

x = randn(20, 2);
t = delaunayn(x);
xi = [0, 0; 0, 1];
ix = tsearchn(x, t, xi);

See also
tsearch, delaunayn, voronoin, griddatan

voronoi

2-d Voronoi tessalation.

Syntax
(v, p) = voronoi(x, y)

Description
voronoi(x,y) calculates the Voronoi tessalation of the set of 2-d
points given by arrays x and y. Both arrays must have the same
number of values, m. The first output argument v is an array of two
columns which contains the coordinates of the vertices of the Voronoi
cells, one row per vertex. The first row contains infinity and is used as
a marker for unbounded Voronoi cells. The second output argument p
is a list of vectors of row indices in v; each element describes the
Voronoi cell corresponding to a point in x. In each cell, vertices are
sorted counterclockwise.

Voronoi tessalation is a tessalation (a partition of the plane) such
that each region is the set of points closer to one of the initial point
than to any other one. Two regions are in contact if and only if their
initial points are linked in the corresponding Delaunay triangulation.

LME Reference — triangulation 431

Example
Voronoi tessalation of 20 random points:

x = rand(20, 1);
y = rand(20, 1);
(v, p) = voronoi(x, y);

These points are displayed as crosses with Sysquake graphical func-
tions. The scale is fixed, because Voronoi polygons can have vertices
which are far away from the points.

clf;
scale(’equal’, [0,1,0,1]);
plot(x, y, ’x’);

Voronoi polygons are displayed in a loop, skipping unbounded poly-
gons. The first vertex is repeated to have closed polygons. Since plot
expects row vectors, vertex coordinates are transposed.

for p1 = p
if ãny(p1 == 1)

p1 = [p1, p1(1)];
plot(v(p1,1)’, v(p1,2)’);

end
end

See also
voronoin, delaunay

voronoin

N-d Voronoi tessalation.

Syntax
(v, p) = voronoin(x)

Description
voronoin(x) calculates the Voronoi tessalation of the set of points
given by the rows of arrays x in a space of dimension n=size(x,2).
The first output argument v is an array of n columns which contains
the coordinates of the vertices of the Voronoi cells, one row per vertex.
The first row contains infinity and is used as a marker for unbounded
Voronoi cells. The second output argument p is a list of vectors of row
indices in v; each element describes the Voronoi cell corresponding to
a point in x. In each cell, vertices are sorted by index.

432 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
voronoi, delaunayn

10.24 Integer Functions

uint8 uint16 uint32 uint64 int8 int16 int32 int64

Conversion to integer types.

Syntax
B = uint8(A)
B = uint16(A)
B = uint32(A)
B = uint64(A)
B = int8(A)
B = int16(A)
B = int32(A)
B = int64(A)

Description
The functions convert a number or an array to unsigned or signed
integers. The name contains the size of the integer in bits.

To avoid a conversion from double to integer, constant literal num-
bers should be written with a type suffix, such as 12int32. This is the
only way to specify large 64-bit numbers, because double-precision
floating-point numbers have a mantissa of 56 bits.

Constant arrays of uint8 can also be encoded in a compact way
using base64 inline data.

uint64 and int64 are not supported on platforms with tight mem-
ory constraints.

Examples
uint8(3)
3uint8

3uint8
3uint8

uint8([50:50:400])
1x8 uint8 array
50 100 150 200 250 44 94 144

@/base64 MmSWyPosXpA=
50

100
...
144

LME Reference — integers 433

int8([50:50:400])
1x8 int8 array
50 100 -106 -56 -6 44 94 -112

The base64 data above is obtained with the following expression:

base64encode(uint8([50:50:400]))

See also
double, single, char, logical, map2int

intmax

Largest integer.

Syntax
i = intmax
i = intmax(type)

Description
Without input argument, intmax gives the largest signed 32-bit inte-
ger. intmax(type) gives the largest integer of the type specified by
string type, which can be ’uint8’, ’uint16’, ’uint32’, ’uint64’,
’int8’, ’int16’, ’int32’, or ’int64’ (64-bit integers are not sup-
ported on all platforms). The result has the corresponding integer
type.

Examples
intmax
2147483647int32

intmax(’uint16’)
65535uint16

See also
intmin, realmax, flintmax, uint8 and related functions, map2int

intmin

Smallest integer.

Syntax
i = intmin
i = intmin(type)

434 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
Without input argument, intmin gives the smallest signed 32-bit inte-
ger. intmin(type) gives the largest integer of the type specified by
string type, which can be ’uint8’, ’uint16’, ’uint32’, ’uint64’,
’int8’, ’int16’, ’int32’, or ’int64’ (64-bit integers are not sup-
ported on all platforms). The result has the corresponding integer
type.

Examples
intmin
-2147483648int32

intmin(’uint16’)
0uint16

See also
intmax, realmin, uint8 and related functions, map2int

map2int

Mapping of a real interval to an integer type.

Syntax
B = map2int(A)
B = map2int(A, vmin, vmax)
B = map2int(A, vmin, vmax, type)

Description
map2int(A,vmin,vmax) converts number or array A to 8-bit unsigned
integers. Values between vmin and vmax in A are mapped linearly
to values 0 to 255. With a single input argument, the default input
interval is 0 to 1.

map2int(A,vmin,vmax,type) converts A to the specified type,
which can be any integer type given as a string: ’uint8’, ’uint16’,
’uint32’, ’uint64’, ’int8’, ’int16’, ’int32’, or ’int64’ (64-bit
integers are not supported on all platforms). The input interval is
mapped to its full range.

In all cases, input values outside the interval are clipped to the
minimum or maximum values.

Examples
map2int(-0.2:0.2:1.2)
1x5 uint8 array
0 0 51 102 153 204 255 255

LME Reference — non-linear numerical functions 435

map2int([1,3,7], 0, 10, ’uint16’)
1x3 uint16 array
6553 19660 45875

map2int([1,3,7], 0, 10, ’int16’)
1x3 int16 array
-26214 -13107 13107

See also
uint8 and related functions.

10.25 Non-Linear Numerical Functions

fminbnd

Minimum of a function.

Syntax
(x, y) = fminbnd(fun, x0)
(x, y) = fminbnd(fun, [xlow,xhigh])
(x, y) = fminbnd(..., options)
(x, y) = fminbnd(..., options, ...)
(x, y, didConverge) = fminbnd(...)

Description
fminbnd(fun,...) finds numerically a local minimum of function fun.
fun is either specified by its name or given as an anonymous or inline
function or a function reference. It has at least one input argument x,
and it returns one output argument, also a real number. fminbnd finds
the value x such that fun(x) is minimized.

Second argument tells where to search; it can be either a starting
point or a pair of values which must bracket the minimum.

The optional third argument may contain options. It is either the
empty array [] for default options, or the result of optimset.

Remaining input arguments of fminbnd, if any, are given as addi-
tional input arguments to function fun. They permit to parameterize
the function. For example fminbnd(’fun’,x0,[],2,5) calls fun as
fun(x,2,5) and minimizes its value with respect to x.

The first output argument of fminbnd is the value of x at optimum.
The second output argument, if it exists, is the value of fun(x) at op-
timum. The third output argument, if it exists, is set to true if fminbnd
has converged to an optimum, or to false if it has not; in that case,
other output arguments are set to the best value obtained. With one
or two output arguments, fminbnd throws an error if it does not con-
verge.

436 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
Minimum of a sine near 2, displayed with 15 digits:

fprintf(’%.15g\n’, fminbnd(@sin, 2));
4.712389014989218

To find the minimum of ce− sin between -1 and 10 with c = 0.1, the
expression is written as an inline function stored in variable fun:

fun = inline(’c*exp(x)-sin(x)’, ’x’, ’c’);

Then fminbnd is used, with the value of c passed as an additional
argument:

x = fminbnd(fun,[-1,10],[],0.1)
x =
1.2239

With an anonymous function, this becomes

c = 0.1;
fun = @(x) c*exp(x)-sin(x);
x = fminbnd(fun,[-1,10])
x =
1.2239

Attempt to find the minimum of an unbounded function:

(x,y,didConverge) = fminbnd(@exp,10)
x =
-inf

y =
0

didConverge =
false

See also
optimset, fminsearch, fzero, inline, operator @

fminsearch

Minimum of a function in R n̂.

Syntax
x = fminsearch(fun, x0)
x = fminsearch(..., options)
x = fminsearch(..., options, ...)
(x, y, didConverge) = fminsearch(...)

LME Reference — non-linear numerical functions 437

Description
fminsearch(fun,x0,...) finds numerically a local minimum of func-
tion fun. fun is either specified by its name or given as an anonymous
or inline function or a function reference. It has at least one input
argument x, a real scalar, vector or array, and it returns one output
argument, a scalar real number. fminsearch finds the value x such
that fun(x) is minimized, starting from point x0.

The optional third input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

Remaining input arguments of fminsearch, if any, are given as ad-
ditional input arguments to function fun. They permit to parameterize
the function. For example fminsearch(’fun’,x0,[],2,5) calls fun
as fun(x,2,5) and minimizes its value with respect to x.

The first output argument of fminsearch is the value of x at opti-
mum. The second output argument, if it exists, is the value of fun(x)
at optimum. The third output argument, if it exists, is set to true if
fminsearch has converged to an optimum, or to false if it has not; in
that case, other output arguments are set to the best value obtained.
With one or two output arguments, fminsearch throws an error if it
does not converge.

Algorithm
fminsearch implements the Nelder-Mead simplex method. It starts
from a polyhedron centered around x0 (the "simplex"). Then at each it-
eration, either vertex x_i with the maximum value fun(x_i) is moved
to decrease it with a reflexion-expansion, a reflexion, or a contraction;
or the simplex is shrinked around the vertex with minimum value. It-
erations stop when the simplex is smaller than the tolerance, or when
the maximum number of iterations or function evaluations is reached
(then an error is thrown).

Examples
Minimum of a sine near 2, displayed with 15 digits:

fprintf(’%.15g\n’, fminsearch(@sin, 2));
4.712388977408411

Maximum of e−
2y2y − 0.12 The function is defined as an anony-

mous function stored in variable fun:

fun = @(x,y) x.*exp(-(x.*y).̂ 2).*x.*y-0.1*x.̂ 2;

In Sysquake, the contour plot can be displayed with the following com-
mands:

[X,Y] = meshgrid(0:0.02:3, 0:0.02:3);
contour(feval(fun, X, Y), [0,3,0,3], 0.1:0.05:0.5);

438 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

The maximum is obtained by minimizing the opposite of the function,
rewritten to use as input a single variable in R2:

mfun = @(X) -(X(1)*exp(-(X(1)*X(2))̂ 2)*X(1)*X(2)-0.1*X(1)̂ 2);
fminsearch(mfun, [1, 2])
2.1444 0.3297

Here is another way to find this maximum, by calling fun from an
intermediate anonymous function:

fminsearch(@(X) -fun(X(1),X(2)), [1, 2])
2.1444 0.3297

For the same function with a constraint  < 1, the objective function
can be modified to return +∞ for inputs outside the feasible region
(note that we can start on the constraint boundary, but starting from
the infeasible region would probably fail):

fminsearch(@(X) X(1) < 1 ? -fun(X(1),X(2)) : inf, [1, 2])
1 0.7071

See also
optimset, fminbnd, lsqnonlin, fsolve, inline, operator @

fsolve

Solve a system of nonlinear equations.

Syntax
x = fsolve(fun, x0)
x = fsolve(..., options)
x = fsolve(..., options, ...)
(x, y, didConverge) = fsolve(...)

Description
fsolve(fun,x0,...) finds numerically a zero of function fun. fun
is either specified by its name or given as an anonymous or inline
function or a function reference. It has at least one input argument
x, a real scalar, vector or array, and it returns one output argument
y whose size should match x. fsolve attempts to find the value x
such that fun(x) is zero, starting from point x0. Depending on the
existence of any solution and on the choice of x0, fsolve may fail to
find a zero.

The optional third input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

LME Reference — non-linear numerical functions 439

Remaining input arguments of fsolve, if any, are given as addi-
tional input arguments to function fun. They permit to parameterize
the function. For example fsolve(@fun,x0,[],2,5) finds the value
of x such that the result of fun(x,2,5) is zero.

The first output argument of fsolve is the value of x at zero. The
second output argument, if it exists, is the value of fun(x) at zero;
it should be a vector or array whose elements are zero, up to the
tolerance, unless fsolve cannot find it. The third output argument, if
it exists, is set to true if fsolve has converged to a solution, or to false
if it has not; in that case, other output arguments are set to the best
value obtained. With one or two output arguments, fsolve throws an
error if it does not converge.

Algorithm
fsolve minimizes the sum of squares of the vector elements returned
by fun using the Nelder-Mead simplex method of fminsearch.

Example
One of the zeros of x1̂ 2+x2̂ 2=10, x2=exp(x1):

[x, y, didConverge] = fsolve(@(x) [x(1)̂ 2+x(2)̂ 2-10; x(2)-exp(x(1))], [0; 0])
x =
-3.1620
0.0423

y =
-0.0000
-0.0000

didConverge =
true

See also
optimset, fminsearch, fzero, inline, operator @

fzero

Zero of a function.

Syntax
x = fzero(fun,x0)
x = fzero(fun,[xlow,xhigh])
x = fzero(...,options)
x = fzero(...,options,...)

440 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
fzero(fun,...) finds numerically a zero of function fun. fun is either
specified by its name or given as an anonymous or inline function or a
function reference. It has at least one input argument x, and it returns
one output argument, also a real number. fzero finds the value x such
that fun(x)==0, up to some tolerance.

Second argument tells where to search; it can be either a starting
point or a pair of values xlow and xhigh which must bracket the zero,
such that fun(xlow) and fun(xhigh) have opposite sign.

The optional third argument may contain options. It is either the
empty array [] for the default options, or the result of optimset.

Additional input arguments of fzero are given as additional input
arguments to the function specified by fun. They permit to parame-
terize the function.

Examples
Zero of a sine near 3, displayed with 15 digits:

fprintf(’%.15g\n’, fzero(@sin, 3));
3.141592653589793

To find the solution of e = c +
p
 between 0 and 100 with c = 10, a

function f whose zero gives the desired solution is written:

function y = f(x,c)
y = exp(x) - c - sqrt(x);

Then fsolve is used, with the value of c passed as an additional argu-
ment:

x = fzero(@f,[0,100],[],10)
x =
2.4479

f(x,10)
1.9984e-15

An anonymous function can be used to avoid passing 10 as an ad-
ditional argument, which can be error-prone since a dummy empty
option arguments has to be inserted.

x = fzero(@(x) f(x,10), [0,100])
x =
2.4479

See also
optimset, fminsearch, inline, operator @, roots

LME Reference — non-linear numerical functions 441

integral

Numerical integration.

Syntax
y = integral(fun, a, b)
y = integral(fun, a, b, options)

Description
integral(fun,a,b) integrates numerically function fun between a
and b. fun is either specified by its name or given as an anonymous or
inline function or a function reference. It has a single input argument
and a single output argument, both scalar real or complex.

Options can be provided with named arguments. The following op-
tions are accepted:

Name Default Meaning
AbsTol 1e-6 maximum absolute error
RelTol 1e-3 maximum relative error
Display false statistics display

Example

∫ 2

0
te−tdt

integral(@(t) t*exp(-t), 0, 2, AbsTol=1e-9)
0.5940

See also
sum, ode45, inline, operator @

lsqcurvefit

Least-square curve fitting.

Syntax
param = lsqcurvefit(fun, param0, x, y)
param = lsqcurvefit(..., options)
param = lsqcurvefit(..., options, ...)
(param, r, didConverge) = lsqcurvefit(...)

442 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
lsqcurvefit(fun,p0,x,y,...) finds numerically the parameters of
function fun such that it provides the best fit for the curve defined by
x and y in a least-square sense. fun is either specified by its name or
given as an anonymous or inline function or a function reference. It
has at least two input arguments: p, the parameter vector, and x, a
vector or array of input data; it returns one output argument, a vector
or array the same size as x and y. Its header could be

function y = f(param, x)

lsqcurvefit finds the value p which minimizes
sum((fun(p,x)-y).̂ 2), starting from parameters p0. All values are
real.

The optional fifth input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

Remaining input arguments of lsqcurvefit, if any, are given as
additional input arguments to function fun. They permit to parameter-
ize the function. For example lsqcurvefit(’fun’,p0,x,y,[],2,5)
calls fun as fun(p,x,2,5) and find the (local) least-square solution
with respect to p.

The first output argument of lsqcurvefit is the value of p at op-
timum. The second output argument, if it exists, is the value of the
cost function at optimum. The third output argument, if it exists, is set
to true if lsqcurvefit has converged to an optimum, or to false if it
has not; in that case, other output arguments are set to the best value
obtained. With one or two output arguments, lsqcurvefit throws an
error if it does not converge.

Algorithm
Like lsqnonlin, lsqcurvefit is based on the Nelder-Mead simplex
method.

Example
Find the best curve fit of y=a*sin(b*x+c) with respect to parameters
a, b and c, where x and y are given (see the example of lsqnonlin for
another way to solve the same problem).

% assume nominal parameter values a0=2, b0=3, c0=1
a0 = 2; b0 = 3; c0 = 1;
% reset the seed of rand and randn for reproducible results
rand(’s’, 0); randn(’s’, 0);
% create x and y, with noise
x0 = rand(1, 100);
x = x0 + 0.05 * randn(1, 100);
y = a0 * sin(b0 * x0 + c0) + 0.05 * randn(1, 100);

LME Reference — non-linear numerical functions 443

% find least-square curve fit, starting from 1, 1, 1
p0 = [1; 1; 1];
p_ls = lsqcurvefit(@(p, x) p(1) * sin(p(2) * x + p(3)), p0, x, y)
p_ls =

2.0060
2.8504
1.0836

In Sysquake, the solution can be displayed with

fplot(@(x) a0 * sin(b0 * x + c0), [0,1], ’r’);
plot(x, y, ’o’);
fplot(@(x) p_ls(1)*sin(p_ls(2)*x+p_ls(3)), [min(x), max(x)]);
legend(’Nominal\nSamples\nLS fit’, ’r_kok_’);

See also
optimset, lsqnonlin, inline, operator @

lsqnonlin

Nonlinear least-square solver.

Syntax
x = lsqnonlin(fun, x0)
x = lsqnonlin(..., options)
x = lsqnonlin(..., options, ...)
(x, y, didConverge) = lsqnonlin(...)

Description
lsqnonlin(fun,x0,...) finds numerically the value such that the
sum of squares of the output vector produced by fun is a local mini-
mum. fun is either specified by its name or given as an anonymous
or inline function or a function reference. It has at least one input
argument x, a real scalar, vector or array, and it returns one output
argument, a real vector or array. Its header could be

function y = f(x)

lsqnonlin finds the value x such that sum(fun(x(:)).̂ 2) is mini-
mized, starting from point x0.

The optional third input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

Remaining input arguments of lsqnonlin, if any, are given as ad-
ditional input arguments to function fun. They permit to parameterize
the function. For example lsqnonlin(’fun’,x0,[],2,5) calls fun as

444 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

fun(x,2,5) and find the (local) least-square solution with respect to
x.

The first output argument of lsqnonlin is the value of x at opti-
mum. The second output argument, if it exists, is the value of fun(x)
at optimum. The third output argument, if it exists, is set to true if
lsqnonlin has converged to an optimum, or to false if it has not; in
that case, other output arguments are set to the best value obtained.
With one or two output arguments, lsqnonlin throws an error if it
does not converge.

Algorithm
Like fminsearch, lsqnonlin is based on the Nelder-Mead simplex
method.

Example
Find the least-square solution of a*sin(b*x+c)-y with respect to pa-
rameters a, b and c, where x and y are given (see the example of
lsqcurvefit for another way to solve the same problem).

% assume nominal parameter values a0=2, b0=3, c0=1
a0 = 2; b0 = 3; c0 = 1;
% reset the seed of rand and randn for reproducible results
rand(’s’, 0); randn(’s’, 0);
% create x and y, with noise
x0 = rand(1, 100);
x = x0 + 0.05 * randn(1, 100);
y = a0 * sin(b0 * x0 + c0) + 0.05 * randn(1, 100);
% find least-square solution, starting from 1, 1, 1
p0 = [1; 1; 1];
p_ls = lsqnonlin(@(p) p(1) * sin(p(2) * x + p(3)) - y, p0)
p_ls =
2.0060
2.8504
1.0836

In Sysquake, the solution can be displayed with

fplot(@(x) a0 * sin(b0 * x + c0), [0,1], ’r’);
plot(x, y, ’o’);
fplot(@(x) p_ls(1)*sin(p_ls(2)*x+p_ls(3)), [min(x), max(x)]);
legend(’Nominal\nSamples\nLS fit’, ’r_kok_’);

See also
optimset, fminsearch, lsqcurvefit, inline, operator @

ode23 ode45 ode23s

Ordinary differential equation integration.

LME Reference — non-linear numerical functions 445

Syntax
(t,y) = ode23(fun,[t0,tend],y0)
(t,y) = ode23(fun,[t0,tend],y0,options)
(t,y) = ode23(fun,[t0,tend],y0,options,...)
(t,y,te,ye,ie) = ode23(...)
(t,y) = ode45(fun,[t0,tend],y0)
(t,y) = ode23s(fun,[t0,tend],y0)
...

Description
ode23(fun,[t0,tend],y0) and ode45(fun,[t0,tend],y0) integrate
numerically an ordinary differential equation (ODE). Both functions are
based on a Runge-Kutta algorithm with adaptive time step; ode23 is
low-order and ode45 high-order. In most cases for non-stiff equations,
ode45 is the best method.

ode23s(fun,[t0,tend],y0) integrates numerically an ordinary
differential equation with a low-order algorithm suitable for stiff
systems.

The function to be integrated is either specified by its name or
given as an anonymous or inline function or a function reference. It
should have at least two input arguments and exactly one output ar-
gument:

function yp = f(t,y)

The function calculates the derivative yp of the state vector y at time
t.

Integration is performed over the time range specified by the sec-
ond argument [t0,tend], starting from the initial state y0. It may
stop before reaching tend if the integration step cannot be reduced
enough to obtain the required tolerance. If the function is continuous,
you can try to reduce MinStep in the options argument (see below).

The optional fourth argument may contain options. It is either the
empty array [] for the default options, or the result of odeset (the use
of a vector of option values is deprecated.)

Events generated by options Events or EventTime can be obtained
by three additional output arguments: (t,y,te,ye,ie)=... returns
event times in te, the corresponding states in ye and the correspond-
ing event identifiers in ie.

Additional input arguments of ode45 are given as additional input
arguments to the function specified by fun. They permit to parame-
terize the ODE.

ode23s needs the jacobian of the ODE. The jacobian can be passed
as a constant square matrix or as a function in the Jacobian option;
otherwise numerical approximations are computed.

446 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
Let us integrate the following ordinary differential equation (Van Der
Pol equation), parameterized by μ:

′′ = μ
�

1 − 2
�

′ − 

Let y1 =  and y2 = ′; their derivatives are

y′1 = y2

y′2 = μ
�

1 − y21
�

y2 − y1

and can be computed by the following function:

function yp = f(t, y, mu)
yp = [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)];

The following ode45 call integrates the Van Der Pol equation from 0 to
10 with the default options, starting from (0) = 2 and ′(0) = 0, with
μ = 1 (see Fig. 10.1):

(t, y) = ode45(@f, [0,10], [2;0], [], 1);

The same result can be obtained with an anonymous function:

mu=1;
(t, y) = ode45(@(t,y) [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)],
[0,10], [2;0]);

The plot command expects traces along the second dimension; con-
sequently, the result of ode45 should be transposed.

plot(t’, y’);

If μ is large, the ODE is stiff. ode23s is much more efficient.

mu=100;
(t, y) = ode23s(@(t,y) [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)],
[0,300], [2;0]);

While ode23s can be called with the same arguments as ode23 and
ode45, it is more efficient to provide a function which computes di-
rectly the jacobian of the ODE to avoid numerical approximations. The
jacobian of the Van Der Pol equations can be computed by an anony-
mous function and passed to ode23s as a named argument:

mu=100;
(t, y) = ode23s(@(t,y) [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)],
[0,300], [2;0],
Jacobian=@(t,y) [0, 1; -2*mu*y(1)*y(2)-1, mu*(1-y(1)̂ 2)]);

LME Reference — non-linear numerical functions 447

0 20

-2

0

2

Van der Pol equation, mu=1

Figure 10.1 Van der Pol equation with μ = 1 integrated with ode45

See also
odeset, integral, inline, operator @, expm

odeset

Options for ordinary differential equation integration.

Syntax
options = odeset
options = odeset(name1=value1, ...)
options = odeset(name1, value1, ...)
options = odeset(options0, name1=value1, ...)
options = odeset(options0, name1, value1, ...)

Description
odeset(name1,value1,...) creates the option argument used by
ode23, ode45 and ode23s. Options are specified with name/value
pairs, where the name is a string which must match exactly the names
in the table below. Case is significant. Alternatively, options can be
given with named arguments. Options which are not specified have
a default value. The result is a structure whose fields correspond to
each option. Without any input argument, odeset creates a structure
with all the default options. Note that ode23 etc. also interpret the
lack of an option argument, or the empty array [], as a request to
use the default values. Options can also be passed directly to them as
named arguments.

448 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

When its first input argument is a structure, odeset adds or
changes fields which correspond to the name/value pairs which
follow.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
AbsTol 1e-6 maximum absolute error
Events [] (none) state-based event function
EventTime [] (none) time-based event function
InitialStep [] (10*MinStep) initial time step
Jacobian [] (undefined) ODE jacobian
MaxStep [] (time range/10) maximum time step
MinStep [] (time range/1e6) minimum time step
NormControl false error control on state norm
OnEvent [] (none) event function
OutputFcn [] (none) output function
Past false provide past times and states
PreArg {} list of prepended input arguments
Refine [] (1, 4 for ode45) refinement factor
RelTol 1e-3 maximum relative error
Stats false statistics display

Jacobian
The jacobian is used only by ode23s. With an empty matrix, ode23s
calculates numerical approximations. If possible, it is more efficient to
provide the jacobian either as a constant square matrix if it is constant,
or as a function called by ode23s at each integration step. The function
is defined as

function J = jac(t, y)

The jacobian of vector function f(y) is the square matrix whose
columns are the partial derivatives of f with respect to y(1), y(2)
etc.

Time steps and output
Several options control how the time step is tuned during the numeric
integration. Error is calculated separately on each element of y if
NormControl is false, or on norm(y) if it is true; time steps are chosen
so that it remains under AbsTol or RelTol times the state, whichever
is larger. If this cannot be achieved, for instance if the system is stiff
and requires an integration step smaller than MinStep, integration is
aborted.

’Refine’ specifies how many points are added to the result for
each integration step. When it is larger than 1, additional points are
interpolated, which is much faster than reducing MaxStep.

LME Reference — non-linear numerical functions 449

The output function OutputFcn, if defined, is called after each step.
It is a function name in a string, a function reference, or an anonymous
or inline function, which can be defined as

function stop = outfun(tn, yn)

where tn is the time of the new samples, yn their values, and stop
a logical value which is false to continue integrating or true to stop.
The number of new samples is given by the value of Refine; when
multiple values are provided, tn is a row vector and yn is a matrix
whose columns are the corresponding states. The output function can
be used for incremental plots, for animations, or for managing large
amounts of output data without storing them in variables.

Events
Events are additional time steps at controlled time, to change instan-
taneously the states, and to base the termination condition on the
states. Time instants where events occur are either given explicitly
by EventTime, or implicitly by Events. There can be multiple streams
of events, which are checked independently and are identified by a
positive integer for Events, or a negative integer for EventTime. For
instance, for a ball which bounces between several walls, the inter-
section between each wall and the ball trajectory would be a different
event stream.

For events which occur at regular times, EventTime is an n-by-two
matrix: for each row, the first column gives the time step ts, and the
second column gives the offset to. Non-repeating events are specified
with an infinite time step ts. Events occur at time t=to+k*ts, where
k is an integer.

When event time is varying, EventTime is a function which can be
defined as

function eventTime = eventtimefun(t, y, ...)

where t is the current time, y the current state, and the ellipsis stand
for additional arguments passed to ode*. The function returns a (col-
umn) vector whose elements are the times where the next event oc-
curs. In both cases, each row corresponds to a different event stream.

For events which are based on the state, the value of a function
which depends on the time and the states is checked; the event occurs
when its sign changes. Events is a function which can be defined as

function (value, isterminal, direction) ...
= eventsfun(t, y, ...)

Input arguments are the same as for EventTime. Output arguments
are (column) vectors where each element i corresponds to an event

450 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

stream. An event occurs when value(i) crosses zero, in either
direction if direction(i)==0, from negative to nonnegative if
direction(i)>0, or from positive to nonpositive if direction(i)<0.
The event terminates integration if isterminal(i) is true. The
Events function is evaluated for each state obtained by integration;
intermediate time steps obtained by interpolation when Refine is
larger than 1 are not considered. When an event occurs, the
integration time step is reset to the initial value, and new events are
disabled during the next integration step to avoid shattering.
MaxStep should be used if events are missed when the result of
Events is not monotonous between events.

When an event occurs, function OnEvent is called if it exists. It can
be defined as

function yn = onevent(t, y, i, ...)

where i identifies the event stream (positive for events produced by
Events or negative for events produced by EventTime); and the out-
put yn is the new value of the state, immediately after the event.

The primary goal of ode* functions is to integrate states. However,
there are systems where some states are constant between events,
and are changed only when an event occurs. For instance, in a relay
with hysteresis, the output is constant except when the input over-
shoots some value. In the general case, ni states are integrated and
n-ni states are kept constant between events. The total number of
states n is given by the length of the initial state vector y0, and the
number of integrated states ni is given by the size of the output of the
integrated function. Function OnEvent can produce a vector of size n
to replace all the states, of size n-ni to replace the non-integrated
states, or empty to replace no state (this can be used to display re-
sults or to store them in a file, for instance).

Event times are computed after an integration step has been ac-
cepted. If an event occurs before the end of the integration step, the
step is shortened; event information is stored in the output arguments
of ode* te, ie and ye; and the OnEvent function is called. The output
arguments t and y of ode* contain two rows with the same time and
the state right before the event and right after it. The time step used
for integration is not modified by events.

Additional arguments
Past is a logical value which, if true, specifies that the time and state
values computed until now (what will eventually be the result of ode23,
ode45 or ode23s) are passed as additional input arguments to func-
tions called during intergration. This is especially useful for delay dif-
ferential equations (DDE), where the state at some time point in the

LME Reference — non-linear numerical functions 451

past can be interpolated from the integration results accumulated un-
til now with interp1. Assuming no additional parameters or PreArg
(see below), functions must be defined as

function yp = f(t,y,tpast,ypast)
function stop = outfun(tn,yn,tpast,ypast)
function eventTime = eventtimefun(t,y,tpast,ypast)
function (value, isterminal, direction) ...

= eventsfun(t,y,tpast,ypast)
function yn = onevent(t,y,tpast,ypast,i)
function J = jac(t,y,tpast,ypast)

PreArg is a list of additional input arguments for all functions called
during integration; they are placed before normal arguments. For ex-
ample, if its value is {1,’abc’}, the integrated function is called as
fun(1,’abc’,t,y), the output function as outfun(1,’abc’,tn,yn),
and so on.

Examples

Default options
odeset
AbsTol: 1e-6
Events: []
EventTime: []
InitialStep: []
Jacobian: []
MaxStep: []
MinStep: []
NormControl: false
OnEvent: []
OutputFcn: []
PreArg: {}
Refine: []
RelTol: 1e-3
Stats: false

Options passed as named arguments

Unless options must be stored as a whole in a variable, it is often more
convenient to pass them directly to the integration function as named
arguments. The following calls are equivalent.

(t, y) = ode45(fun, tspan, y0, odeset(’RelTol’, 1e-4));
(t, y) = ode45(fun, tspan, y0, odeset(RelTol=1e-4));
(t, y) = ode45(fun, tspan, y0, RelTol=1e-4);

452 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 5

-2

0

2

Figure 10.2 Van der Pol equation with Refine set to 1 and 4

Option Refine

ode45 is typically able to use large time steps to achieve the requested
tolerance. When plotting the output, however, interpolating it with
straight lines produces visual artifacts. This is why ode45 inserts 3
interpolated points for each calculated point, based on the fifth-order
approximation calculated for the integration (Refine is 4 by default).
In the following code, curves with and without interpolation are com-
pared (see Fig. 10.2). Note that the numbers of evaluations of the
function being integrated are the same.

mu = 1;
fun = @(t,y) [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)];
(t, y) = ode45(fun, [0,5], [2;0],

Refine=1, Stats=true);
Number of function evaluations: 289
Successful steps: 42
Failed steps (error too large): 6

size(y)
43 2

(ti, yi) = ode45(fun, [0,5], [2;0],
Stats=true);

Number of function evaluations: 289
Successful steps: 42
Failed steps (error too large): 6

size(yi)
169 2

plot(ti’, yi’, ’g’);
plot(t’, y’);

LME Reference — non-linear numerical functions 453

State-based events
For simulating a ball bouncing on the ground, an event is generated
every time the ball hits the ground, and its speed is changed instan-
taneously. Let y(1) be the height of the ball above the ground, and
y(2) its speed (SI units are used). The state-space model is

y’ = [y(2); -9.81];

An event occurs when the ball hits the ground:

value = y(1);
isterminal = false;
direction = -1;

When the event occurs, a new state is computed:

yn = [0; -damping*y(2)];

To integrate this, the following functions are defined:

function yp = ballfun(t, y, damping)
yp = [y(2); -9.81];

function (v, te, d) = ballevents(t, y, damping)
v = y(1); // event when the height becomes negative
te = false; // do not terminate
d = -1; // only for negative speeds

function yn = ballonevent(t, y, i, damping)
yn = [0; -damping*y(2)];

Ball state is integrated during 5 s (see Fig. 10.3) with

opt = odeset(Events=@ballevents,
OnEvent=@ballonevent);

(t, y) = ode45(@ballfun, [0, 5], [2; 0], opt, 1);
plot(t’, y’);

Time events with discontinuous function
If the function being integrated has discontinuities at known time in-
stants, option EventTime can be used to insure an accurate switching
time. Consider a first-order filter with input (t), where (t) = 0 for
t < 1 and (t) = 1 for t ≥ 1. The following function is defined for the
state derivative:

function yp = filterfun(t, y)
yp = -y + (t <= 1 ? 0 : 1);

A single time event is generated at t = 1:

opt = odeset(EventTime=[inf, 1]);
(t, y) = ode45(@filterfun, [0, 5], 0, opt);
plot(t’, y’);

454 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 5

-5

0

5

Bouncing ball integrated with events

Figure 10.3 Bouncing ball integrated with events

Function filterfun is integrated in the normal way until t = 1 inclu-
sive, with  = 0. This is why the conditional expression in filterfun
is less than or equal to and not less than. Then the event occurs, and
integration continues from t = 1 + ε with  = 0.

Early termination
The normal termination criterion is the final time specified in the tspan
argument of ODE solver functions. A state-based criterion can be
specified with either a state-based event Events or an output func-
tion OutputFcn. An output function can be simpler to specify, and
faster because it does not attempt to reach precisely a state-based
transition.

The next example integrates the free fall of an object until its height
becomes negative. The state contains the height in x(1) and the
height derivative (the speed) in x(2). The objects starts at rest at an
height of 10 m. The final time specified in tspan (100 s) is assumed
to be large enough. The integration terminates as soon as any new
height is negative (multiple samples are fed to OutputFcn at each
integration step if Refine>1).

fder = @(t,x) [x(2); -9.81];
x0 = [10; 0];
(t,x) = ode45(fder, [0,100], x0, OutputFcn=@(tn,xn) any(xn(:,1)<0));

Non-integrated state
For the last example, we will consider a system made of an integrator
and a relay with hysteresis in a loop. Let y(1) be the output of the

LME Reference — non-linear numerical functions 455

0 5
-1

0

1
Relay with hysteresis

Figure 10.4 Relay with hysteresis integrated with events

integrator and y(2) the output of the relay. Only y(1) is integrated:

yi’ = y(2);

An event occurs when the integrator is larger or smaller than the hys-
teresis:

value = y(1) - y(2);
isTerminal = false;
direction = sign(y(2));

When the event occurs, a new value is computed for the 2nd state:

yn = -y(2);

To integrate this, the following functions are defined:

function yp = relayfun(t, y)
yp = y(2);

function (v, te, d) = relayevents(t, y)
v = y(1) - y(2);
te = false;
d = sign(y(2));

function yn = relayonevent(t, y, i)
yn = -y(2);

The initial state is [0;1]; 0 for the integrator, and 1 for the output of
the relay. State is integrated during 5 s (see Fig. 10.4) with

(t, y) = ode45(@relayfun, [0, 5], [0; 1],
Events=@relayevents, OnEvent=@relayonevent);

plot(t’, y’);

456 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Delay differential equation
A system whose Laplace transform is Y(s)/U(s) = e−ds/(s2 + s) (first
order + integrator + delay d) is simulated with unit negative feedback.
The reference signal is 1 for t > 0. First, the open-loop system is con-
verted from transfer function to state-space, such that ′(t) = A(t) +
B(t) and y(t) = C(t − d). The closed-loop state-space model is ob-
tained by setting (t) = 1− y(t), which gives ′(t) = A(t)+BC(t−d).

Delayed state is interpolated from past results with interp1. Note
that values for t < 0 (extrapolated) are set to 0, and that values more
recent than the last result are interpolated with the state passed to f
for current t.

(A,B,C) = tf2ss(1,[1,1,0]);
d = 0.1;
x0 = zeros(length(A),1);
tmax = 10;
f = @(t,x,tpast,xpast) ...

A*x+B*(1-C*interp1([tpast;t],[xpast;x.’],t-d,’1’,0).’);
(t,x) = ode45(f, [0,tmax], x0, Past=true);

Output y can be computed from the state:

y = C * interp1(t,x,t-d,’1’,0).’;

See also
ode23, ode45, ode23s, optimset, interp1

optimset

Options for minimization and zero finding.

Syntax
options = optimset
options = optimset(name1=value1, ...)
options = optimset(name1, value1, ...)
options = optimset(options0, name1=value1, ...)
options = optimset(options0, name1, value1, ...)

Description
optimset(name1,value1,...) creates the option argument used by
fminbnd, fminsearch, fzero, fsolve, and other optimization func-
tions. Options are specified with name/value pairs, where the name
is a string which must match exactly the names in the table below.
Case is significant. Alternatively, options can be given with named ar-
guments. Options which are not specified have a default value. The

LME Reference — non-linear numerical functions 457

result is a structure whose fields correspond to each option. Without
any input argument, optimset creates a structure with all the default
options. Note that fminbnd, fminsearch, and fzero also interpret the
lack of an option argument, or the empty array [], as a request to use
the default values. Options can also be passed directly to fminbnd and
other similar functions as named arguments.

When its first input argument is a structure, optimset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
Display false detailed display
MaxFunEvals 1000 maximum number of evaluations
MaxIter 500 maximum number of iterations
TolX [] maximum relative error

The default value of TolX is eps for fzero and sqrt(eps) for
fminbnd and fminsearch.

Examples
Default options:

optimset
Display: false
MaxFunEvals: 1000
MaxIter: 500
TolX: []

Display of the steps performed to find the zero of cos between 1 and
2:

fzero(@cos, [1,2], optimset(’Display’,true))
Checking lower bound
Checking upper bound
Inverse quadratic interpolation 2,1.5649,1
Inverse quadratic interpolation 1.5649,1.571,2
Inverse quadratic interpolation 1.571,1.5708,1.5649
Inverse quadratic interpolation 1.5708,1.5708,1.571
Inverse quadratic interpolation 1.5708,1.5708,1.571

ans =
1.5708

See also
fzero, fminbnd, fminsearch, lsqnonlin, lsqcurvefit

458 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

quad

Numerical integration.

Syntax
y = quad(fun, a, b)
y = quad(fun, a, b, tol)
y = quad(fun, a, b, tol, trace)
y = quad(fun, a, b, tol, trace, ...)

Description
quad(fun,a,b) integrates numerically real function fun between a
and b. fun is either specified by its name or given as an anonymous
or inline function or a function reference.

The optional fourth argument is the requested relative tolerance of
the result. It is either a positive real scalar number or the empty ma-
trix (or missing argument) for the default value, which is sqrt(eps).
The optional fifth argument, if true or nonzero, makes quad displays
information at each step.

Additional input arguments of quad are given as additional input
arguments to function fun. They permit to parameterize the function.

Example

∫ 2

0
te−tdt

quad(@(t) t*exp(-t), 0, 2)
0.5940

Remark
Function quad is obsolete and should be replaced with integral,
which supports named options and complex numbers.

See also
integral, operator @

10.26 String Functions

base32decode

Decode base32-encoded data.

LME Reference — strings 459

Syntax
strb = base32decode(strt)

Description
base32decode(strt) decodes the contents of string strt which rep-
resents data encoded with base32. Characters which are not ’A’-’Z’,
’2’-’7’, or ’=’ are ignored. Decoding stops at the end of the string or
when ’=’ is reached.

See also
base32encode, base64decode

base32encode

Encode data using base32.

Syntax
strt = base32encode(strb)

Description
base32encode(strb) encodes the contents of string strb which rep-
resents binary data. The result contains only characters ’A’-’Z’ and
’2’-’7’, and linefeed every 56 characters. It is suitable for transmission
or storage on media which accept only uppercase letters and digits,
without ’0’ or ’1’ easy to misinterpret as letters.

Each character of encoded data represents 5 bits of binary data;
i.e. one needs eight characters for five bytes. The five bits represent
32 different values, encoded with the characters ’A’ to ’Z’ and ’2’ to
’7’ in this order. When the binary data have a length which is not a
multiple of 5, encoded data are padded with 2, 3, 5 or 6 characters ’=’
to have a multiple of 8.

Base32 encoding is an Internet standard described in RFC 4648.

Example
s = base32encode(char(0:10))
s =
AAAQEAYEAUDAOCAJBI======

d = double(base32decode(s))
d =
0 1 2 3 4 5 6 7 8 9 10

See also
base32decode, base64encode

460 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

base64decode

Decode base64-encoded data.

Syntax
strb = base64decode(strt)

Description
base64decode(strt) decodes the contents of string strt which rep-
resents data encoded with base64. Characters which are not ’A’-’Z’,
’a’-’z’, ’0’-’9’, ’+’, ’/’, or ’=’ are ignored. Decoding stops at the end of
the string or when ’=’ is reached.

See also
base64encode, base32decode

base64encode

Encode data using base64.

Syntax
strt = base64encode(strb)

Description
base64encode(strb) encodes the contents of string strb which rep-
resents binary data. The result contains only characters ’A’-’Z’, ’a’-’z’,
’0’-’9’, ’+’, ’/’, and ’=’; and linefeed every 60 characters. It is suitable
for transmission or storage on media which accept only text.

Each character of encoded data represents 6 bits of binary data;
i.e. one needs four characters for three bytes. The six bits represent
64 different values, encoded with the characters ’A’ to ’Z’, ’a’ to ’z’,
’0’ to ’9’, ’+’, and ’/’ in this order. When the binary data have a length
which is not a multiple of 3, encoded data are padded with one or two
characters ’=’ to have a multiple of 4.

Base64 encoding is an Internet standard described in RFC 2045.

Example
s = base64encode(char(0:10))
s =
AAECAwQFBgcICQo=

double(base64decode(s))
0 1 2 3 4 5 6 7 8 9 10

LME Reference — strings 461

See also
base64decode, base32encode

char

Convert an array to a character array (string).

Syntax
s = char(A)
S = char(s1, s2, ...)

Description
char(A) converts the elements of matrix A to characters, resulting in
a string of the same size. Characters are stored in unsigned 16-bit
words. The shape of A is preserved. Even if most functions ignore the
string shape, you can force a row vector with char(A(:).’).

char(s1,s2,...) concatenates vertically the arrays given as ar-
guments to produce a string matrix. If the strings do not have the
same number of columns, blanks are added to the right.

Examples
char(65:70)
ABCDEF

char([65, 66; 67, 68](:).’)
ABCD

char(’ab’,’cde’)
ab
cde

char(’abc’,[’de’;’fg’])
abc
de
fg

See also
setstr, uint16, operator :, operator .’, ischar, logical, double,
single

deblank

Remove trailing blank characters from a string.

Syntax
s2 = deblank(s1)

462 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
deblank(s1) removes the trailing blank characters from string s1.
Blank characters are spaces (code 32), tabulators (code 9), carriage
returns (code 13), line feeds (code 10), and null characters (code 0).

Example
double(’ \tAB CD\r\n\0’)
32 9 65 66 32 32 67 68 13 10 0

double(deblank(’ \tAB CD\n\r\0’)))
32 9 65 66 32 32 67 68

See also
strtrim

hmac

HMAC authentication hash.

Syntax
hash = hmac(hashtype, key, data)
hash = hmac(hashtype, key, data, type=t)

Description
hmac(hashtype,key,data) calculates the authentication hash of data
with secret key key and the method specified by hashtype: ’md5’,
’sha1’, ’sha224’, ’sha256’, ’sha384’, or ’sha512’. Both argu-
ments data and key can be strings (char arrays) which are converted
to UTF-8, or int8 or uint8 arrays. The key can be up to 64 bytes; longer
keys are truncated. The result is a string of hexadecimal digits whose
length depends on the hash method, from 32 for HMAC-MD5 to 128
for HMAC-SHA512.

Named argument type can change the output type. It can be
’uint8’ for an uint8 array of 16 or 20 bytes (raw HMAC-MD5 or HMAC-
SHA1 hash result), ’hex’ for its representation as a string of 32 or 40
hexadecimal digits (default), or base64 for its conversion to Base64 in
a string of 24 or 28 characters.

HMAC is an Internet standard described in RFC 2104.

Examples
HMAC-MD5 of ’Authenticated message’ using secret key ’secret’:

hmac(’md5’, ’secret’, ’Authenticated message’)
4f557b1f67bc4790e6e9568e2f458cf0

LME Reference — strings 463

Same result computed explicitly, with the notations of RFC 2104: B
is the block length, L is the hash length (16 for HMAC-MD5 or 20 for
HMAC-SHA1), K is the key padded with zeros to have size B, and H is
the hash function, defined here to produce a uint8 hash instead of an
hexadecimal string like the LME functions md5 or sha1.

B = 64;
L = 16;
H = @(a) uint8(sscanf(md5(a), ’%2x’)’);
key = uint8(’secret’);
data = uint8(’Authenticated message’);
K = [key, zeros(1, B - length(key), ’uint8’)];
hash = H([bitxor(K, 0x5cuint8), H([bitxor(K, 0x36uint8), data])]);
sprintf(’%.2x’, hash)

Simple implementation of the HOTP and TOTP password algorithms
(RFC 4226 and 6238) often used for two-factor authentication, with
their default parameter values. The password is assumed to be
base32-encoded.

function n = hotp(pass, cnt)
k = uint8(base32decode(pass));
c = bwrite(cnt, ’uint64;b’);
// or c=bwrite([floor(c/2̂ 32),mod(c,2̂ 32)],’uint32;b’);
hs = hmac(’sha1’, k, c, type=’uint8’);
ob = mod(hs(20), 16);
dt = mod(sread(hs(ob + (1:4)), [], ’uint32;b’), 2̂ 31);
n = mod(dt, 1e6);

function n = totp(pass)
t = floor(posixtime / 30);
n = hotp(pass, t);

Simple implementation of the PBKDF2 key stretching algorithm (RFC
2898):

function dk = pbkdf2_hmac(hashtype, p, salt, c, dkLen)
hLen = length(hmac(hashtype, ’’, ’’)) / 2;
dk = uint8([]);
for i = 1:ceil(dkLen / hLen)
u = hmac(hashtype, p, [salt, bwrite(i, ’uint32;b’)], type=’uint8’);
f = u;
for j = 2:c
u = hmac(hashtype, p, u, type=’uint8’);
f = bitxor(f, u);

end
dk = [dk, f];

end
dk = dk(1:dkLen);

Test of PBKDF2-HMAC-SHA1 with values provided in RFC 6070 (output
format is switched to hexadecimal for easier comparison):

464 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

format int x
pbkdf2_hmac_sha1(’sha1’, ’password’, ’salt’, 4096, 20)
0x4b 0x0 0x79 0x1 0xb7 0x65 0x48 0x9a 0xbe 0xad
0x49 0xd9 0x26 0xf7 0x21 0xd0 0x65 0xa4 0x29 0xc1

format

See also
md5, sha1

ischar

Test for a string object.

Syntax
b = ischar(obj)

Description
ischar(obj) is true if the object obj is a character string, false other-
wise. Strings can have more than one line.

Examples
ischar(’abc’)
true

ischar(0)
false

ischar([])
false

ischar(’’)
true

ischar([’abc’;’def’])
true

See also
isletter, isspace, isnumeric, islogical, isinteger, islist,
isstruct, setstr, char

isdigit

Test for decimal digit characters.

Syntax
b = isdigit(s)

LME Reference — strings 465

Description
For each character of string s, isdigit(s) is true if it is a digit (’0’ to
’9’) and false otherwise. The result is a logical array with the same
size as the input argument.

Examples
isdigit(’a123bAB12* ’)
F T T T F F F T T F F

See also
isletter, isspace, lower, upper, ischar

isletter

Test for letter characters.

Syntax
b = isletter(s)

Description
For each character of string s, isletter(s) is true if it is an ASCII
letter (a-z or A-Z) and false otherwise. The result is a logical array with
the same size as the input argument.

isletter gives false for letters outside the 7-bit ASCII range;
unicodeclass should be used for Unicode-aware tests.

Examples
isletter(’abAB12*’)
T T T T F F F F

See also
isdigit, isspace, lower, upper, ischar, unicodeclass

isspace

Test for space characters.

Syntax
b = isspace(s)

466 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
For each character of string s, isspace(s) is true if it is a space, a
tabulator, a carriage return or a line feed, and false otherwise. The
result is a logical array with the same size as the input argument.

Example
isspace(’a\tb c\nd’)
F T F T F T F

See also
isletter, isdigit, ischar

latex2mathml

Convert LaTeX equation to MathML.

Syntax
str = latex2mathml(tex)
str = latex2mathml(tex, mml1, mml2, ...)
str = latex2mathml(..., displaymath=b)

Description
latex2mathml(tex) converts LaTeX equation in string tex to MathML.
LaTeX equations may be enclosed between dollars or double-dollars,
but this is not mandatory. In string literals, backslash and tick charac-
ters must be escaped as \\ and \’ respectively.

With additional arguments, which must be strings containing
MathML, parameters #1, #2, ... in argument tex are converted to
argument i+1.

The following LaTeX features are supported:

– variables (each letter is a separate variable)

– numbers (sequences of digit and dot characters)

– superscripts and subscripts, prime (single or multiple)

– braces used to group subexpressions or specify arguments with
more than one token

– operators (+, -, comma, semicolon, etc.)

LME Reference — strings 467

– control sequences for character definitions, with greek
characters in lower case (\alpha, ..., \omega, \varepsilon,
\vartheta, \varphi) and upper case (\Alpha, ..., \Omega),
arrows (\leftarrow or \gets, \rightarrow or \to, \uparrow,
\downarrow, \leftrightarrow, \updownarrow, \Leftarrow,
\Rightarrow, \Uparrow, \Downarrow, \Leftrightarrow,
\Updownarrow, nwarrow, nearrow, searrow, swarrow, mapsto,
hookleftarrow, hookrightarrow, Longleftrightarrow,
longmapsto), and symbols (\|, \ell, \partial, \infty,
\emptyset, \nabla, \perp, \angle, \triangle, \backslash,
\forall, \exists, \flat, \natural, \sharp, \pm, \mp, \cdot,
\times, \star, \diamond, \cap, \cup, etc.)

– \not followed by comparison operator, such as \not< or
\not\approx

– control sequences for function definitions (\arccos, \arcsin,
\arctan, \arg, \cos, \cosh, \cot, \coth, \csc, \deg, \det, \dim,
\exp, \gcd, \hom, \inf, \injlim, \ker, \lg, \liminf, \limsup,
\ln, \log, \max, \min, \Pr, \projlim, \sec, \sin, \sinh, \sup,
\tan, \tanh) and custom functions with operatorname

– accents (\hat, \check, \tilde, \acute, grave, \dot, \ddot,
\dddot, breve, \bar, \vec, \overline, \widehat, \widetilde,
\underline)

– \left and \right

– fractions with \frac or \over

– roots with \sqrt (without optional radix) or \root...\of...

– \atop, \overset, and \underset

– large operators (\bigcap, \bigcup, \bigodot, \bigoplus,
\bigotimes, \bigsqcup, \biguplus, \bigvee, \bigwedge,
\coprod, \prod, and \sum with implicit \limits for limits below
and above the symbol; and \int, \iint, \iiint, \iiiint,
\oint, and \oiint with implicit \nolimits for limits to the right
of the symbol)

– \limits and \nolimits for functions and large operators

– matrices with \matrix, \pmatrix, \bmatrix, \Bmatrix,
\vmatrix, \Vmatrix, \begin{array}{...}.../\end{array};
values are separated with & and rows with \cr or \\

– font selection with \rm for roman, \bf for bold face, and \mit for
math italic

468 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

– color with \color{c} where c is black, red, green, blue, cyan,
magenta, yellow, white, orange, violet, purple, brown,
darkgray, gray, or lightgray

– hidden element with \phantom

– text with \hbox{...} (brace contents is taken verbatim)

– horizontal spaces with \, \: \; \quad \qquad and \!

LaTeX features not enumerated above, such as definitions and nested
text and equations, are not supported.

latex2mathml has also features which are missing in LaTeX. Uni-
code is used for both LaTeX input and MathML output. Some seman-
tics is recognized to build subexpressions which are revealed in the
resulting MathML. For instance, in x+(y+z)w, (y+z) is a subpexpres-
sions; so is (y+z)w with an implicit multiplication (resulting in the
<mo>⁢<mo> MathML operator), used as the second operand of
the addition. LaTeX code (like mathematical notation) is sometimes
ambiguous and is not always converted to the expected MathML (e.g.
a(b+c) is converted to a function call while the same notation could
mean the product of a and b+c), but this should not have any visible
effect when the MathML is typeset.

Operators can be used as freely as in LaTeX. Missing operands re-
sult in <none/>, as if there were an empty pair of braces {}. Consec-
utive terms are joined with implicit multiplications.

Named argument displaymath specifies whether the vertical
space is tight, like in inline equations surrounded by text (false), or
unconstrained, as rendered in separate lines (true). It affects the
position of some limits. The default is true.

Examples
latex2mathml(’xŷ 2’)
<mrow><mi>x</mi><mo>⁢</mo><msup><mi>y</mi><mn>2</mn></msup></mrow>

mml = latex2mathml(’\\frac{x_3+5}{x_1+x_2}’);
mml = latex2mathml(’$\\root n \\of x$’);
mml = latex2mathml(’\\pmatrix{x & \\sqrt y \\cr \\sin\\phi & \\hat\\ell}’);
mml = latex2mathml(’\\dot x = #1’, mathml([1,2;3,0], false));
mml = latex2mathml(’\\lim_{x \\rightarrow 0} f(x)’, displaymath=true)
mml = latex2mathml(’\\lim_{x \\rightarrow 0} f(x)’, displaymath=false)

See also
mathml

lower

Convert all uppercase letters to lowercase.

LME Reference — strings 469

Syntax
s2 = lower(s1)

Description
lower(s1) converts all the uppercase letters of string s1 to lowercase,
according to the Unicode Character Database.

Example
lower(’abcABC123’)
abcabc123

See also
upper, isletter

mathml

Conversion to MathML.

Syntax
str = mathml(x)
str = mathml(x, false)
str = mathml(..., Format=f, NPrec=n)

Description
mathml(x) converts its argument x to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a second
input argument equal to the logical value false can be specified to
suppress <math>.

By default, mathml converts numbers like format ’%g’ of sprintf.
Named arguments can override them: Format is a single letter format
recognized by sprintf and NPrec is the precision (number of deci-
mals).

Example
mathml(pi)
<math>
<mn>3.1416</mn>
</math>

mathml(1e-6, Format=’e’, NPrec=2)
<math>
<mrow><mn>1.00</mn><mo>·</mo><msup><mn>10</mn><mn>-6</mn></msup></mrow>
</math>

470 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
mathmlpoly, latex2mathml, sprintf

mathmlpoly

Conversion of a polynomial to MathML.

Syntax
str = mathmlpoly(pol)
str = mathmlpoly(pol, var)
str = mathmlpoly(..., power)
str = mathmlpoly(..., false)
str = mathmlpoly(..., Format=f, NPrec=n)

Description
mathmlpoly(coef) converts polynomial coefficients pol to MathML
presentation, returned as a string. The polynomial is given as a vec-
tor of coefficients, with the highest power first; e.g., 2 + 2 − 3 is
represented by [1,2,-3].

By default, the name of the variable is x. An optional second
argument can specify another name as a string, such as ’y’, or a
MathML fragment beginning with a less-than character, such as
’<mn>3</mn>’.

Powers can be specified explicitly with an additional argument, a
vector which must have the same length as the polynomial coeffi-
cients. Negative and fractional numbers are allowed; the imaginary
part, if any, is ignored.

By default, the MathML top-level element is <math>. If the re-
sult is to be used as a MathML subelement of a larger equation, an
additional input argument (the last unnamed argument) equal to the
logical value false can be specified to suppress <math>.

Named arguments format and NPrec have the same effect as with
mathml.

Examples
Simple third-order polynomial:

mathmlpoly([1,2,5,3])

Polynomial with negative powers of variable q:

c = [1, 2.3, 4.5, -2];
mathmlpoly(c, ’q’, -(0:numel(c)-1))

Rational fraction:

str = sprintf(’<mfrac>%s%s</mfrac>’,
mathmlpoly(num, false),
mathmlpoly(den, false));

LME Reference — strings 471

See also
mathml

md5

Calculate MD5 digest.

Syntax
digest = md5(strb)
digest = md5(fd)
digest = md5(..., type=t)

Description
md5(strb) calculates the MD5 digest of strb which represents binary
data. strb can be a string (only the least-significant byte of each
character is considered) or an array of bytes of class uint8 or int8.
The result is a string of 32 hexadecimal digits. It is believed to be hard
to create the input to get a given digest, or to create two inputs with
the same digest.

md5(fd) calculates the MD5 digest of the bytes read from file de-
scriptor fd until the end of the file. The file is left open.

Named argument type can change the output type. It can be
’uint8’ for an uint8 array of 16 bytes (raw MD5 hash result), ’hex’
for its representation as a string of 32 hexadecimal digits (default), or
base64 for its conversion to Base64 in a string of 24 characters.

MD5 digest is an Internet standard described in RFC 1321.

Examples
MD5 of the three characters ’a’, ’b’, and ’c’:

md5(’abc’)
900150983cd24fb0d6963f7d28e17f72

This can be compared to the result of the command tool md5 found on
many unix systems:

$ echo -n abc | md5
900150983cd24fb0d6963f7d28e17f72

The following statements calculate the digest of the file ’somefile’:

fd = fopen(’somefile’);
digest = md5(fd);
fclose(fd);

472 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
sha1, hmac

regexp regexpi

Regular expression match.

Syntax
(startIx, endIx, length, grExt) = regexp(str, re)
(startIx, endIx, grExt) = regexpi(str, re)

Description
regexp(str,re) matches regular expression re in string str. A reg-
ular expression is a string which contains meta-characters to match
classes of characters, repetitions and alternatives, as described be-
low.

Once a match is found, the remaining part of str is parsed from the
end of the previous match to find more matches. The result of regexp
is an array of start indices in str and an array of corresponding end
indices. Empty matches have a length endIx-startIx-1=0.

The third output argument, if present, is set to a list whose items
correspond to matches. Items are arrays of size 2-by-ng. Each row cor-
responds to a group, i.e. a subexpression in parentheses in the regular
expression; the first column contains the index of the first character in
str and the second column contains the index of the last character.

regexpi is similar to regexp, except that letter case is ignored.
The following regular expression elements are recognized:

Any character other than those described below Literal
match.

. (dot) Any character.

\0 Nul (0).

\t Tab (9).

\n Newline (10).

\v Vertical tab (11).

\f Form feed (12).

\r Carriage return (13).

\P where P is one of \()[]{}?*+/ P

\xNN Character whose code is NN in hexadecimal.

LME Reference — strings 473

\uNNNN Character whose code is NNNN in hexadecimal.

[...] Any of the characters in brackets. Characters can be enu-
marated (e.g. [ax2] to match a, x or 2), provided as ranges with a
hyphen (e.g. [a-c] to match a, b or c) or any combination. Caret
ˆ must not appear first; closing bracket] must appear first; and
hyphen must not be used in a way which could be interpreted as a
range.

[̂ ...] Any character not enumated in brackets (e.g. [̂ a-z] for
any character except for lowercase letters).

AB Catenation of A and B.

A|B One of A or B. | has the lowest priority: ab|c matches ab or c.

A? A (if possible) or nothing.

A* As many repetitions of A as possible, including none.

A+ As many repetitions of A as possible, at least one.

A{n} Exactly n repetitions of A.

A{n,} At least n repetitions of A (as many as possible).

A{n,m} Between n and m repetitions of A (as many as possible).

A?? Nothing (if possible) or A.

A*? As few repetitions of A as possible, including none.

A+? As few repetitions of A as possible, at least one.

A{n,}? At least n repetitions of A (as few as possible).

A{n,m}? Between n and m repetitions of A (as few as possible).

A?+, A*?, A++, A{...}+ Possessive repetitions: as many as possi-
ble, but once the maximum number has been found, does not try
less repetitions should the remaining part of the regular expression
fail to match anything.

(A) Group; matches subexpression A, which is captured for further
reference as \N.

(?:A) Group without capture; just matches subexpression A.

\N where N is a digit from 1 to 9 Character substring which was
matched by the N:th group delimited by parentheses.

ˆ Matches beginning of string.

$ Matches end of string.

474 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

\b Beginning or end of word.

(?=A) Positive lookahead: succeeds if what follows matches A with-
out consuming A.

(?!A) Negative lookahead: succeeds if what follows does not
match A without consuming A.

(?# comment) Comment (ignored).

\d Digit (can be used inside or outside brackets).

\D Not a digit (can be used inside or outside brackets).

\s White space (can be used inside or outside brackets).

\S Not white space (can be used inside or outside brackets).

\w Alphanumeric (can be used inside or outside brackets).

\W Not alphanumeric (can be used inside or outside brackets).

[:alnum:] Same as A-Za-z0-9 (must be used inside brackets, e.g.
[[:alnum:]])

[:alpha:] Same as A-Za-z (must be used inside brackets, e.g.
[[:alpha:]])

[:blank:] Same as \x20\x09, i.e. space or tab (must be used
inside brackets, e.g. [[:blank:]])

[:cntrl:] Same as \0-\x1f (must be used inside brackets, e.g.
[[:cntrl:]])

[:digit:] Same as 0-9 (must be used inside brackets, e.g.
[[:digit:]])

[:graph:] Same as \x21-\x7e, i.e. ASCII characters without
space and control characters (must be used inside brackets, e.g.
[[:graph:]])

[:lower:] Same as a-z (must be used inside brackets, e.g.
[̂ [:lower:][:digit:]] which is equivalent to [̂ a-z0-9])

[:print:] Same as \x20-\x7e, i.e. ASCII characters without con-
trol characters (must be used inside brackets, e.g. [[:print:]])

[:punct:] Same as !"#$%&’()*+,-./:;<=>?@[\]̂ _‘{|}̃ (must
be used inside brackets, e.g. [[:punct:]])

[:space:] Same as \x20\x09\x0a\x0c\x0d or \s (must be used
inside brackets, e.g. [[:space:]])

LME Reference — strings 475

[:upper:] Same as A-Z (must be used inside brackets, e.g.
[[:upper:]])

[:word:] Same as [:alnum:]_ (must be used inside brackets, e.g.
[[:word:]])

[:xdigit:] Same as 0-9A-Fa-f (must be used inside brackets,
e.g. [[:xdigit:]])

Quantifiers ?, * and +, and their lazy and possessive versions (suffixed
with ? or + respectively) have the highest priority. Priority can be
changed with parentheses, e.g. (abc)* or (a|bc)d.

Examples
Simple match without metacharacter:

(startIx, endIx) = regexp(’Some random string’, ’om’)
startIx =

2 10
endIx =

3 11

Dot to match any character:

regexp(’Some random string’, ’S..e’)
1

Anchor to end of string:

regexp(’Some random string’, ’..$’)
17

Repetition:

regexp(’Some random string’, ’r.*m’)
6

By default, repetitions are greedy (as many as possible):

(startIx, endIx) = regexp(’Some random string’, ’.*m’)
startIx =

1
endIx =
11

Lazy repetition (as few as possible):

(startIx, endIx) = regexp(’Some random string’, ’.*?m’)
startIx =

1 4
endIx =

3 11

476 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Possessive repetitions keep the largest number of repetitions which
provides a match regardless of subsequent failures:

(startIx, endIx) = regexp(’Some random string’, ’.*m ’)
startIx =

1
endIx =
12

(startIx, endIx) = regexp(’Some random string’, ’.*+m ’)
startIx =
[]

endIx =
[]

Since backslash is an escape character in LME strings, it must be es-
caped itself:

(startIx, endIx) = regexp(’Some random string’, ’\\b\\w.+?\\b’)
startIx =
1 6 13

endIx =
4 11 18

Reference to a captured group:

(startIx, endIx) = regexp(’xx-ab-ab’, ’(.+)-\\1’)
startIx =
4

endIx =
8

Positive lookahead to find words followed by a colon without picking
the colon itself:

(startIx, endIx) = regexp(’mailto:foo@example.com’, ’\\b\\w+(?=:)’)
startIx =
1

endIx =
6

Group (the extent of the whole match is ignored using placeholder
output arguments)̃:

(̃ , ,̃ grExt) = regexp(’Regexp are fun’, ’\\b(\\w+)\\s+(\\w+)\\s+(\\w+)\\b’);
grExt{1}
1 6
8 10

12 14

LME Reference — strings 477

Match ignoring case:

regexpi(’Some random string’, ’some’)
1

Case-explicit character classes are still case-significant, but character
enumerations or ranges are not:

regexpi(’Some random string’, ’̂ [[:lower:]]’)
[]

regexpi(’Some random string’, ’̂ [a-z]’)
1

See also
strfind, strtok

setstr

Conversion of an array to a string.

Syntax
str = setstr(A)

Description
setstr(A) converts the elements of array A to characters, resulting
in a string of the same size. Characters are stored in unsigned 16-bit
words.

Example
setstr(65:75)
ABCDEFGHIJK

See also
char, uint16, logical, double

sha1 sha2

Calculate SHA-1 or SHA-2 digest.

Syntax
digest = sha1(strb)
digest = sha1(fd)
digest = sha1(..., type=t)
digest = sha2(...)
digest = sha2(..., variant=v)

478 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
sha1(strb) calculates the SHA-1 digest of strb which represents bi-
nary data. strb can be a string (only the least-significant byte of each
character is considered) or an array of bytes of class uint8 or int8.
The result is a string of 40 hexadecimal digits. It is believed to be hard
to create the input to get a given digest, or to create two inputs with
the same digest.

sha1(fd) calculates the SHA-1 digest of the bytes read from file
descriptor fd until the end of the file. The file is left open.

Named argument type can change the output type. It can be
’uint8’ for an uint8 array of 20 bytes (raw SHA-1 hash result), ’hex’
for its representation as a string of 40 hexadecimal digits (default), or
base64 for its conversion to Base64 in a string of 28 characters.

SHA-1 digest is an Internet standard described in RFC 3174.
sha2 calculates the SHA-256 digest, a 256-bit variant of the SHA-

2 hash algorithm. Its arguments are the same as those of sha1. In
addition, named argument variant can specify one of the supported
SHA-2 variants: 224, 256 (default), 384, or 512.

Example
SHA-1 digest of the three characters ’a’, ’b’, and ’c’:

sha1(’abc’)
a9993e364706816aba3e25717850c26c9cd0d89d

SHA-224 digest of the empty message ’’:

sha2(’’, variant=224)
d14a028c2a3a2bc9476102bb288234c415a2b01f828ea62ac5b3e42f

See also
md5, hmac

split

Split a string.

Syntax
L = split(string, separator)

Description
split(string,separator) finds substrings of string separated by
separator and return them as a list. Empty substring are discarded.
sepatator is a string of one or more characters.

LME Reference — strings 479

Examples
split(’abc;de;f’, ’;’)
{’abc’, ’de’, ’f’}

split(’++a+++b+++’,’++’)
{’a’, ’+b’, ’+’}

See also
strfind

strcmp

String comparison.

Syntax
b = strcmp(s1, s2)
b = strcmp(s1, s2, n)

Description
strcmp(s1, s2) is true if the strings s1 and s2 are equal (i.e. same
length and corresponding characters are equal). strcmp(s1, s2, n)
compares the strings up to the n:th character. Note that this function
does not return the same result as the strcmp function of the standard
C library.

Examples
strcmp(’abc’,’abc’)
true

strcmp(’abc’,’def’)
false

strcmp(’abc’,’abd’,2)
true

strcmp(’abc’,’abd’,5)
false

See also
strcmpi, operator ===, operator =̃=, operator ==, strfind, strmatch

strcmpi

String comparison with ignoring letter case.

Syntax
b = strcmpi(s1, s2)
b = strcmpi(s1, s2, n)

480 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
strcmpi compares strings for equality, ignoring letter case. In every
other respect, it behaves like strcmp.

Examples
strcmpi(’abc’,’aBc’)
true

strcmpi(’Abc’,’abd’,2)
true

See also
strcmp, operator ===, operator =̃=, operator ==, strfind, strmatch

strfind

Find a substring in a string.

Syntax
pos = strfind(str, sub)

Description
strfind(str,sub) finds occurrences of string sub in string str and
returns a vector of the positions of all occurrences, or the empty vector
[] if there is none. Occurrences may overlap.

Examples
strfind(’ababcdbaaab’,’ab’)
1 3 10

strfind(’ababcdbaaab’,’ac’)
[]

strfind(’aaaaaa’,’aaa’)
1 2 3

See also
find, strcmp, strrep, split, strmatch, strtok

strmatch

String match.

Syntax
i = strmatch(str, strMatrix)
i = strmatch(str, strList)
i = strmatch(..., ’exact’)

LME Reference — strings 481

Description
strmatch(str,strMatrix) compares string str with each row of the
character matrix strMatrix; it returns the index of the first row whose
beginning is equal to str, or 0 if no match is found. Case is significant.

strmatch(str,strList) compares string str with each element
of list or cell array strList, which must be strings.

With a third argument, which must be the string ’exact’, str must
match the complete row or element of the second argument, not only
the beginning.

Examples
strmatch(’abc’,[’axyz’;’uabc’;’abcd’;’efgh’])
3

strmatch(’abc’,[’axyz’;’uabc’;’abcd’;’efgh’],’exact’)
0

strmatch(’abc’,{’ABC’,’axyz’,’abcdefg’,’ab’,’abcd’})
3

See also
strcmp, strfind

strrep

Replace a substring in a string.

Syntax
newstr = strrep(str, sub, repl)

Description
strrep(str,sub,repl) replaces all occurrences of string sub in string
str with string repl.

Examples
strrep(’ababcdbaaab’,’ab’,’X’)
’XXcdbaaX’

strrep(’aaaaaaa’,’aaa’,’12345’)
’1234512345a’

See also
strfind, strcmp, strmatch, strtok

strtok

Token search in string.

482 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
(token, remainder) = strtok(str)
(token, remainder) = strtok(str, separators)

Description
strtok(str) gives the first token in string str. A token is defined as
a substring delimited by separators or by the beginning or end of the
string; by default, separators are spaces, tabulators, carriage returns
and line feeds. If no token is found (i.e. if str is empty or contains
only separator characters), the result is the empty string.

The optional second output is set to what follows immediately the
token, including separators. If no token is found, it is the same as str.

An optional second input argument contains the separators in a
string.

Examples
Strings are displayed with quotes to show clearly the separators.

strtok(’ ab cde ’)
’ab’

(t, r) = strtok(’ ab cde ’)
t =
’ab’

r =
’ cde ’

(t, r) = strtok(’2, 5, 3’)
t =
’2’

r =
’, 5, 3’

See also
strmatch, strfind, strtrim

strtrim

Remove leading and trailing blank characters from a string.

Syntax
s2 = strtrim(s1)

Description
strtrim(s1) removes the leading and trailing blank characters from
string s1. Blank characters are spaces (code 32), tabulators (code 9),
carriage returns (code 13), line feeds (code 10), and null characters
(code 0).

LME Reference — strings 483

Example
double(’ \tAB CD\r\n\0’)
32 9 65 66 32 32 67 68 13 10 0

double(strtrim(’ \tAB CD\n\r\0’)))
65 66 32 32 67 68

See also
deblank, strtok

unicodeclass

Unicode character class.

Syntax
cls = unicodeclass(c)

Description
unicodeclass(c) gives the Unicode character class
(General_Category property in the Unicode Character Database) of its
argument c, which must be a single-character string. The result is
one of the following two-character strings:

Class Description Class Description
’Lu’ Letter, Uppercase ’Pi’ Punctuation, Initial qupte
’Ll’ Letter, Lowercase ’Pf’ Punctuation, Final Quote
’Lt’ Letter, Titlecase ’Po’ Punctuation, Other
’Lm’ Letter, Modifier ’Sm’ Symbol, Math
’Lo’ Letter, Other ’Sc’ Symbol, Currency
’Mn’ Mark, Non-Spcacing ’Sk’ Symbol, Modifier
’Mc’ Mark, Spacing Combining ’So’ Symbol, Other
’Me’ Mark, Enclosing ’Zs’ Separator, Spcace
’Nd’ Number, Decimal Digit ’Zl’ Separator, Line
’Nl’ Number, Letter ’Zp’ Separator, Paragraph
’No’ Number, Other ’Cc’ Other, Control
’Pc’ Punctuation, Connector ’Cf’ Other, Format
’Pd’ Punctuation, Dash ’Cs’ Other, Surrogate
’Ps’ Punctuation, Open ’Co’ Other, Private Use
’Pe’ Punctuation, Close ’Cn’ Other, Not Assigned

See also
isletter, isdigit, isspace

upper

Convert all lowercase letters to lowercase.

484 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
s2 = upper(s1)

Description
upper(s1) converts all the lowercase letters of string s1 to uppercase,
according to the Unicode Character Database.

Example
upper(’abcABC123’)
ABCABC123

See also
lower, isletter

utf32decode

Decode Unicode characters encoded with UTF-32.

Syntax
str = utf32decode(b)

Description
utf32decode(b) decodes the contents of uint32 or int32 array b which
represents Unicode characters encoded with UTF-32 (basically, Uni-
code code point). The result is a standard character array with a single
row, usually encoded with UTF-16. Invalid codes are ignored.

If all the codes in b correspond to the Basic Multilingual Plane
(16-bits, and not surrogate 0xd800-0xdfff), the result is equivalent to
char(b).

See also
utf32encode, utf8decode

utf32encode

Encode a string of Unicode characters using UTF-32.

Syntax
b = utf32encode(str)

LME Reference — strings 485

Description
utf32encode(str) encodes the contents of character array str using
UTF-32. Each Unicode character in str, made of 1 or 2 UTF-16 words,
corresponds to one UTF-32 code. The result is an array of unsigned
32-bit integers.

If all the characters in str correspond to the Basic Multilingual
Plane (16-bits, and no surrogate pairs), the result is equivalent to
uint32(str).

Examples
utf32encode(’abc’)
1x3 uint32 array
97 98 99

str = utf32decode(65872uint32);
double(str)
55296 56656

utf32encode(str)
65872uint32

See also
utf32decode, utf8encode

utf8decode

Decode Unicode characters encoded with UTF-8.

Syntax
str = utf8decode(b)

Description
utf8decode(b) decodes the contents of uint8 or int8 array b which
represents Unicode characters encoded with UTF-8. Each Unicode
character corresponds to up to 4 bytes of UTF-8 code. The result is
a standard character array with a single row; characters are usually
encoded as UTF-16, with 1 or 2 words per character. Invalid codes (for
example when the beginning of the decoded data does not correspond
to a character boundary) are ignored.

See also
utf8encode, utf32decode

utf8encode

Encode a string of Unicode characters using UTF-8.

486 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
b = utf8encode(str)

Description
utf8encode(str) encodes the contents of character array str using
UTF-8. Each Unicode character in str corresponds to up to 4 bytes of
UTF-8 code. The result is an array of unsigned 8-bit integers.

If the input string does not contain Unicode characters, the output
is invalid.

Example
b = utf8encode([’abc’, 200, 2000, 20000])
b =
1x10 uint8 array
97 98 99 195 136 223 144 228 184 160

str = utf8decode(b);
double(str)
97 98 99 200 2000 20000

See also
utf8decode, utf32encode

10.27 Quaternions

Quaternion functions support scalar and arrays of quaternions. Basic
arithmetic operators and functions are overloaded to support expres-
sions with the same syntax as for numbers and matrices.

Quaternions are numbers similar to complex numbers, but with four
components instead of two. The unit imaginary parts are named , j,
and k. A quaternion can be written  +  + jy + kz. The following
relationships hold:

2 = j2 = k2 = jk = −1

It follows that the product of two quaternions is not commutative;
for instance, j = k but j = −k.

Quaternions are convenient to represent arbitrary rotations in the
3d space. They are more compact than matrices and are easier to
normalize. This makes them suitable for simulation and control of me-
chanical systems and vehicles, such as flight simulators and robotics.

Functions below are specific to quaternions:

LME Reference — quaternions 487

Function Purpose
isquaternion test for quaternion type
q2mat conversion to rotation matrix
q2rpy conversion to attitude angles
q2str conversion to string
qimag imaginary parts
qinv element-wise inverse
qnorm scalar norm
qslerp spherical linear interpolation
quaternion quaternion creation
rpy2q conversion from attitude angles

Operators below accept quaternions as arguments:

Function Operator Purpose
ctranspose ’ conjugate transpose
eq == element-wise equality
horzcat [,] horizontal array concatenation
ldivide .\ left division
ne =̃ element-wise inequality
minus - difference
mldivide \ matrix left division
mrdivide / matrix right division
mtimes * matrix multiplication
plus + addition
rdivide ./ division
times .* multiplication
transpose .’ transpose
uminus - unary minus
uplus + unary plus
vertcat [;] vertical array concatenation

Most of these operators work as expected, like with complex scalars
and matrices. Multiplication and left/right division are not commuta-
tive. Matrix operations are not supported: operators *, /, \, and ˆ are
defined as a convenience (they are equivalent to .*, ./, .\, and .̂
respectively) and work only element-wise with scalar arguments.

Mathematical functions below accept quaternions as arguments;
with arrays of quaternions, they are applied to each element sepa-
rately.

488 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Function Purpose
abs absolute value
conj conjugate
cos cosine
exp exponential
log natural logarithm
real real part
sign quaternion sign (normalization)
sin sine
sqrt square root

Functions below performs computations on arrays of quaternions.

Function Purpose
cumsum cumulative sum
diff differences
double conversion to array of double
mean arithmetic mean
sum sum

Functions below are related to array size.

Function Purpose
beginning first subscript
cat array concatenation
end last subscript
flipdim flip array
fliplr flip left-right
flipud flip upside-down
ipermute dimension inverse permutation
isempty test for empty array
length length of vector
ndims number of dimensions
numel number of elements
permute dimension permutation
repmat array replication
reshape array reshaping
rot90 array rotation
size array size
squeeze remove singleton dimensions

Finally, functions below are related to output and assignment.

Function Purpose
disp display
dumpvar conversion to string
subsasgn assignment to subarrays or to quaternion parts
subsref reference to subarrays or to quaternion parts

Function imag is replaced with qimag which gives a quaternion with

LME Reference — quaternions 489

the real part set to zero, because there are three imaginary compo-
nents instead of one with complex numbers.

Operators and functions which accept multiple arguments convert
automatically double arrays to quaternions, ignoring the imaginary
part of complex numbers.

Conversion to numeric arrays with double adds a dimension for
the real part and the three imaginary parts. For example, converting a
scalar quaternion gives a 4-by-1 double column vector and converting
a 2-by-2 quaternion array gives a 2-by-2-by-4 double array. Real and
imaginary components can be accessed with the field access notation:
q.w is the real part of q, q.x, q.y, and q.z are its imaginary parts, and
q.v is its imaginary parts as an array similar to the result of double
but without the real part.

isquaternion

Test for a quaternion.

Syntax
b = isquaternion(q)

Description
isquaternion(q) is true if the input argument is a quaternion and
false otherwise.

Examples
isquaternion(2)
false

isquaternion(quaternion(2))
true

See also
quaternion, isnumeric

q2mat

Conversion from quaternion to rotation matrix.

Syntax
R = q2mat(q)

490 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
R=q2mat(q) gives the 3x3 orthogonal matrix R corresponding to the
rotation given by scalar quaternion q. For a vector a=[x;y;z] and
its representation as a pure quaternion aq=quaternion(x,y,z), the
rotation can be performed with quaternion multiplication bq=q*aq/q
or matrix multiplication b=R*a.

Input argument q does not have to be normalized; a quaternion cor-
responding to a given rotation is defined up to a multiplicative factor.

Example
q = rpy2q(0.1, 0.3, 0.2);
R = q2mat(q)
R =
0.9363 -0.1688 0.3080
0.1898 0.9810 0.0954

-0.2955 0.0954 0.9506
aq = quaternion(1, 2, 3);
q * aq / q
1.5228i+2.0336j+2.7469k

a = [1; 2; 3];
R * a
1.5228
2.4380
2.7469

See also
q2rpy, rpy2q, quaternion

q2rpy

Conversion from quaternion to attitude angles.

Syntax
(pitch, roll, yaw) = q2rpy(q)

Description
q2rpy(q) gives the pitch, roll, and yaw angles corresponding to the
rotation given by quaternion q. It is the inverse of rpy2q. All angles
are given in radians.

If the input argument is a quaternion array, the results are arrays
of the same size; conversion from quaternion to angles is performed
independently on corresponding elements.

See also
rpy2q, q2mat, quaternion

LME Reference — quaternions 491

q2str

Conversion from quaternion to string.

Syntax
str = q2str(q)

Description
q2str(q) converts quaternion q to its string representation, with the
same format as disp.

See also
quaternion, format

qimag

Quaternion imaginary parts.

Syntax
b = qimag(q)

Description
qimag(q) gives the imaginary parts of quaternion q as a quaternion,
i.e. the same quaternion where the real part is set to zero. real(q)
gives the real part of quaternion q as a double number.

Example
q = quaternion(1,2,3,4)
q =
1+2i+3j+4k

real(q)
1

qimag(q)
2i+3j+4k

See also
quaternion

qinv

Quaternion element-wise inverse.

492 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
b = qinv(q)

Description
qinv(q) gives the inverse of quaternion q. If its input argument is a
quaternion array, the result is an quaternion array of the same size
whose elements are the inverse of the corresponding elements of the
input.

The inverse of a normalized quaternion is its conjugate.

Example
q = quaternion(0.4,0.1,0.2,0.2)
q =
0.4+0.1i+0.2j+0.2k

p = qinv(q)
p =
1.6-0.4i-0.8j-0.8k

abs(q)
0.5

abs(p)
2

See also
quaternion, qnorm, conj

qnorm

Quaternion scalar norm.

Syntax
n = qnorm(q)

Description
qnorm(q) gives the norm of quaternion q, i.e. the sum of squares of
its components, or the square of its absolute value. If q is an array of
quaternions, qnorm gives a double array of the same size where each
element is the norm of the corresponding element of q.

See also
quaternion, abs

qslerp

Quaternion spherical linear interpolation.

LME Reference — quaternions 493

Syntax
q = qslerp(q1, q2, t)

Description
qslerp(q1,q2,t) performs spherical linear interpolation between
quaternions q1 and q2. The result is on the smallest great circle arc
defined by normalized q1 and q2 for values of real number t between
0 and 1.

If q1 or q2 is 0, the result is NaN. If they are opposite, the great
circle arc going through 1, or 1i, is picked.

If input arguments are arrays of compatible size (same size or
scalar), the result is a quaternion array of the same size; conversion
from angles to quaternion is performed independently on
corresponding elements.

Example
q = qslerp(1, rpy2q(0, 1, -1.5), [0, 0.33, 0.66, 1]);
(roll, pitch, yaw) = q2rpy(q)
roll =
0.0000 0.1843 0.2272 0.0000

pitch =
0.0000 0.3081 0.6636 1.0000

yaw =
0.0000 -0.4261 -0.8605 -1.5000

See also
quaternion, rpy2q, q2rpy

quaternion

Quaternion creation.

Syntax
q = quaternion
q = quaternion(w)
q = quaternion(c)
q = quaternion(x, y, z)
q = quaternion(w, x, y, z)
q = quaternion(w, v)

Description
With a real argument, quaternion(x) creates a quaternion object
whose real part is w and imaginary parts are 0. With a complex

494 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

argument, quaternion(c) creates the quaternion object
real(c)+i*imag(c).

With four real arguments, quaternion(w,x,y,z) creates the
quaternion object w+i*x+j*y+k*z.

With three real arguments, quaternion(x,y,z) creates the pure
quaternion object i*x+j*y+k*z.

In all these cases, the arguments may be scalars or arrays of the
same size.

With two arguments, quaternion(w,v) creates a quaternion object
whose real part is w and imaginary parts is array v. v must have one
more dimension than w for the three imaginary parts.

Without argument, quaternion returns the zero quaternion object.
The real or imaginary parts of a quaternion can be accessed with

field access, such as q.w, q.x, q.y, q.z, and q.v.

Examples
q = quaternion(1, 2, 3, 4)
q =
1+2i+3j+4k

q + 5
6+2i+3j+4k

q * q
-28+4i+6j+8k

Q = [q, 2; 2*q, 5]
2x2 quaternion array

Q.y
3 0
6 0

q = quaternion(1, [5; 3; 7])
q =
1+5i+3j+7k

q.v
5
3
7

See also
real, qimag, q2str, rpy2q

rpy2q

Conversion from attitude angles to quaternion.

Syntax
q = rpy2q(pitch, roll, yaw)

LME Reference — quaternions 495

Description

rpy2q(pitch,roll,yaw) gives the quaternion corresponding to a
rotation of angle yaw around the z axis, followed by a rotation of
angle pitch around the y axis, followed by a rotation of angle roll
round the x axis. All angles are given in radians. The result is a
normalized quaternion whose real part is cos(ϑ/2) and imaginary part
sin(ϑ/2)

�

 + yj + zk
�

, for a rotation of ϑ around unit vector
�

 y z
�T . The rotation is applied to a point [ y z]T given as a pure

quaternion  =  + yj + zk, giving point  also as a pure quaternion;
then b=q*a/q and a=q\b*q. The rotation can also be seen as
changing coordinates from body to absolute, where the body’s
attitude is given by pitch, roll and yaw.

In order to have the usual meaning of pitch, roll and yaw, the x axis
must be aligned with the direction of motion, the y axis with the lateral
direction, and the z axis with the vertical direction, with the usual sign
conventions for cross products. Two common choices are x pointing
forward, y to the left, and z upward; or x forward, y to the right, and z
downward.

If input arguments are arrays of compatible size (same size or
scalar), the result is a quaternion array of the same size; conversion
from angles to quaternion is performed independently on
corresponding elements.

Example

Conversion of two vectors from aircraft coordinates (x axis forward, y
axis to the left, z axis upward) to earth coordinates (x directed to the
north, y to the west, z to the zenith). In aircraft coordinates, vectors
are [2;0;0] (propeller position) and [0;5;0] (left wing tip). The air-
craft attitude has a pitch of 10 degrees upward, i.e. -10 degrees with
the choice of axis, and null roll and yaw.

q = rpy2q(0, -10*pi/180, 0)
q =
0.9962-0.0872j

q * quaternion(2, 0, 0) / q
1.9696i+0.3473k

q * quaternion(0, 5, 0) / q
5j

See also

q2rpy, q2mat, quaternion

496 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

10.28 List Functions

apply

Function evaluation with arguments in lists.

Syntax
listout = apply(fun, listin)
listout = apply(fun, listin, nargout)
listout = apply(fun, listin, na)
listout = apply(fun, listin, nargout, na)

Description
listout=apply(fun,listin) evaluates function fun with input argu-
ments taken from the elements of list listin. Output arguments are
grouped in list listout. Function fun is specified by either its name
as a string, a function reference, or an anonymous or inline function.

The number of expected output arguments can be specified with
an optional third input argument nargout. By default, the maximum
number of output arguments is requested, up to 256; this limit exists
to prevent functions with an unlimited number of output arguments,
such as deal, from filling memory.

With a 4th argument na (or 3rd if nargout is not specified), named
arguments can be provided as a structure.

Examples
apply(@size, {magic(3)}, 2)
{3, 3}

apply(@(x,y) 2*x+3*y, {5, 10})
{40}

The maximum number of output arguments of min is 2 (minimum
value and its index):

apply(@min, {[8, 3, 4, 7]})
{3, 2}

Two equivalent ways of calling disp with a named argument fd to
specify the standard error file descriptor 2:

disp(123, fd=2);
apply(@disp, {123}, 0, {fd=2});

See also
map, feval, inline, operator @, varargin, namedargin, varargout

LME Reference — lists 497

join

List concatenation.

Syntax
list = join(l1, l2, ...)

Description
join(l1,l2,...) joins elements of lists l1, l2, etc. to make a larger
list.

Examples
join({1,’a’,2:5}, {4,2}, {{’xxx’}})
{1,’a’,[2,3,4,5],4,2,{’xxx’}}

join()
{}

See also
operator ,, operator ;, replist

islist

Test for a list object.

Syntax
b = islist(obj)

Description
islist(obj) is true if the object obj is a list, false otherwise.

Examples
islist({1, 2, ’x’})
true

islist({})
true

islist([])
false

ischar(’’)
false

See also
isstruct, isnumeric, ischar, islogical, isempty

498 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

list2num

Conversion from list to numeric array.

Syntax
A = list2num(list)

Description
list2num(list) takes the elements of list, which must be numbers
or arrays, and concatenates them on a row (along second dimension)
as if they were placed inside brackets and separated with commas.
Element sizes must be compatible.

Example
list2num({1, 2+3j, 4:6})
1 2+3j 4 5 6

See also
num2list, operator [], operator ,

map

Function evaluation for each element of a list

Syntax
(listout1,...) = map(fun, listin1, ...)

Description
map(fun,listin1,...) evaluates function fun successively for each
corresponding elements of the remaining arguments, which must be
lists or cell arrays. It returns the result(s) of the evaluation as list(s)
or cell array(s) with the same size as inputs. Input lists which contain
a single element are repeated to match other arguments if necessary.
Function fun is specified by either its name as a string, a function
reference, or an anonymous or inline function.

Examples
map(’max’, {[2,6,4], [7,-1], 1:100})
{6, 7, 100}

map(@(x) x+10, {3,7,16})
{13, 17, 26}

(nr, nc) = map(@size, {1,’abc’,[4,7;3,4]})

LME Reference — lists 499

nr =
{1,1,2}

nc =
{1,3,2}

s = map(@size, {1,’abc’,[4,7;3,4]})
s =
{[1,1], [1,3], [2,2]}

map(@disp, {’hello’, ’lme’})
hello
lme

Lists with single elements are expanded to match the size of other
lists. The following example computes atan2(1,2) and atan2(1,3):

map(@atan2, {1}, {2,3})
{0.4636,0.3218}

See also
apply, cellfun, for, inline, operator @

num2list

Conversion from array to list.

Syntax
list = num2list(A)
list = num2list(A, dim)

Description
num2list(A) creates a list with the elements of non-cell array A.

num2list(A,dim) cuts array A along dimension dim and creates a
list with the result.

Examples
num2list(1:5)
{1, 2, 3, 4, 5}

num2list([1,2;3,4])
{1, 2, 3, 4}

num2list([1, 2; 3, 4], 1)
{[1, 2], [3, 4]}

num2list([1, 2; 3, 4], 2)
{[1; 3], [2; 4]}

See also
list2num, num2cell

500 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

replist

Replicate a list.

Syntax
listout = replist(listin, n)

Description
replist(listin,n) makes a new list by concatenating n copies of list
listin.

Example
replist({1, ’abc’}, 3)
{1,’abc’,1,’abc’,1,’abc’}

See also
join, repmat

10.29 Structure Functions

cell2struct

Convert a cell array to a structure array.

Syntax
SA = cell2struct(CA, fields)
SA = cell2struct(CA, fields, dim)

Description
cell2struct(CA,fields) converts a cell array to a structure
array. The size of the result is size(SA)(2:end), where nf is the
number of fields. Field SA(i1,i2,...).f of the result contains cell
CA{j,i1,i2,...}, where f is field field{j}. Argument fields
contains the field names as strings.

With a third input argument, cell2struct(CA,fields,dim) picks
fields of each element along dimension dim. The size of the result is
the size of CA where dimension dim is removed.

Examples
SA = cell2struct({1, ’ab’; 2, ’cde’}, {’a’, ’b’});
SA = cell2struct({1, 2; ’ab’, ’cde’}, {’a’, ’b’}, 2);

LME Reference — structures 501

See also
struct2cell

fieldnames

List of fields of a structure.

Syntax
fields = fieldnames(strct)

Description
fieldnames(strct) returns the field names of structure strct as a
list of strings.

Example
fieldnames({a=1, b=1:5})
{’a’, ’b’}

See also
struct, isfield, orderfields, rmfield

getfield

Value of a field in a structure.

Syntax
value = getfield(strct, name)

Description
getfield(strct,name) gets the value of field name in structure
strct. It is an error if the field does not exist. getfield(s,’f’)
gives the same value as s.f. getfield is especially useful when the
field name is not fixed, but is stored in a variable or is the result of an
expression.

See also
operator ., struct, setfield, rmfield

isfield

Test for the existence of a field in a structure.

502 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
b = isfield(strct, name)

Description
isfield(strct, name) is true if the structure strct has a field whose
name is the string name, false otherwise.

Examples
isfield({a=1:3, x=’abc’}, ’a’)
true

isfield({a=1:3, x=’abc’}, ’A’)
false

See also
fieldnames, isstruct, struct

isstruct

Test for a structure object.

Syntax
b = isstruct(obj)

Description
isstruct(obj) is true if its argument obj is a structure or structure
array, false otherwise.

Examples
isstruct({a=123})
true

isstruct({1, 2, ’x’})
false

a.f = 3;
isstruct(a)
true

See also
struct, isfield, isa, islist, ischar, isobject, islogical

orderfields

Reorders the fields of a structure.

LME Reference — structures 503

Syntax
strctout = orderfields(strctin)
strctout = orderfields(strctin, structref)
strctout = orderfields(strctin, names)
strctout = orderfields(strctin, perm)
(strctout, perm) = orderfields(...)

Description

With a single input argument, orderfields(strctin) reorders struc-
ture fields by sorting them by field names.

With two input arguments, orderfields reorders the fields of the
first argument after the second argument. Second argument can be
a permutation vector containing integers from 1 to length(strctin),
another structure with the same field names, or a list of names. In the
last cases, all the fields of the structure must be present in the second
argument.

The (first) output argument is a structure with the same fields and
the same value as the first input argument; the only difference is the
field order. An optional second output argument is set to the permu-
tation vector.

Examples
s = {a=123, c=1:3, b=’abcde’}
s =
a: 123
c: real 1x3
b: ’abcde’

(t, p) = orderfields(s)
t =
a: 123
b: ’abcde’
c: real 1x3

p =
1
3
2

t = orderfields(s, {’c’, ’b’, ’a’})
t =
c: real 1x3
b: ’abcde’
a: 123

See also

struct, fieldnames

504 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

rmfield

Deletion of a field in a structure.

Syntax
strctout = rmfield(strctin, name)

Description
strctout=rmfield(strctin,name) makes a structure strctout with
the same fields as strctin, except for field named name which is re-
moved. If field name does not exist, strctout is the same as strctin.

Example
x = rmfield({a=1:3, b=’abc’}, ’a’);
fieldnames(x)
b

See also
struct, setfield, getfield, orderfields

setfield

Assignment to a field in a structure.

Syntax
strctout = setfield(strctin, name, value)

Description
strctout=setfield(strctin,name,value) makes a structure
strctout with the same fields as strctin, except that field
named name is added if it does not exist yet and is set to
value. s=setfield(s,’f’,v) has the same effect as s.f=v;
s=setfield(s,str,v) has the same effect as s.(str)=v.

See also
operator ., struct, getfield, rmfield

struct

Creation of a structure

LME Reference — structures 505

Syntax
strct = struct(field1=value1, field2=value2, ...)
strct = struct(fieldname1, value1, fieldname2, value2, ...)
strct = {field1=value1, field2=value2, ...}

Description
struct builds a new structure. With named arguments, the name of
each argument is used as the field name. Otherwise, input arguments
are used by pairs to create the fields; for each pair, the first argument
is the field name, provided as a string, and the second one is the field
value.

Instead of named arguments, a more compact notation consists in
writing named values between braces. In that case, all values must
be named; when no value has a name, a list is created, and mixed
named and unnamed values are invalid. Fields are separated by com-
mas; semicolons separate elements of n-by-1 struct arrays. See the
documentation of braces for more details.

Examples
Three equivalent ways to create a structure with two fields a and b:

x = {a=1, b=2:5};
x = struct(a=1, b=2:5);
x = struct(’a’, 1, ’b’, 2:5);
x.a
1

x.b
2 3 4 5

See also
structarray, isstruct, isfield, rmfield, fieldnames, operator {}

struct2cell

Convert a structure array to a cell array.

Syntax
CA = struct2cell(SA)

Description
struct2cell(SA) converts a structure or structure array to a cell
array. The size of the result is [nf,size(SA)], where nf is the
number of fields. Cell CA{j,i1,i2,...} of the result contains field
SA(i1,i2,...).f, where f is the j:th field.

506 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
SA = cell2struct({1, ’ab’; 2, ’cde’}, {’a’, ’b’});
CA = struct2cell(SA);

See also
cell2struct

structarray

Create a structure array.

Syntax
SA = structarray(field1=A1, field2=A2, ...)
SA = structarray(fieldname1, A1, fieldname2, A2, ...)

Description
structarray builds a new structure array. With named arguments,
the name of each argument is used as the field name, and the value
is a cell array whose elements become the corresponding values in
the result. Otherwise, input arguments are used by pairs to create the
fields; for each pair, the first argument is the field name, provided as
a string, and the second one is the field values as a cell array.

In both cases, all cell arrays must have the same size; the resulting
structure array has the same size.

Example
The following assignments produce the same result:

SA = structarray(a = {1,2;3,4}, b = {’a’, 1:3; ’def’, true});
SA = structarray(’a’, {1,2;3,4}, ’b’, {’a’, 1:3; ’def’, true});

See also
struct, cell2struct

structmerge

Merge the fields of two structures.

Syntax
S = structmerge(S1, S2)

LME Reference — objects 507

Description
structmerge(S1,S2) merges the fields of S1 and S2, producing a new
structure containing the fields of both input arguments. More pre-
cisely, to build the result, structmerge starts with S1; each field which
also exists in S2 is set to the value in S2; and finally, fields in S2 which
do not exist in S1 are added.

If S1 and/or S2 are structure arrays, they must have the same size
or one of them must be a simple structure (size 1x1). The result is
a structure array of the same size where each element is obtained
separately from the corresponding elements of S1 and S2; a simple
structure argument is reused as necessary.

Examples
S = structmerge({a=2}, {b=3})
S =
a: 2
b: 3

S = structmerge({a=1:3, b=4}, {a=’AB’, c=10})
S =
a: ’AB’
b: 4
c: 10

See also
fieldnames, setfield, cat

10.30 Object Functions

class

Object creation.

Syntax
object = class(strct, ’classname’)
object = class(strct, ’classname’, parent1, ...)
str = class(object)

Description
class(strct,’classname’) makes an object of the specified class
with the data of structure strct. Object fields can be accessed
only from methods of that class, i.e. functions whose name is
classname::methodname. Objects must be created by the class
constructor classname::classname.

508 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

class(strct,’classname’,parent1,...) makes an object of the
specified class which inherits fields and methods from one or several
other object(s) parent1, ... Parent objects are inserted as additional
fields in the object, with the same name as the class. Fields of parent
objects cannot be directly accessed by the new object’s methods, only
by the parent’s methods.

class(object) gives the class of object as a string. The table
below gives the name of native types.

Class Native type
double real or complex double scalar or array
single real or complex single scalar or array
int8/16/32/64 8/16/32/64-bit signed integer scalar or array
uint8/16/32/64 8/16/32/64-bit unsigned integer scalar or array
logical logical scalar or array
char character or character array
list list
cell cell array
struct scalar structure
structarray structure array
inline inline function
funref function reference
null null value

Examples
o1 = class({fld1=1, fld2=rand(4)}, ’c1’);
o2 = class({fld3=’abc’}, ’c2’, o1);
class(o2)
c2

See also
struct, inferiorto, superiorto, isa, isobject, methods

inferiorto

Set class precedence.

Syntax
inferiorto(’class1’, ...)

Description
Called in a constructor, inferiorto(’class1’,...) specifies that
the class has a lower precedence than classes whose names are given
as input arguments. Precedence is used when a function has object
arguments of different classes: the method defined for the class with
the highest precedence is called.

LME Reference — objects 509

See also
superiorto, class

isa

Test for an object of a given class.

Syntax
b = isa(object,’classname’)

Description
isa(object,’classname’) returns true of object is an object of class
class, directly or by inheritance. In addition to the class names given
by class, the following classes are supported:

Class Native type
cell list or cell array
numeric double, single or integer scalar or array
float double or single scalar or array
integer integer scalar or array

Example
isa(pi,’double’)
true

See also
class, isobject, methods

isnull

Test for a null value.

Syntax
b = isnull(a)

Description
isnull(a) returns true if a is the null value created with null, or false
for any value of any other type.

See also
class, null

510 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

isobject

Test for an object.

Syntax
b = isobject(a)

Description
object(a) returns true if a is an object created with class.

See also
class, isa, isstruct

methods

List of methods for a class.

Syntax
methods classname
list = methods(’classname’)

Description
methods classname displays the list of methods defined for class
classname. Inherited methods and private methods are ignored.
With an output argument, methods gives produces a list of strings.

See also
class, info

null

Null value.

Syntax
obj = null

Description
null gives the only value of the null data type. It stands for the lack
of any value. Null values can be tested with isnull or with equality
or inequality operators == and =̃.

With an input argument, null(A) gives the null space of matrix A.

LME Reference — objects 511

Examples
n = null
n =
null

isnull(n)
true

n == null
true

n =̃ null
false

class(n)
null

See also

isnull, null (linear algebra)

superclasses

Get list of superclasses.

Syntax
list = superclasses(obj)

Description

superclasses(obj) gives the list of the names of parent classes (su-
perclasses) of the object obj. Parent classes are specified as additional
arguments to class when the object is constructed.

Example
use lti;
G = tf(1, [1, 2]);
class(G)
tf

superclasses(G)
{’lti’}

isa(G, ’lti’)
true

See also

class, isa

512 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

10.31 Logical Functions

all

Check whether all the elements are true.

Syntax
v = all(A)
v = all(A,dim)
b = all(v)

Description
all(A) performs a logical AND on the elements of the columns of array
A, or the elements of a vector. If a second argument dim is provided,
the operation is performed along that dimension.

all can be omitted if its result is used by if or while, because
these statements consider an array to be true if all its elements are
nonzero.

Examples
all([1,2,3] == 2)
false

all([1,2,3] > 0)
true

See also
any, operator &, bitall

any

Check whether any element is true.

Syntax
v = any(A)
v = any(A,dim)
b = any(v)

Description
any(A) performs a logical OR on the elements of the columns of array
A, or the elements of a vector. If a second argument dim is provided,
the operation is performed along that dimension.

LME Reference — logical functions 513

Examples
any([1,2,3] == 2)
true

any([1,2,3] > 5)
false

See also
all, operator |, bitany

bitall

Check whether all the corresponding bits are true.

Syntax
v = bitall(A)
v = bitall(A,dim)
b = bitall(v)

Description
bitall(A) performs a bitwise AND on the elements of the columns
of array A, or the elements of a vector. If a second argument dim is
provided, the operation is performed along that dimension. A can be
a double or an integer array. For double arrays, bitall uses the 32
least-significant bits.

Examples
bitall([5, 3])
1

bitall([7uint8, 6uint8; 3uint8, 6uint8], 2)
2x1 uint8 array
6
2

See also
bitany, all, bitand

bitand

Bitwise AND.

Syntax
c = bitand(a, b)

514 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
Each bit of the result is the binary AND of the corresponding bits of the
inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If the input arguments are of type double, so is the result,
and the operation is performed on 32 bits.

Examples
bitand(1,3)
1

bitand(1:6,1)
1 0 1 0 1 0

bitand(7uint8, 1234int16)
2int16

See also
bitor, bitxor, bitall, bitget

bitany

Check whether any of the corresponding bits is true.

Syntax
v = bitany(A)
v = bitany(A,dim)
b = bitany(v)

Description
bitany(A) performs a bitwise OR on the elements of the columns of
array A, or the elements of a vector. If a second argument dim is
provided, the operation is performed along that dimension. A can be
a double or an integer array. For double arrays, bitany uses the 32
least-significant bits.

Examples
bitany([5, 3])
7

bitany([0uint8, 6uint8; 3uint8, 6uint8], 2)
2x1 uint8 array
6
7

See also
bitall, any, bitor

LME Reference — logical functions 515

bitcmp

Bit complement (bitwise NOT).

Syntax
b = bitcmp(i)
b = bitcmp(a, n)

Description
bitcmp(i) gives the 1-complement (bitwise NOT) of the integer i.

bitcmp(a,n), where a is an integer or a double, gives the
1-complement of the n least-significant bits. The result has the same
type as a.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If a is of type double, so is the result, and the operation is
performed on at most 32 bits.

Examples
bitcmp(1,4)
14

bitcmp(0, 1:8)
1 3 7 15 31 63 127 255

bitcmp([0uint8, 1uint8, 255uint8])
1x3 uint8 array
255 254 0

See also
bitxor, operator ˜

bitget

Bit extraction.

Syntax
b = bitget(a, n)

Description
bitget(a, n) gives the n:th bit of integer a. a can be an integer or
a double. The result has the same type as a. n=1 corresponds to the
least significant bit.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If a is of type double, so is the result, and n is limited to 32.

516 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
bitget(123,5)
1

bitget(7, 1:8)
1 1 1 0 0 0 0 0

bitget(5uint8, 2)
0uint8

See also
bitset, bitand, bitshift

bitor

Bitwise OR.

Syntax
c = bitor(a, b)

Description
The input arguments are converted to 32-bit unsigned integers; each
bit of the result is the binary OR of the corresponding bits of the inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If the input arguments are of type double, so is the result,
and the operation is performed on 32 bits.

Examples
bitor(1,2)
3

bitor(1:6,1)
1 3 3 5 5 7

bitor(7uint8, 1234int16)
1239int16

See also
bitand, bitxor, bitany, bitget

bitset

Bit assignment.

Syntax
b = bitset(a, n)
b = bitset(a, n, v)

LME Reference — logical functions 517

Description
bitset(a,n) sets the n:th bit of integer a to 1. a can be an integer or
a double. The result has the same type as a. n=1 corresponds to the
least significant bit. With 3 input arguments, bitset(a,n,v) sets the
bit to 1 if v is nonzero, or clears it if v is zero.

The inputs can be scalar, arrays of the same size, or a mix of them.
If a is of type double, so is the result, and n is limited to 32.

Examples
bitset(123,10)
635

bitset(123, 1, 0)
122

bitset(7uint8, 1:8)
1x8 uint8 array
7 7 7 15 23 39 71 135

See also
bitget, bitand, bitor, bitxor, bitshift

bitshift

Bit shift.

Syntax
b = bitshift(a, shift)
b = bitshift(a, shift, n)

Description
The first input argument is converted to a 32-bit unsigned integer, and
shifted by shift bits, to the left if shift is positive or to the right if it
is negative. With a third argument n, only n bits are retained.

The inputs can be scalar, arrays of the same size, or a mix of both.

Examples
bitshift(1,3)
8

bitshift(8, -2:2)
2 4 8 16 32

bitshift(15, 0:3, 4)
15 14 12 8

See also
bitget

518 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

bitxor

Bitwise exclusive OR.

Syntax
c = bitxor(a, b)

Description
The input arguments are converted to 32-bit unsigned integers; each
bit of the result is the binary exclusive OR of the corresponding bits of
the inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array.

Examples
bitxor(1,3)
2

bitxor(1:6,1)
0 3 2 5 4 7

bitxor(7uint8, 1234int16)
1237int16

See also
bitcmp, bitand, bitor, bitget

false

Boolean constant false.

Syntax
b = false
B = false(n)
B = false(n1, n2, ...)
B = false([n1, n2, ...])

Description
The boolean constant false can be used to set the value of a variable.
It is equivalent to logical(0). The constant 0 is equivalent in many
cases; indices (to get or set the elements of an array) are an important
exception.

With input arguments, false builds a logical array whose elements
are false. The size of the array is specified by one integer for a square
matrix, or several integers (either as separate arguments or in a vec-
tor) for an array of any size.

LME Reference — logical functions 519

Examples
false
false

islogical(false)
true

false(2,3)
F F F
F F F

See also
true, logical, zeros

graycode

Conversion to Gray code.

Syntax
g = graycode(n)

Description
graycode(n) converts the integer number n to Gray code. The argu-
ment n can be an integer number of class double (converted to an
unsigned integer) or any integer type. If it is an array, conversion is
performed on each element. The result has the same type and size as
the input.

Gray code is an encoding which maps each integer of s bits to
another integer of s bits, such that two consecutive codes (i.e.
graycode(n) and graycode(n+1) for any n) have only one bit which
differs.

Example
graycode(0:7)
0 1 3 2 6 7 5 4

See also
igraycode

igraycode

Conversion from Gray code.

Syntax
n = igraycode(g)

520 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
igraycode(n) converts the Gray code g to the corresponding integer.
It is the inverse of graycode. The argument n can be an integer num-
ber of class double (converted to an unsigned integer) or any integer
type. If it is an array, conversion is performed on each element. The
result has the same type and size as the input.

Example
igraycode(graycode(0:7))
0 1 2 3 4 5 6 7

See also
graycode

islogical

Test for a boolean object.

Syntax
b = islogical(obj)

Description
islogical(obj) is true if obj is a logical value, and false otherwise.
The result is always a scalar, even if obj is an array. Logical values are
obtained with comparison operators, logical operators, test functions,
and the function logical.

Examples
islogical(eye(10))
false

islogical(̃ eye(10))
true

See also
logical, isnumeric, isinteger, ischar

logical

Transform a number into a boolean.

Syntax
B = logical(A)

LME Reference — logical functions 521

Description
logical(x) converts array or number A to logical (boolean) type. All
nonzero elements of A are converted to true, and zero elements to
false.

Logical values are stored as 0 for false or 1 for true in unsigned
8-bit integers. They differ from the uint8 type when they are used to
select the elements of an array or list.

Examples
a=1:3; a([1,0,1])
Index out of range
a=1:3; a(logical([1,0,1]))
1 3

See also
islogical, uint8, double, char, setstr, operator ()

true

Boolean constant true.

Syntax
b = true
B = true(n)
B = true(n1, n2, ...)
B = true([n1, n2, ...])

Description
The boolean constant true can be used to set the value of a variable.
It is equivalent to logical(1). The constant 1 is equivalent in many
cases; indices (to get or set the elements of an array) are an important
exception.

With input arguments, true builds a logical array whose elements
are true. The size of the array is specified by one integer for a square
matrix, or several integers (either as separate arguments or in a vec-
tor) for an array of any size.

Examples
true
true

islogical(true)
true

true(2)
T T
T T

522 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
false, logical, ones

xor

Exclusive or.

Syntax
b3 = xor(b1,b2)

Description
xor(b1,b2) performs the exclusive or operation between the corre-
sponding elements of b1 and b2. b1 and b2 must have the same size
or one of them must be a scalar.

Examples
xor([false false true true],[false true false true])
F T T F

xor(pi,8)
false

See also
operator &, operator |

10.32 Dynamical System Functions

This section describes functions related to linear time-invariant dy-
namical systems.

c2dm

Continuous-to-discrete-time conversion.

Syntax
(numd,dend) = c2dm(numc,denc,Ts)
dend = c2dm(numc,denc,Ts)
(numd,dend) = c2dm(numc,denc,Ts,method)
dend = c2dm(numc,denc,Ts,method)
(Ad,Bd,Cd,Dd) = c2dm(Ac,Bc,Cc,Dc,Ts,method)

LME Reference — dynamical system functions 523

Description
(numd,dend) = c2dm(numc,denc,Ts) converts the continuous-time
transfer function numc/denc to a discrete-time transfer function
numd/dend with sampling period Ts. The continuous-time transfer
function is given by two polynomials in s, and the discrete-time
transfer function is given by two polynomials in z, all as vectors of
coefficients with highest powers first.

c2dm(numc,denc,Ts,method) uses the specified conversion
method. method is one of
Method Description
’zoh’ or ’z’ zero-order hold (default)
’foh’ or ’f’ first-order hold
’tustin’ or ’t’ Tustin (bilinear transformation)
’matched’ or ’m’ Matched zeros, poles and gain

The input and output arguments numc, denc, numd, and dend can
also be matrices; in that case, the conversion is applied separately on
each row with the same sampling period Ts.

c2dm(Ac,Bc,Cc,Dc,Ts,method) performs the conversion from
continuous-time state-space model (Ac,Bc,Cc,Dc) to discrete-time
state-space model (Ad,Bd,Cd,Dd), defined by

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

and

(k + 1) = Ad(k) + Bd(k)
y(k) = Cd(k) + Dd(k)

Method ’matched’ is not supported for state-space models.

Examples
(numd, dend) = c2dm(1, [1, 1], 0.1)
numd =
0.0952

dend =
1 -0.9048

(numd, dend) = c2dm(1, [1, 1], 0.1, ’foh’)
numd =
0.0484

dend =
1 -0.9048

(numd, dend) = c2dm(1, [1, 1], 0.1, ’tustin’)

524 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

numd =
0.0476 0.0476

dend =
1 -0.9048

See also
d2cm

d2cm

Discrete-to-continuous-time conversion.

Syntax
(numc,denc) = d2cm(numd,dend,Ts)
denc = d2cm(numd,dend,Ts)
(numc,denc) = d2cm(numd,dend,Ts,method)
denc = d2cm(numd,dend,Ts,method)

Description
(numc,denc) = d2cm(numd,dend,Ts,method) converts the
discrete-time transfer function numd/dend with sampling period Ts to
a continuous-time transfer function numc/denc. The continuous-time
transfer function is given by two polynomials in s, and the
discrete-time transfer function is given by two polynomials in z, all as
vectors of coefficients with highest powers first.

Method is
Method Description
’tustin’ or ’t’ Tustin (bilinear transformation) (default)

The input and output arguments numc, denc, numd, and dend can
also be matrices; in that case, the conversion is applied separately on
each row with the same sampling period Ts.

d2cm(Ad,Bd,Cd,Dd,Ts,method) performs the conversion from
discrete-time state-space model (Ad,Bd,Cd,Dd) to continuous-time
state-space model (Ac,Bc,Cc,Dc), defined by

(k + 1) = Ad(k) + Bd(k)
y(k) = Cd(k) + Dd(k)

and

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

LME Reference — dynamical system functions 525

Example
(numd, dend) = c2dm(1, [1, 1], 5, ’t’)
numd =
0.7143 0.7143

dend =
1 0.4286

(numc, denc) = d2cm(numd, dend)
numc =
-3.8858e-17 1

denc =
1 1

See also
c2dm

dmargin

Robustness margins of a discrete-time system.

Syntax
(gm,psi,wc,wx) = dmargin(num,den,Ts)
(gm,psi,wc,wx) = dmargin(num,den)

Description
The open-loop discrete-time transfer function is given by the two poly-
nomials num and den, with sampling period Ts (default value is 1). If
the closed-loop system (with negative feedback) is unstable, all out-
put arguments are set to an empty matrix. Otherwise, dmargin calcu-
lates the gain margins gm, which give the interval of gain for which
the closed-loop system remains stable; the phase margin psi, al-
ways positive if it exists, which defines the symmetric range of phases
which can be added to the open-loop system while keeping the closed-
loop system stable; the critical frequency associated to the gain mar-
gins, where the open-loop frequency response intersects the real axis
around -1; and the cross-over frequency associated to the phase mar-
gin, where the open-loop frequency response has a unit magnitude.
If the Nyquist diagram does not cross the unit circle, psi and wx are
empty.

Examples
Stable closed-loop, Nyquist inside unit circle:

(gm,psi,wc,wx) = dmargin(0.005,poly([0.9,0.9]))
gm = [-2, 38]

526 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

psi = []
wc = [0, 0.4510]
wx = []

Stable closed-loop, Nyquist crosses unit circle:

(gm,psi,wc,wx) = dmargin(0.05,poly([0.9,0.9]))
gm = [-0.2, 3.8]
psi = 0.7105
wc = [0, 0.4510]
wx = 0.2112

Unstable closed-loop:

(gm,psi,wc,wx) = dmargin(1,poly([0.9,0.9]))
gm = []
psi = []
wc = []
wx = []

Caveats
Contrary to many functions, dmargin cannot be used with several
transfer functions simultaneously, because not all of them may cor-
respond simultaneously to either stable or unstable closed-loop sys-
tems.

See also
margin

margin

Robustness margins of a continuous-time system.

Syntax
(gm,psi,wc,wx) = margin(num,den)

Description
The open-loop continuous-time transfer function is given by the two
polynomials num and den. If the closed-loop system (with negative
feedback) is unstable, all output arguments are set to an empty ma-
trix. Otherwise, margin calculates the gain margins gm, which give the
interval of gain for which the closed-loop system remains stable; the
phase margin psi, always positive if it exists, which defines the sym-
metric range of phases which can be added to the open-loop system

LME Reference — dynamical system functions 527

while keeping the closed-loop system stable; the critical frequency as-
sociated to the gain margins, where the open-loop frequency response
intersects the real axis around -1; and the cross-over frequency asso-
ciated to the phase margin, where the open-loop frequency response
has a unit magnitude. If the Nyquist diagram does not cross the unit
circle, psi and wx are empty.

Examples
Stable closed-loop, Nyquist inside unit circle:

(gm,psi,wc,wx) = margin(0.5,poly([-1,-1,-1]))
gm = [-2, 16]
psi = []
wc = [0, 1.7321]
wx = []

Stable closed-loop, Nyquist crosses unit circle:

(gm,psi,wc,wx) = margin(4,poly([-1,-1,-1]))
gm = [-0.25 2]
psi = 0.4737
wc = [0, 1.7321]
wx = 1.2328

Unstable closed-loop:

(gm,psi,wc,wx) = margin(10,poly([-1,-1,-1]))
gm = []
psi = []
wc = []
wx = []

Caveats
Contrary to many functions, margin cannot be used with several trans-
fer functions simultaneously, because not all of them may correspond
simultaneously to either stable or unstable closed-loop systems.

See also
dmargin

movezero

Change the position of a real or complex zero in a real-coefficient poly-
nomial.

528 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
pol2 = movezero(pol1, p0, p1)
(pol2, p1actual) = movezero(pol1, p0, p1)

Description
movezero should be used in the mousedrag handle when the user
drags the zero of a polynomial with real coefficients. It insures a con-
sistent user experience.

If p0 is a real or complex zero of the polynomial pol1, movezero
computes a new polynomial pol2, with real coefficients, a zero at p1,
and most other zeros unchanged. If p0 and p1 are real,

pol2 = conv(deconv(pol1, [1, -p0]), [1, -p1])

If p0 and p1 are complex and their imaginary part has the same sign,

pol2 = conv(deconv(pol1, poly([p0,conj(p0)])), ...
poly([p1,conj(p1)]))

Otherwise, a real pole p0 is moved to complex pole p1 if imag(p1) >
0 and there is another real pole in pol0. A complex pole p0 can be
moved to real(p1) if imag(p1)*imag(p0) < 0; in that case,
conj(p0) is moved to real(p0).

If it exists, the second output argument is set to the actual value
of the displaced pole. It can be used to provide feedback to the user
during the drag.

Examples
roots(movezero(poly([1,3,2+3j,2-3j]),1,5))
5
3
2+3j
2-3j

roots(movezero(poly([1,3,2+3j,2-3j]),1,2j))
2j
-2j
2+3j
2-3j

roots(movezero(poly([1,3,2+3j,2-3j]),2+3j,5+8j))
1
3
5+8j
5-8j

roots(movezero(poly([1,3,2+3j,2-3j]),2+3j,5-8j))
1
3
5

LME Reference — dynamical system functions 529

2
(pol, newPole) = movezero(poly([1,3,2+3j,2-3j]),2+3j,5-8j);
newPole
5

See also
roots, conv, deconv

ss2tf

Conversion from state space to transfer function.

Syntax
(num,den) = ss2tf(A,B,C,D)
den = ss2tf(A,B,C,D)
(num,den) = ss2tf(A,B,C,D,iu)
den = ss2tf(A,B,C,D,iu)

Description
A continuous-time linear time-invariant system can be represented by
the state-space model

d

dt
(t) = A(t) + B(t)

y(t) = C(t) + D(t)

where (t) is the state, (t) the input, y(t) the output, and ABCD
four constant matrices which characterize the model. If it is a single-
input single-output system, it can also be represented by its transfer
function num/den. (num,den) = ss2tf(A,B,C,D) converts the model
from state space to transfer function. If the state-space model has
multiple outputs, num is a matrix whose lines correspond to each out-
put (the denominator is the same for all outputs). If the state-space
model has multiple inputs, a fifth input argument is required and spec-
ifies which one to consider.

For a sampled-time model, exactly the same function can be used.
The derivative is replaced by a forward shift, and the variable s of the
Laplace transform is replaced by the variable z of the z transform. But
as long as coefficients are concerned, the conversion is the same.

The degree of the denominator is equal to the number of states,
i.e. the size of A. The degree of the numerator is equal to the number
of states if D is not zero, and one less if D is zero.

If D is zero, it can be replaced by the empty matrix [].

530 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Conversion from the state-space model d/dt = − + , y =  to the
transfer function Y(s)/U(s) = 1/(s + 1):

(num, den) = ss2tf(-1, 1, 1, 0)
num =
1

den =
1 1

See also
tf2ss

tf2ss

Conversion from transfer function to state space.

Syntax
(A,B,C,D) = tf2ss(num,den)

Description
tf2ss(num,den) returns the state-space representation of the trans-
fer function num/den, which is given as two polynomials. The transfer
function must be causal, i.e. num must not have more columns than
den. Systems with several outputs are specified by a num having one
row per output; the denominator den must be the same for all the
outputs.

tf2ss applies to continuous-time systems (Laplace transform) as
well as to discrete-time systems (z transform or delta transform).

Example
(A,B,C,D) = tf2ss([2,5],[2,3,8])
A =
-1.5 -4
1 0

B =
1
0

C =
1 2.5

D =
0

See also
ss2tf, zp2ss

LME Reference — input/output 531

zp2ss

Conversion from transfer function given by zeros and poles to state
space.

Syntax
(A,B,C,D) = zp2ss(z,p,k)

Description
zp2ss(z,p,k) returns the state-space representation of the transfer
function with zeros z, poles p and gain k (ratio of leading coefficients
of numerator and denominator in decreasing powers). The transfer
function must be causal, i.e. the number of zeros must not be larger
than the number of poles. zp2ss supports only systems with one input
and one output. Complex zeros and complex poles must make com-
plex conjugate pairs, so that the corresponding polynomials have real
coefficients.

zp2ss applies to continuous-time systems (Laplace transform) as
well as to discrete-time systems (z transform or delta transform).

Example
(A,B,C,D) = zp2ss([1;2],[3;4-1j;4+1j],5)
A =
8 -17 1
1 0 0
0 0 3

B =
0
0
1

C =
25 -75 5

D =
0

See also
tf2ss

10.33 Input/Output Functions

bwrite

Store data in an array of bytes.

532 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
s = bwrite(data)
s = bwrite(data, precision)

Description
bwrite(data) stores the contents of the matrix data into an array of
class uint8. The second parameter is the precision, whose meaning
is the same as for fread. Its default value is ’uint8’.

Examples
bwrite(12345, ’uint32;l’)
1x4 uint8 array
57 48 0 0

bwrite(12345, ’uint32;b’)
1x4 uint8 array

0 0 48 57

See also
swrite, sread, fwrite, sprintf, typecast

clc

Clear the text window or panel.

Syntax
clc
clc(fd)

Description
clc (clear console) clears the contents of the command-line window
or panel.

clc(fd) clears the contents of the window or panel associated with
file descriptor fd.

disp

Simple display on the standard output.

Syntax
disp(obj)
disp(obj, fd=fd)

LME Reference — input/output 533

Description

disp(obj) displays the object obj. Command format may be used to
control how numbers are formatted.

With named argument fd, disp(obj,fd=fd) writes obj to the file
descriptor fd.

Example
disp(’hello’)
hello

See also

format, fprintf

fclose

Close a file.

Syntax
fclose(fd)
fclose(’all’)

Description

fclose(fd) closes the file descriptor fd which was obtained with
functions such as fopen. Then fd should not be used anymore.
fclose(’all’) closes all the open file descriptors.

feof

Check end-of-file status.

Syntax
b = feof(fd)

Description

feof(fd) is false if more data can be read from file descriptor fd, and
true if the end of the file has been reached.

534 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Count the number of lines and characters in a file (fopen and fclose
are not available in all LME applications):

fd = fopen(’data.txt’);
lines = 0;
characters = 0;
while f̃eof(fd)
str = fgets(fd);
lines = lines + 1;
characters = characters + length(str);

end
fclose(fd);

See also
ftell

fflush

Flush the input and output buffers.

Syntax
fflush(fd)

Description
fflush(fd) discards all the data in the input buffer and forces data
out of the output buffer, when the device and their driver permits it.
fflush can be useful to recover from errors.

fgetl

Reading of a single line.

Syntax
line = fgetl(fd)
line = fgetl(fd, n)

Description
A single line (of at most n characters) is read from a text file. The end
of line character is discarded. Upon end of file, fgetl gives an empty
string.

See also
fgets, fscanf

LME Reference — input/output 535

fgets

Reading of a single line.

Syntax
line = fgets(fd)
line = fgets(fd, n)

Description

A single line (of at most n characters) is read from a text file. Unless
the end of file is encountered before, the end of line (always a single
line feed) is preserved. Upon end of file, fgets gives an empty string.

See also

fgetl, fscanf

fionread

Number of bytes which can be read without blocking.

Syntax
n = fionread(fd)

Description

fionread(fd) returns the number of bytes which can be read without
blocking. For a file, all the data until the end of the file can be read;
but for a device or a network connection, fionread gives the number
of bytes which have already been received and are stored in the read
buffer.

If the number of bytes cannot be determined, fionread returns -1.

See also

fread

format

Default output format.

536 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax

format
format short
format short e
format short eng
format short g
format long
format long e
format long eng
format long g
format int
format int d
format int u
format int x
format int o
format int b
format bank
format rat
format ’+’
format i
format j
format loose
format compact

Description

format changes the format used by command disp and for output
produced with expressions which do not end with a semicolon. The
following arguments are recognized:

LME Reference — input/output 537

Arguments Meaning
(none) fixed format with 0 or 4 digits, loose spacing
short fixed format with 0 or 4 digits
short e exponential format with 4 digits
short eng engineering format with 4 digits
short g general format with up to 4 digits
long fixed format with 0 or 15 digits
long e exponential format with 15 digits
long eng engineering format with 15 digits
long g general format with up to 15 digits
int signed decimal integer
int d signed decimal integer
int u unsigned decimal integer
int x hexadecimal integer
int o octal integer
int b binary integer
bank fixed format with 2 digits (for currencies)
rat rational approximation
+ ’+’, ’-’ or ’I’ for nonzero, space for zero
i symbol i to represent the imaginary unit
j symbol j to represent the imaginary unit
loose empty lines to improve readability
compact no empty line

Format for numbers, for imaginary unit symbol and for spacing is
set separately. Format rat displays rational approximations like rat
with the default tolerance, but also displays the imaginary part if it
exists. Format ’+’ displays compactly numeric and boolean arrays:
positive numbers and complex numbers with a positive real part are
displayed as +, negative numbers or complex numbers with a negative
real part as -, pure imaginary nonzero numbers as I, and zeros as
spaces.

The default format is format short g, format j, and format
compact.

See also
disp, fprintf, rat

fprintf

Formatted output.

Syntax
n = fprintf(fd,format,a,b,...)
n = fprintf(format,a,b,...)
n = fprintf(..., fd=fd, NPrec=nPrec)

538 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
fprintf(format,a,b,...) converts its arguments to a string and
writes it to the standard output.

fprintf(fd,format,a,b,...) specifies the output file descriptor.
The file descriptor can also be specified as a named argument fd.

In addition to fd, fprintf also accepts named argument NPrec for
the default number of digits in floating-point numbers.

See sprintf for a description of the conversion process.

Example
fprintf(’%d %.2f %.3E %g\n’,1:3,pi)
1 2.00 3.000E0 3.1416
22

See also
sprintf, fwrite

fread

Raw input.

Syntax
(a, count) = fread(fd)
(a, count) = fread(fd, size)
(a, count) = fread(fd, size, precision)

Description
fread(fd) reads signed bytes from the file descriptor fd until it
reaches the end of file. It returns a column vector whose elements
are signed bytes (between -128 and 127), and optionally in the
second output argument the number of elements it has read.

fread(fd,size) reads the number of bytes specified by size. If
size is a scalar, that many bytes are read and result in a column
vector. If size is a vector of two elements [m,n], m*n elements are
read row by row and stored in an m-by-n matrix. If the end of the file
is reached before the specified number of elements have been read,
the number of rows is reduced without throwing an error. The optional
second output argument always gives the number of elements in the
result. If size is the empty array [], elements are read until the end
of the file; it must be specified if there is a third argument.

With a third argument, fread(fd,size,precision) reads integer
words of 1, 2, or 4 bytes, or IEEE floating-point numbers of 4 bytes
(single precision) or 8 bytes (double precision). The meaning of the
string precision is described in the table below.

LME Reference — input/output 539

Precision Meaning
int8 signed 8-bit integer (-128 ≤ x ≤ 127)
char signed 8-bit integer (-128 ≤ x ≤ 127)
int16 signed 16-bit integer (-32768 ≤ x ≤ 32767)
int32 signed 32-bit integer (-2147483648 ≤ x ≤ 2147483647)
int64 signed 64-bit integer (-9.223372e18 ≤ x ≤ 9.223372e18)
uint8 unsigned 8-bit integer (0 ≤ x ≤ 255)
uchar unsigned 8-bit integer (0 ≤ x ≤ 255)
uint16 unsigned 16-bit integer (0 ≤ x ≤ 65535)
uint32 unsigned 32-bit integer (0 ≤ x ≤ 4294967295)
uint64 unsigned 64-bit integer (0 ≤ x ≤ 18.446744e18)
single 32-bit IEEE floating-point
double 64-bit IEEE floating-point

By default, multibyte words are encoded with the least significant
byte first (little endian). The characters ’;b’ can be appended to spec-
ify that they are encoded with the most significant byte first (big en-
dian); for symmetry, ’;l’ is accepted and ignored.

By default, the output is a double array. To get an output which has
the same type as what is specified by precision, the character * can
be inserted at the beginning. For instance ’*uint8’ reads bytes and
stores them in an array of class uint8, ’*int32;b’ reads signed 32-
bit words and stores them in an array of class int32 after performing
byte swapping if necessary, and ’*char’ reads bytes and stores them
in a character row vector (i.e. a plain string).

Precisions ’int64’ and ’uint64’ are supported only if types int64
and uint64 are supported.

See also
fwrite, sread

frewind

Rewind current read or write position in a file.

Syntax
frewind(fd)

Description
frewind(fd) sets the position in an open file where the next
input/output commands will read or write data to the beginning of the
file. The argument fd is the file descriptor returned by fopen or
similar functions (fopen is not available in all LME applications).

frewind(fd) has the same effect as fseek(fd,0) or
fseek(fd,0,’b’).

540 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also

fseek, ftell

fscanf

Reading of formatted numbers.

Syntax
r = fscanf(fd, format)
(r, count) = fscanf(fd, format)

Description

A single line is read from a text file, and numbers, characters and
strings are decoded according to the format string. The format string
follows the same rules as sscanf.

The optional second output argument is set to the number of ele-
ments decoded successfully (may be different than the length of the
first argument if decoding strings).

Example

Read a number from a file (fopen and fclose are not available in all
LME applications):

fd = fopen(’test.txt’, ’rt’);
fscanf(fd, ’%f’)
2.3

fclose(fd);

See also

sscanf

fseek

Change the current read or write position in a file.

Syntax
status = fseek(fd, position)
status = fseek(fd, position, mode)

LME Reference — input/output 541

Description
fseek(fd,position,mode) changes the position in an open file where
the next input/output commands will read or write data. The first ar-
gument fd is the file descriptor returned by fopen or similar functions
(fopen is not available in all LME applications). The second argument
is the new position. The third argument mode specifies how the posi-
tion is used:
Mode Description
b absolute position from the beginning of the file
c relative position from the current position
e offset from the end of the file (must be ≤ 0)

The default value is ’b’. Only the first character is checked, so
’beginning’ is a valid alternative for ’b’. fseek returns 0 if success-
ful or -1 if the position is outside the limits of the file contents.

See also
frewind, ftell

ftell

Get the current read or write position in a file.

Syntax
position = ftell(fd)

Description
ftell(fd) gives the current file position associated with file descriptor
fd. The file position is the offset (with respect to the beginning of
the file) at which the next input function will read or the next output
function will write. The offset is expressed in bytes. With text files,
ftell may not always correspond to the number of characters read or
written.

See also
fseek, feof

fwrite

Raw output.

Syntax
count = fwrite(fd, data)
count = fwrite(fd, data, precision)

542 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
fwrite(fd, data) writes the contents of the matrix data to the out-
put referenced by the file descriptor fd. The third parameter is the
precision, whose meaning is the same as for fread. Its default value
is ’uint8’.

See also
fread, swrite, bwrite

redirect

Redirect or copy standard output or error to another file descriptor.

Syntax
redirect(fd, fdTarget)
redirect(fd, fdTarget, copy)
redirect(fd)
R = redirect(fd)
redirect
R = redirect

Description
redirect(fd,fdTarget) redirects output from file descriptor fd to
fdTarget. fd must be 1 for standard output or 2 for standard error. If
fdTarget==fd, the normal behavior is restored.

redirect(fd,fdTarget,copy) copies output to both fd and
fdTarget if copy is true, instead of redirecting it only to fdTarget. If
copy is false, the result is the same as with two input arguments.

With zero or one input argument and without output argument,
redirect displays the current redirection for the specified file descrip-
tor (1 or 2) or for both of them. Note that the redirection itself may
alter where the result is displayed.

With an output argument, redirect returns a 1-by-2 row vector if
the file descriptor is specified, or a 2-by-2 matrix otherwise. The first
column contains the target file descriptor and the second column, 1
for copy mode and 0 for pure redirection mode.

Examples
Create a new file diary.txt and copy to it both standard output and
error:

fd = fopen(’diary.txt’, ’w’);
redirect(1, fd, true);
redirect(2, fd, true);

LME Reference — input/output 543

Stop copying standard output and error and close file:

redirect(1, 1);
redirect(2, 2);
fclose(fd);

Redirect standard error to standard output and get the redirection
state:

redirect(2, 1)
redirect
stdout (fd=1) -> fd=1
stderr (fd=2) -> fd=1

redirect(2)
stderr (fd=2) -> fd=1

R = redirect
R =
1 0
1 0

R = redirect(2)
R =
1 0

sprintf

Formatted conversion of objects into a string.

Syntax
s = sprintf(format,a,b, ...)
s = sprintf(..., NPrec=nPrec)

Description
sprintf converts its arguments to a string. The first parameter is
the format string. All the characters are copied verbatim to the out-
put string, except for the control sequences which all begin with the
character ’%’. They have the form

%fn.dt

where f is zero, one or more of the following flags:

Flag Description
- left alignment (default is right alignment)
+ display of a + sign for positive numbers
0 zero padding instead of spaces
alternate format (see below)
space sign replaced with space for positive numbers

544 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

n is the optional width of the field as one or more decimal digits
(default is the minimum width to display the data).

d is the number of digits after the decimal separator for a number
displayed with a fractional part (default is 4 or what is specified by
named argument NPrec), the minimum number of displayed digits for
a number displayed as an integer, or the number of characters for a
string (one or more decimal digits).

t is a single character denoting the type of conversion. In most
cases, each control sequence corresponds to an additional argument.

All elements of arrays are used sequentially as if they were pro-
vided separately; strings are used as a whole. The table below gives
the valid values of t.

Char. Conversion
% single %
d decimal number as an integer
i same as d
x hexadecimal number (for integers between 0 and 2̂ 32-1)
X same as x, with uppercase digits
o octal number (for integers between 0 and 2̂ 32-1)
f fixed number of decimals (exp. notation if abs(x)>1e18)
F same as f, with an uppercase E
e scientific notation such as 1e5
E scientific notation such as 1E5
n engineering notation such as 100e3
N engineering notation such as 100E3
g decimal or scientific notation
G same as g, with an uppercase E
k same as g, with as few characters as possible
K same as k, with an uppercase E
P SI prefix (k=1e3, u=1e-6) or engineering notation
c character
s string

The # flag forces octal numbers to begin with 0, nonzero hexadec-
imal numbers to begin with 0x, and floating-point numbers to always
have a decimal point even if they do not have a fractional part.

Integer formats %d, %i, %o and %x round fractional numbers to the
nearest integer.

Instead of decimal digits, the width n and/or the precision d can be
replaced with character *; then one or two additional arguments (or
elements of an array) are consumed and used as the width or preci-
sion.

Examples
Numbers:

LME Reference — input/output 545

sprintf(’%d %.2f %.2e %.2E %.2g’,pi*ones(1,5))
3 3.14 3.14e0 3.14E0 3.14

Compact representation with ’%k’:

sprintf(’%.1k ’, 0.001, 0.11, 111, 1000)
1e-3 0.11 111 1e3

Width and precision:

sprintf(’*%8.3f*%8.6s*%-8.6s*’,pi,’abcdefgh’,’abcdefgh’)
* 3.142* abcdef*abcdef *

Repetition of format string to convert all values:

sprintf(’%c_’,’a’:’z’)
a_b_c_d_e_f_g_h_i_j_k_l_m_n_o_p_q_r_s_t_u_v_w_x_y_z_

Width and precision provided as expressions:

sprintf(’%*.*f’, 15, 7, pi)
3.1415927

Zero padding for integer format:

sprintf(’%.3d,%.3d’, 12, 12345)
012,12345

Default precision:

sprintf(’%f %e’, pi, pi)
3.1416 3.1416e0

sprintf(’%f %e’, pi, pi, NPrec=2)
3.14 3.14e0

See also
fprintf, sscanf, swrite

sread

Raw input from a string or an array of bytes.

Syntax
(a, count) = sread(str, size, precision)
(a, count) = sread(str, [], precision)
(a, count) = sread(bytes, ...)

Description
sread(str) reads data from string str or array of class uint8 or int8
the same way as fread reads data from a file.

546 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples

(data, count) = sread(’abc’)
data =
97
98
99

count =
3

(data, count) = sread(’abcdef’,[2,2])
data =
97 98
99 100

count =
4

(data, count) = sread(’abcd’,[inf,3])
data =
97 98 99

count =
3

See also

swrite, bwrite, fread, typecast

sscanf

Decoding of formatted numbers.

Syntax

r = sscanf(str, format)
(r, count) = scanf(str, format)
(r, count, nchar) = scanf(str, format)

Description

Numbers, characters and strings are extracted from the first argu-
ment. Exactly what is extracted is controlled by the second argument,
which can contain the following elements:

LME Reference — input/output 547

Substring in format Meaning
%c single character
%s string
%d integer number in decimal
%x unsigned integer number in hexadecimal
%o unsigned integer number in octal
%i integer number
%f floating-point number
%e floating-point number
%g floating-point number
%% %
other character exact match

%i recognizes an optional sign followed by a decimal number, an
hexadecimal number prefixed with 0x or 0X, a binary number prefixed
with 0b or 0B, or an octal number prefixed with 0.

The decoded elements are accumulated in the output argument,
either as a column vector if the format string contains %d, %o, %x, %i,
%f, %e or %g, or a string if the format string contains only %c, %s or
literal values. If a star is inserted after the percent character, the
value is decoded and discarded. A width (as one or more decimal
characters) can be inserted before s, d, x, o, i, f, e or g; it limits the
number of characters to be decoded. In the input string, spaces and
tabulators are skipped before decoding %s, %d, %x, %o, %i, %f, %e or %g.

The format string is recycled as many times as necessary to de-
code the whole input string. The decoding is interrupted if a mismatch
occurs.

The optional second output argument is set to the number of ele-
ments decoded successfully (may be different than the length of the
first argument if decoding strings). The optional third output argument
is set to the number of characters which were consumed in the input
string.

Examples
sscanf(’f(2.3)’, ’f(%f)’)
2.3

sscanf(’12a34x778’, ’%d%c’)
12
97
34

120
778

sscanf(’abc def’, ’%s’)
abcdef

sscanf(’abc def’, ’%c’)
abc def

sscanf(’12,34’,’%*d,%d’)

548 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

34
sscanf(’0275a0ff’, ’%2x’)

2
117
160
255

See also
sprintf

swrite

Store data in a string.

Syntax
s = swrite(data)
s = swrite(data, precision)

Description
swrite(data) stores the contents of the matrix data into a string. The
second parameter is the precision, whose meaning is the same as for
fread. Its default value is ’uint8’.

Examples
swrite(65:68)
ABCD

double(swrite([1,2], ’int16’))
1 0 2 0

double(swrite([1,2], ’int16;b’))
0 1 0 2

See also
bwrite, fwrite, sprintf, sread

10.34 File System Functions

Access to any kind of file can be useful to analyze data which come
from other applications (such as experimental data) and to generate
results in a form suitable for other applications (such as source code
or HTML files). Functions specific to files are described in this sec-
tion. Input, output, and control are done with the following generic
functions:

LME Reference — file system 549

Function Description
fclose close the file
feof check end of file status
fflush flush I/O buffers
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
frewind reset the current I/O position
fscanf read formatted data
fseek change the current I/O position
ftell get the current I/O position
fwrite write data
redirect redirect output

fopen

Open a file.

Syntax
fd = fopen(path)
fd = fopen(path, mode)

Description
fopen opens a file for reading and/or writing. The first argument is a
path whose format depends on the platform. If it is a plain file name,
the file is located in the current directory; what "current" means also
depends on the operating system. The output argument, a real num-
ber, is a file descriptor which can be used by many input/output func-
tions, such as fread, fprintf, or dumpvar.

The optional second input argument, a string of one or two charac-
ters, specifies the mode. It can take one of the following values:

Mode Meaning
(none) same as ’r’
’r’ read-only, binary mode, seek to beginning
’w’ read/write, binary mode, create new file
’a’ read/write, binary mode, seek to end
’rt’ read-only, text mode, seek to beginning
’wt’ read/write, text mode, create new file
’at’ read/write, text mode, seek to end

In text mode, end-of-line characters LF, CR and CRLF are all con-
verted to LF (’\n’) on input. On output, they are converted to the
native sequence for the operating system, which is CRLF on Windows

550 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

and LF elsewhere. To force the output end-of-line to be LF irrespec-
tively of the operating system, use ’q’ instead of ’t’ (e.g. ’wq’ to
write to a file); to force it to be CRLF, use ’T’ (e.g. ’aT’ to append to
a file).

Examples
Reading a whole text file into a string:

fd = fopen(’file.txt’, ’rt’);
str = fread(fd, inf, ’*char’);
fclose(fd);

Reading a whole text file line by line:

fd = fopen(’file.txt’, ’rt’);
while f̃eof(fd)
str = fgets(fd)

end
fclose(fd);

Writing a matrix to a CSV (comma-separated values) text file:

M = magic(5);
fd = fopen(’file.txt’, ’wt’);
for i = 1:size(M, 1)
for j = 1:size(M, 2)-1
fprintf(fd, ’%g,’, M(i,j));

end
fprintf(fd, ’%g\n’, M(i,end));

end
fclose(fd);

Reading 5 bytes at offset 3 in a binary file, giving an 5-by-1 array of
unsigned 8-bit integers:

fd = fopen(’file.bin’);
fseek(fd, 3);
data = fread(fd, 5, ’*uint8’);
fclose(fd);

See also
fclose

10.35 Path Manipulation Functions

fileparts

File path splitting into directory, filename and extension.

LME Reference — path manipulation 551

Syntax
(dir, filename, ext) = fileparts(path)

Description
fileparts(path) splits string path into the directory (initial part until
the last file separator), the filename without extension (substring after
the last file separator before the last dot), and the extension (substring
starting from the last dot after the last file separator).

The directory is empty if path does not contain any file separator,
and the extension is empty if the remaining substring does not contain
a dot. When these three strings are concatenated, the result is always
equal to the initial path.

The separator depends on the operating system: a slash on unix
(including Mac OS X and Linux), and a backslash or a slash on Win-
dows.

Examples
(dir, filename, ext) = fileparts(’/home/tom/report.txt’)
dir =
/home/tom/

filename =
report

ext =
.txt

(dir, filename, ext) = fileparts(’/home/tom/’)
dir =
/home/tom/

filename =
’’

ext =
’’

(dir, filename, ext) = fileparts(’results.txt.back’)
dir =
’’

filename =
results.txt

ext =
.back

See also
fullfile, filesep

filesep

File path separator.

552 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
ch = filesep

Description
filesep gives the character used as separator between directories
and files in paths. It depends on the operating system: a slash on unix
(including Mac OS X and Linux), and a backslash on Windows.

See also
fullfile, fileparts

fullfile

File path construction.

Syntax
path = fullfile(p1, p2, ...)

Description
fullfile constructs a file path by concatenating all its string argu-
ments, removing separators when missing. At least one input argu-
ment is required.

Examples
fullfile(’/home/tom/’, ’report.txt’)
/home/tom/report.txt

fullfile(’/home/tom’, ’data’, ’meas1.csv’)
/home/tom/data/meas1.csv

See also
fileparts, filesep

10.36 XML Functions

This section describes functions which import XML data. Two separate
sets of functions implement two approaches to parse XML data:

– Document Object Model (DOM): XML is loaded entirely in mem-
ory from a file (xmlread) or a character string (xmlreadstring).
Additional functions permit to traverse the DOM tree and to get
its structure, the element names and attributes and the text.

LME Reference — XML 553

– Simple API for XML (SAX): XML is parsed from a file descriptor
(saxnew) and events are generated for document start and end,
element start and end, and character sequences.

With both approaches, creation and modification of the document are
not possible.

DOM

Two opaque types are implemented: DOM nodes (including document,
element and text nodes), and attribute lists. A document node object
is created with the functions xmlreadstring (XML string) or xmlread
(XML file or other input channel). Other DOM nodes and attribute lists
are obtained by using DOM methods and properties.

Methods and properties of DOM node objects

Method Description
fieldnames List of property names
getElementById Get a node specified by id
getElementsByTagName Get a list of all descendent nodes of the given tag name
subsref Get a property value
xmlrelease Release a document node

554 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Property Description
attributes Attribute list (opaque object)
childElementCount Number of element children
childNodes List of child nodes
children List of element child nodes
depth Node depth in document tree
documentElement Root element of a document node
firstChild First child node
firstElementChild First element child node
lastChild Last child node
lastElementChild Last element child node
line Line number in original XML document
nextElementSibling Next sibling element node
nextSibling Next sibling node
nodeName Node tag name, ’#document’, or ’#text’
nodeValue Text of a text node
offset Offset in original XML document
ownerDocument Owner DOM document node
parentNode Parent node
previousElementSibling Previous sibling element node
previousSibling Previous sibling node
textContent Concatenated text of all descendent text nodes
xml XML representation, including all children

A document node object is released with the xmlrelease method.
Once a document node object is released, all associated node objects
become invalid. Attribute lists and native LME types (strings and num-
bers) remain valid.

Methods and properties of DOM attribute list objects

Method Description
fieldnames List of attribute names
length Number of attributes
subsref Get an attribute

Properties of attribute lists are the attribute values as strings. Prop-
erties whose name is compatible with LME field name syntax can be
retrieved with the dot syntax, such as attr.id. For names containing
invalid characters, such as accented letters, or to enumerate unknown
attributes, attributes can be accessed with indexing, with either paren-
thesis or braces. The result is a structure with two fields name and
value.

LME Reference — XML 555

SAX

XML is read from a file descriptor, typically obtained with fopen. The
next event is retrieved with saxnext which returns its description in a
structure.

getElementById

Get a node specified by id.

Syntax
node = getElementById(root, id)

Description
getElementById(root,id) gets the node which is a descendant of
node root and whose attribute id matches argument id. It throws an
error if the node is not found.

In valid XML documents, every id must be unique. If the document
is invalid, the first element with the specified id is obtained.

See also
xmlread, getElementsByTagName

getElementsByTagName

Get a list of all descendent nodes of the given tag name.

Syntax
node = getElementsByTagName(root, name)

Description
getElementsByTagName(root,name) collects a list of all the element
nodes which are direct or indirect descendants of node root and
whose name matches argument name.

Examples

doc = xmlreal(’<p>Abc de <i>fg hijk</i></p>’);
b = getElementsByTagName(doc, ’b’)
b =
{DOMNode,DOMNode}

b2 = b{2}.xml
b2 =
hijk

xmlrelease(doc);

556 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
xmlread, getElementById

saxcurrentline

Get current line number of SAX parser.

Syntax
n = saxcurrentline(sax)

Description
saxcurrentline(sax) gets the current line of the XML file parsed by
the SAX parser passed as argument. It can also be used after an error.

See also
saxcurrentpos, saxnew, saxnext

saxcurrentpos

Get current position in input stream of SAX parser.

Syntax
n = saxcurrentpos(sax)

Description
saxcurrentpos(sax) gets the current position of the XML file parsed
by the SAX parser passed as argument (the number of bytes con-
sumed thus far). It can also be used after an error.

The value given by saxcurrentpos differs from the result of ftell
on the file descriptor, because the SAX parser input is buffered.

See also
saxcurrentline, saxnew, saxnext

saxnew

Create a new SAX parser.

Syntax
sax = saxnew(fd)
sax = saxnew(fd, Trim=t, HTML=h)

LME Reference — XML 557

Description
saxnew(fd) create a new SAX parser to parse XML from file descriptor
fd. The parser is an opaque (non-numeric) type. Once it is not needed
anymore, it should be released with the saxrelease function.

Named argument Trim (a boolean value) specifies if white spaces
are trimmed around tags. The default value is false.

Named argument HTML (a boolean value) specifies HTML mode. The
default value is false (XML mode). HTML mode has the following dif-
ferences with respect to XML mode:

– unknown entities and less-than characters not followed by tag
names are considered as plain text;

– attribute values can be missing (same as attribute names) or un-
quoted;

– tag and attribute names are converted to lowercase;

– text following a start script tag is not interpreted until the clos-
ing script tag (the litteral character sequence </script>, pos-
sibly with spaces before >).

This can be used for the lowest level of a rudimentary HTML parser.

Example
fd = fopen(’data.xml’);
sax = saxnew(fd);
while true
ev = saxnext(sax);
switch ev.event
case ’docBegin’
// beginning of document

case ’docEnd’
// end of document
break;

case ’elBegin’
// beginning of element ev.tag with attr ev.attr

case ’elEnd’
// end of element ev.tag

case ’elEmpty’
// empty element ev.tag with attr ev.attr

case ’text’
// text element ev.text

end
end
saxrelease(sax);
fclose(fd);

558 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
saxrelease, saxnext, xmlread

saxnext

Get next SAX event.

Syntax
event = saxnext(sax)

Description
saxnext(sax) gets the next SAX event and returns its description in
a structure. Argument sax is the SAX parser created with saxnew.

The event structure contains the following fields:

event Event type as a string: ’docBegin’, ’docEnd’, ’elBegin’,
’elEnd’, ’elEmpty’, or ’text’.

tag For ’elBegin’, ’elEnd’ and ’elEmpty’, element tag.

attr For ’elBegin’ and ’elEmpty’, structure array containing the
element attributes. Each attribute is defined by two string fields,
name and value.

text For ’text’, text string.

See also
saxnew, saxcurrentline

saxrelease

Release a SAX parser.

Syntax
saxrelease(sax)

Description
saxrelease(sax) releases the SAX parser sax created with saxnew.

See also
saxnew

LME Reference — XML 559

xmlread

Load a DOM document object from a file descriptor.

Syntax
doc = xmlread(fd)

Description
xmlread(fd) loads XML to a new DOM document node object by read-
ing a file descriptor until the end, and returns a new document node
object. The file descriptor can be closed before the document node
object is used. Once the document is not needed anymore, it should
be released with the xmlrelease method.

Example
Load an XML file ’doc.xml’ (this assumes support for files with the
function fopen).

fd = fopen(’doc.xml’);
doc = xmlread(fd);
fclose(fd);
root = doc.documentElement;
...
xmlrelease(doc);

See also
xmlreadstring, xmlrelease, saxnew

xmlreadstring

Parse an XML string into a DOM document object.

Syntax
doc = xmlreadstring(str)

Description
xmlreadstring(str) parses XML from a string to a new DOM doc-
ument node object. Once the document is not needed anymore, it
should be released with the xmlrelease method.

560 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples

xml = ’<a>one <b id="x">two <c id="y" num="3">three</c>’;
doc = xmlreadstring(xml)
doc =
DOM document

root = doc.documentElement;
root.nodeName
ans =
a

root.childNodes{1}.nodeValue
ans =
one

root.childNodes{2}.xml
ans =
<b id="x">two

a = root.childNodes{2}.attributes
a =
DOM attributes (1 item)

a.id
x

getElementById(doc,’y’).xml
<c id="y" num="3">three</c>

xmlrelease(doc);

See also

xmlread, xmlrelease

xmlrelease

Release a DOM document object.

Syntax
xmlrelease(doc)

Description

xmlrelease(doc) releases a DOM document object. All DOM node
objects obtained directly or indirectly from it become invalid.

Releasing a node which is not a document has no effect.

See also

xmlreadstring, xmlread

LME Reference — search path 561

10.37 Search Path Function

This section describes the functions used to setup the path of directo-
ries where libraries are searched.

path

Get or change path of library files.

Syntax
path
str = path
path(str)
path(str1, str2)

Description
Without arguments, path displays the path of all directories where
library files are searched by use and useifexists.

With an output argument, path returns all the paths separated by
semicolons.

With an input argument, path(p) sets the paths to the contents of
string p, which must be a list of semicolon-separated paths.

With two input arguments, path(p1,p2) sets the paths to those
contained in strings p1 and p2. With this syntax, one of p1 or p2 is
typically a call to path itself. This permits to prepend or append new
paths to the existing ones.

If a path is a string which does not contain the percent charac-
ter, the full path of the file is obtained by concatenating that string,
the directory separator specific to the operating system (backslash on
Windows and slash on macOS and Unix) unless the path already has a
trailing directory separator, and the file name with its extension. If the
path contains at least one percent character, the full path is obtained
by replacing the following sequences:

Sequence Replaced by
%% %
%b base file name without extension
%f filename with extension
%s extension (file suffix)

Example
Append /usr/local/lme to the current path:

path(path, ’/usr/local/lme’);

562 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Same effect with %f:

path(path, ’/usr/local/lme/%f’);

See also
use, useifexists

10.38 Time Functions

clock

Current date and time.

Syntax
t = clock

Description
clock returns a 1x6 row vector, containing the year (four digits), the
month, the day, the hour, the minute and the second of the current
local date and time. All numbers are integers, except for the seconds
which are fractional. The absolute precision is plus or minus one sec-
ond with respect to the computer’s clock; the relative precision is plus
or minus 1 microsecond on a Macintosh, and plus or minus 1 millisec-
ond on Windows.

Example
clock
1999 3 11 15 37 34.9167

See also
posixtime, tic, toc

posixtime

Current Posix time.

Syntax
t = posixtime

Description
posixtime returns the Posix time, the integral number of seconds
since 1 February 1970 at 00:00:00 UTC, based on the value provided
by the operating system.

LME Reference — time 563

Example
posixtime
1438164887

See also
clock

tic

Start stopwatch.

Syntax
tic
t0 = tic
tic(CPUTime=true)
t0 = tic(CPUTime=true)

Description
Without output argument, tic resets the stopwatch. Typically, tic is
used once at the beginning of the block to be timed, and toc at the
end. toc can be called multiple times to get intermediate times.

With an output argument, tic gets the current state of the stop-
watch. Multiple independent time measurements can be performed
by passing this value to toc.

By default, tic and toc are based on the real, "wall-clock" time.
tic(CPUTime=true) is based on CPU time instead, which gives more
accurate results for non-multithreaded programs. Measurements
made with wall-clock time and CPU time are independent and can be
mixed freely.

See also
toc, clock

toc

Elapsed time of stopwatch.

Syntax
elapsed_time = toc
elapsed_time = toc(t0)
elapsed_time = toc(CPUTime=true)
elapsed_time = toc(t0, CPUTime=true)

564 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

Without input argument, toc gets the time elapsed since the last ex-
ecution of tic without output argument. Typically, toc is used at the
end of the block of statements to be timed.

With an input argument, toc(t0) gets the time elapsed since the
execution of t0=tic. Multiple independent time measurements,
nested or overlapping, can be performed simultaneously.

With a named argument, toc(CPUTime=true) or
toc(t0,CPUTime=true) use CPU time: toc measures only the
time spent in the LME application. Other processes do not have
a large impact. For instance, typing tic(CPUTime=true)
at the command-line prompt, waiting 5 seconds, and typing
toc(CPUTime=true) will show a value much smaller than 5; while
typing tic and toc will show the same elapsed time a chronograph
would. CPU time is usually more accurate for non-multithreaded
code, and wall-clock time for multi-threaded code, or measurements
involving devices or network communication.

Examples

Time spent to compute the eigenvalues of a random matrix:

tic; x = eig(rand(200)); toc
0.3046

Percentage of time spent in computing eigenvalues in a larger pro-
gram:

eigTime = 0;
s = [];
tic(CPUTime=true);
for i = 1:100
A = randn(20);
eigT0 = tic(CPUTime=true);
s1 = eig(A);
eigTime = eigTime + toc(eigT0, CPUTime=true);
s = [s, s1];

end
totalTime = toc(CPUTime=true);
100 * eigTime / totalTime
78.4820

See also

tic, clock

LME Reference — date 565

10.39 Date Functions

Date functions perform date and time conversions between the calen-
dar date and the julian date.

The calendar date is the date of the proleptic Gregorian calendar,
i.e. the calendar used in most countries today where centennial years
are not leap unless they are a multiple of 400. This calendar was
introduced by Pope Gregory XIII on October 5, 1582 (Julian Calendar,
the calendar used until then) which became October 15. The calendar
used in this library is proleptic, which means the rule for leap years is
applied back to the past, before its introduction. Negative years are
permitted; the year 0 does exist.

The julian date is the number of days since the reference point,
January 1st -4713 B.C. (Julian calendar) at noon. The fractional part
corresponds to the fraction of day after noon: a fraction of 0.25, for
instance, is 18:00 or 6 P.M. The julian date is used by astronomers with
GMT; but using a local time zone is fine as long as an absolute time is
not required.

cal2julian

Calendar to julian date conversion.

Syntax
jd = cal2julian(datetime)
jd = cal2julian(year, month, day)
jd = cal2julian(year, month, day, hour, minute, second)

Description
cal2julian(datetime) converts the calendar date and time to the
julian date. Input arguments can be a vector of 3 components (year,
month and day) or 6 components (date and hour, minute and sec-
onds), or scalar values provided separately. The result of clock can
be used directly.

Example
Number of days between October 4 1967 and April 18 2005:

cal2julian(2005, 4, 18) - cal2julian(1967, 10, 4)
14624

See also
julian2cal, clock

566 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

julian2cal

Julian date to calendar conversion.

Syntax
datetime = julian2cal(jd)
(year, month, day, hour, minute, second) = julian2cal(jd)

Description
julian2cal(jd) converts the julian date to calendar date and time.
With a single output, the result is given a a row vector of 6 values
for the year, month, day, hour, minute and second; with more output
arguments, values are given separately.

Example
Date 1000 days after April 18 2005:

julian2cal(cal2julian(2005, 4, 18) + 1000)
2008 1 13 0 0 0

See also
cal2julian

10.40 Threads

LME threads are code fragments which are executed concurrently. This
section describes threads at the level of the LME virtual machine,
scheduled in a single OS-level thread. For multiple OS-level threads,
see Parallel execution.

There is always one main thread; additional threads can be created
and killed at any time by any thread. Their number is limited only by
the available memory. A new thread is created with the function to
be executed (as a function reference, a function name, or an inline
function) and optional arguments.

Threads communicate together by exchanging data in global vari-
ables or by calling functions with persistent variables. Semaphores
can be created to avoid reading a variable while it is being modified by
another thread, or for solving other synchronization problems. Thread
switching occurs between elementary operations (such as the execu-
tion of a function or an operator, or the branch implied by a conditional
or iteration command). For example, the simple expression x(end)
where x is a global variable (which gets the last element of the vec-
tor x) may not give the expected result if another thread changes the

LME Reference — threads 567

size of x between the evaluation of end and the retrieval of the vector
element. In that case, a semaphore should be locked around x(end)
and around the modification of x.

semaphoredelete

Delete a semaphore.

Syntax
semaphoredelete(id)

Description
semaphoredelete(id) deletes a semaphore which was created with
semaphorenew, ignoring its locked or unlocked state. It is an error to
use its id afterwards.

See also
semaphorenew

semaphorelock

Lock a semaphore.

Syntax
semaphorelock(id)
b = semaphorelock(id)

Description
semaphorelock(id) locks the semaphore specified by id, so that it
cannot be locked again before being unlocked with semaphoreunlock.
Without output argument, semaphorelock waits until another thread
unlocks it. With an output argument, it locks it and returns true if
the semaphore is not already locked, and it returns immediately false
otherwise as an indication of failure.

See also
semaphorenew, semaphoreunlock

semaphorenew

Create a new semaphore.

568 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
id = semaphorenew

Description
A semaphore is a mechanism which gives to a thread the exclusive
access to a resource. To request the access, the semaphore is locked.
Once it is locked, no other thread can lock it until it is unlocked. An
attempt to lock a semaphore while it is already locked will either wait
until the semaphore is unlocked, or fail immediately.

Semaphores are typically used when data shared by two or more
threads are modified in several steps (these data can be stored in a
global variable or in a file).

semaphorenew creates a new semaphore and returns the identifier
which should be used with all other semaphore-related functions.

Example
The code below creates two threads which both use a global variable
counter. The first thread continuously increments it, while the second
thread resets it to 0 every second.

threadId1 = threadnew(@t1);
threadId2 = threadnew(@t2);

Functions t1 and t2 are defined as

function t1
global counter;
while true
counter = counter + 1;

end
function t2
global counter;
while true
threadsleep(1);
counter = 0;

end

The problem with the code above is that the execution of the first
thread can be interrupted right after counter+1 has been evaluated
(with a result of 3742197, for instance), but before the result has been
assigned to counter. If the second thread resets counter at that time,
the first thread will immediately undo that by assigning 3742197 to
counter. To avoid that, a semaphore should be used to delay resetting
counter to after the new value is assigned in the first thread:

function t1
global counter;

LME Reference — threads 569

while true
semaphorelock(countersem);
counter = counter + 1;
semaphoreunlock(countersem);

end
function t2
global counter;
while true
threadsleep(1);
semaphorelock(countersem);
counter = 0;
semaphoreunlock(countersem);

end

The semaphore is created before the threads and its identifier stored
in global variable countersem:

global countersem;
countersem = semaphorenew;
threadId1 = threadnew(@t1);
threadId2 = threadnew(@t2);

See also
semaphorelock, semaphoreunlock, semaphoredelete

semaphoreunlock

Unlock a semaphore.

Syntax
semaphoreunlock(id)

Description
semaphoreunlock(id) unlocks the semaphore specified by id, so that
it can be locked again by any thread. If a thread was blocked by ex-
ecuting semaphorelock on the semaphore which is unlocked, it will
lock the thread and resume execution. If several threads are waiting
on the same semaphore, only one of them resumes execution. There
is no queue for waiting threads; which one resumes execution is un-
specified.

See also
semaphorelock

570 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

threadkill

Kill a thread.

Syntax
threadkill(id)

Description
threadkill(id) interrupts execution of the thread specified by its id
and discards the data which had been are allocated for it by
threadnew.

See also
threadnew

threadnew

Create a new thread.

Syntax
id = threadnew(fun)
id = threadnew(fun, opt)
id = threadnew(fun, opt, par1, par2, ...)

Description
threadnew(fun) creates a new thread which will execute function fun
without argument in parallel with the current thread and all other run-
ning threads. Function fun can be an inline function, a reference to
function, or the name of a function. threadnew returns a thread id
which is used by threadkill. The thread terminates when the func-
tion does (at the end of the function body or by executing return) or if
is interrupted with threadkill. The output arguments of the function
cannot be retrieved. If the thread produces a result, it should transmit
it via another mean, such as global variables.

threadnew(fun,opt) specifies options created with threadset.
Additional arguments, if any, are provided to function fun as its own
arguments.

See also
threadset, threadkill, info

LME Reference — threads 571

threadset

Options for thread creation.

Syntax
options = threadset
options = threadset(name1, value1, ...)
options = threadset(options0, name1, value1, ...)

Description

threadset(name1,value1,...) creates the option argument used
by threadnew. Options are specified with name/value pairs, where
the name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to each
option. Without any input argument, threadset creates a structure
with all the default options. Note that threadnew also interprets the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, threadset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
StackSize 8192 size allocated for the execution stack
Priority 0 thread priority, from -20 (lowest) to 20 (highest)
Running true true for a running thread, false if suspended
Sandbox false true for execution in a sandbox

A thread with Sandbox set to true runs with the same restrictions
as code executed with sandbox.

See also

threadnew, sandbox

threadsleep

Wait for a specified amount of time.

Syntax
threadsleep(time)
threadsleep(time, true)

572 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

threadsleep(time) waits at least the specified amount of time (spec-
ified in seconds with a resolution which depends on the platform),
permitting other threads to run. threadsleep(time,false) has the
same effect.

threadsleep(time,true) waits for the specified amount of time
relatively with the end of the previous threadsleep of the current
thread. By having threadsleep(time,true) in a loop, a fixed execu-
tion frequency can be achieved even if the processing time required
for the other statements in the loop can change (provided that the
amount of time specified for threadsleep is at least as large as the
processing time).

See also

threadnew

10.41 Parallel

Parallel execution extends LME to execute multiple tasks concurrently.
It takes advantage of computers with mutiple cores per microproces-
sor, and/or multiple microprocessors.

Parallel execution relies on the following object classes:

task Tasks are the basic unit of work. They consist in an LME func-
tion call with input and output arguments.

job Jobs are groups of tasks seen as a single unit. A job is sub-
mitted as a whole, its tasks are executed independently and the
outputs are collected and made available once all of them have
finished running.

cluster Clusters are groups of workers. Each job is associated with
a single cluster.

Worker Workers are the software and hardware resource units re-
quired to execute tasks. A worker contains a complete LME envi-
ronment. If a job contains more tasks than workers, workers exe-
cute multiple tasks one after the other.

Currently, workers are OS-level threads which the OS schedules on
the available microprocessor cores. For tests, serial execution can
be selected with parcluster(’serial’).

Workers are internal objects not associated with an LME class.

LME Reference — parallel 573

Examples

Task defined as an anonymous function
The first example can be run from the command window of Sysquake.
Function fun estimates pi with Monte Carlo integration, by counting
the ratio of m uniformly-distributed random points in the unit square
whose distance to the origin is smaller than 1. A job with n indepen-
dent tasks is run, and we wait until it is completed; at the end, its
state will be either ’finished’ if all tasks are successful or ’failed’
if there has been an error. The results of all tasks are collected in rl,
converted from a list of lists to a double array r, and their mean and
the expected standard deviation of their mean is computed. Note that
the pseudo-random number generator of each worker is automatically
initialized with a different seed; therefore the pseudo-random num-
bers used by each task are independent.

cluster = parcluster(’local’)
job = createJob(cluster)
m = 1e5;
n = 20;
fun = @(m) nnz(rand(m,1).̂ 2+rand(m,1).̂ 2<1)*4/m;
for i = 1:n
createTask(job, fun, 1, {m});

end
submit(job);
wait(job, ’finished’);
jobState = job.State
rl = fetchOutputs(job);
delete(job);
r = list2num([rl{:}]);
piApproxMean = mean(r)
piApproxStd = std(r) / sqrt(length(r))

User functions
Workers run in separate LME instances. To give tasks access to user-
defined functions, two mechanisms are provided:

Automatic library import By default, worker LME instances are
initialized with the same libraries which have been explicitly im-
ported with use in the context which calls submit, as well as the
library containing the function calling submit itself. This means
that you can use your functions transparently.

In the next example, the task function is passed as a function refer-
ence, not as an anonymous function as in the first example above.
It produces four output arguments, the number of points in unit
disks centered around the four unit square corners.

574 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

function (r00, r01, r10, r11) = task(m)
x = rand(m, 1);
y = rand(m, 1);
r00 = nnz(x.̂ 2 + y.̂ 2 < 1) * 4 / m;
r01 = nnz((1 - x).̂ 2 + y.̂ 2 < 1) * 4 / m;
r10 = nnz(x.̂ 2 + (1 - y).̂ 2 < 1) * 4 / m;
r11 = nnz((1 - x).̂ 2 + (1 - y).̂ 2 < 1) * 4 / m;

This function can be stored in a library or in the function block of
an SQ file (not copied/pasted as a whole directly in the command
window of Sysquake). The following statements are very similar
to the first example. They define the task as a function reference
instead of an anonymous function, and use the arithmetic mean
of the four outputs (rl is a list whose elements contain the output
arguments of each task, as a list of four values).

cluster = parcluster(’local’);
job = createJob(cluster);
m = 1e5;
n = 20;
for i = 1:n

createTask(job, @task, 4, {m});
end
submit(job);
wait(job, ’finished’);
jobState = job.State
rl = fetchOutputs(job);
delete(job);
r = list2num(map(@mean, [rl{:}]));
piApprox = mean(r)
piApproxStd = std(r) / sqrt(length(r))

To prevent workers from being initialized with the libraries of the
calling LME context, the job property AutoUseLib should be set to
false.

Worker startup commands Arbitrary commands can be run by
each worker when a job is submitted. Libraries can be specified
there, as well as other settings such as format, global variables
etc.

The following example shows how the format of floating-point num-
bers is changed.

cluster = parcluster(’local’);
job = createJob(cluster);
job.Startup = ’format long’;
task = createTask(job, @() disp(pi), 0, {});
task.CaptureDiary = true;
submit(job);

LME Reference — parallel 575

wait(job, ’finished’);
taskDiary = task.Diary

Diary
By default, text output to stdout and stderr produced by tasks is dis-
carded. To get it, the CaptureDiary property of task objects should
be set to true; once the task is completed, either in ’finished’ or
’failed’ state, the task Diary property contains all the output to
stdout and stderr (file descriptor 1 or 2) as a string.

cluster = parcluster(’local’);
job = createJob(cluster);
for i = 1:3
task = createTask(job, @() disp(rand), 0, {});
task.CaptureDiary = true;

end
submit(job);
wait(job, ’finished’);
map(@(task) disp(task.Diary), job.Tasks)

Sysquake background processing
In Sysquake, parallel execution can be used to carry out heavy com-
putations without adversary effect on the responsiveness of the user
interface. The following SQ file shows how the idle handler is used to
supervise parallel jobs, using and updating SQ variables shared with
a figure. The parallel job computes an approximation of pi with a task
function passed by reference. The idle handler submits it continuously
with the number of tasks n specified with a slider in the figure.

variable n = 20
variable piEst = 0
variable piStd = 0
variable job = null

idle (piEst, piStd, job) = idle(piEst, piStd, job, n)

figure "Parallel Test"
draw drawFig(n, piEst, piStd)
mousedrag 1 n = round(_x1)

functions
{@

function drawFig(n, piEst, piStd)
settabs(’Nb tasks 9999\t’);
slider(sprintf(’Nb tasks %d’, n), n, [1, 500], ’l’, id=1);
settabs(’Estimation std dev: \t’);
text(sprintf(’Estimation of pi:\t%.6f’, piEst));

576 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

text(sprintf(’Estimation std dev:\t%.6f’, piStd));

function p = taskFun(m)
x = rand(m, 1);
y = rand(m, 1);
p = nnz(x.̂ 2 + y.̂ 2 < 1) * 4 / m;

function (piEst, piStd, job) = idle(piEst, piStd, job, n)
if job =̃= null

switch job.State
case ’finished’
rl = fetchOutputs(job);
r = list2num([rl{:}]);
piEst = mean(r);
piStd = std(r) / sqrt(length(r));

case ’failed’
piEst = nan;
piStd = nan;

otherwise
// still running, don’t update figure
cancel(false);

end
delete(job);

end

m = 1e5;
cluster = parcluster(’local’);
job = createJob(cluster);
for i = 1:n
createTask(job, @taskFun, 1, {m});

end
submit(job);

@}

batch

Create a job with a single task.

Syntax
job = batch(fun, nargout, arginList)

See also
createJob, createTask

cancel

Cancel a job.

LME Reference — parallel 577

Syntax
cancel(job)

Description
cancel(job) cancels a job: pending and running tasks are brought
to the failed state (running tasks are interrupted). Tasks which are
already finished are left unchanged.

See also
createJob, submit

createJob

Create a new job.

Syntax
job = createJob(cluster)

Description
createJob(cluster) creates a new job to be run on the specified
cluster. It returns the job object. The next steps are typically to add
tasks with createTask, to execute the job with submit, to fetch results
with fetchOutputs, and to release resources allocated for the job with
delete.

Objects of class job have the following properties:

AutoUseLib true to let workers use the same libraries as those
imported in the current context of the function which calls submit,
including the library of the function itself (default)

ElapsedTime wall-clock time spent from call to submit to the com-
pletion of the last task

ID job id (integer number)

Parent cluster object the job is associated with

Startup code executed at startup by each worker

State current job state as a string

Tasks list of tasks belonging to the job

Properties AutoUseLib and Startup can be set; all other properties
are read-only.

578 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Create a job with the cluster ’local’:

cluster = parcluster(’local’);
job = createJob(cluster);

See also
parcluster, createTask

createTask

Create a new task.

Syntax
task = createTask(job, fun, nargout, arginList)

Description
createTask(job,fun,nargout,arginList) creates a new task for
the specified job. A single job can contain as many jobs as required.
The task is specified by the last three arguments:

fun function, as a function reference or an anonymous or inline
function

nargout number of output arguments produced by fun
(non-negative integer)

arginList list of input arguments

createTask returns a task object, which can often be ignored because
a list of all the tasks created for a job can be retrieved with function
findTask or job property Tasks. Task objects have the following prop-
erties:

CaptureDiary true to capture task output in Diary property

Diary task output as a string (empty if CaptureDiary is false)

ErrorIdentifier error identifier if state is ’failed’

ErrorMessage error message if state is ’failed’

Function function

ID task id (integer number)

InputArguments list of input arguments

LME Reference — parallel 579

NumOutputArguments number of output arguments

OutputArguments list of output arguments if state is ’finished’

Parent job object the task belongs to

State current task state as a string

Property CaptureDiary can be set; all other properties are read-only.

Examples
Add 10 tasks which compute the mean of n=1e5 pseudo-random val-
ues:

for i = 1:10
createTask(job, @(n) mean(rand(1,n)), 1, {1e5});

end

Run a job with 1000 tasks which compute the (local) minima of func-
tion y=fun(X), where X is a vector of length 10, y is a scalar, and the
starting points are chosen randomly in the unit hypercube. Function
fminsearch is asked two output arguments, X and y. All results are
collected in 10-by-1000 array Xa and 1-by-1000 array ya. The index
of the minimum value of ya gives an approximation of the global min-
imum Xopt and yopt.

cluster = parcluster(’local’);
job = createJob(cluster);
for i = 1:1000
createTask(job, @fminsearch, 2, {@fun, rand(10,1)});

end
submit(job);
wait(job, ’finished’);
rl = fetchOutputs(job);
delete(job);
r = list2num([rl{:}]);
Xa = [map(@(taskOutputs) taskOutputs{1}, rl){:}];
ya = [map(@(taskOutputs) taskOutputs{2}, rl){:}];
(yopt, ixopt) = min(ya);
Xopt = Xa(:, ixopt);

See also
createJob

delete

Delete a job or a task.

580 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
delete(job)
delete(task)

delete(job) deletes the specified job and all its tasks. It should be
called once the job is completed to release its resources.

delete(task) deletes the specified task. It is superfluous if
delete(job) is called.

See also
createJob, createTask

fetchOutputs

Fetch output of all tasks in a job.

Syntax
outputList = fetchOutputs(job)

Description
fetchOutputs(job) gets all the task outputs. Its value is a list where
each elements corresponds to a task. For tasks whose state is
’finished’, it is itself a list of nargout values, where nargout is the
number of task output arguments specified by createTask. For tasks
whose state is not ’finished’, it is an empty list.

Usually, fetchOutput should be called when the job is completed,
i.e. when its state is ’finished’ or ’failed’. This can be achieved by
calling wait(job,’finished’) or by checking the job State property.

See also
createTask, createJob, wait

findTask

Find tasks in a job.

Syntax
tasks = findTask(job)
(pendingTasks, runningTasks, completedTasks) = findTask(job)

LME Reference — parallel 581

Description
With one output argument, findTask(job) gets a list of all the tasks
defined for the specified job. It gives the same result as the job prop-
erty Tasks.

With three output arguments, findTask(job) gets separate lists
for the tasks whose state is ’pending’ or ’queued’, ’running’, and
’finished’ or ’failed’.

See also
createJob

parcluster

Get a cluster.

Syntax
cluster = parcluster
cluster = parcluster(name)

Description
parcluster(name) gives the cluster whose name is specified as a
string argument. The following names are valid:

’local’ (default) Workers running in threads dispatched by the
operating system on the cores of the local computer. Each worker
runs in a separate LME context, which is reset at the beginning
of each job submission. To make Monte-Carlo processes easier,
the pseudo-random generator of each worker is initialized with a
different seed.

’serial’ Serial execution of each task in the base LME environ-
ment. Function submit returns only once all the tasks have been
completed. Output is displayed immediately and not stored in the
task’s diary, regardless of task property CaptureDiary.

Without input argument, parcluster gives the default cluster, which
can be changed with pardefaultcluster.

Objects of class cluster have the following properties:

Jobs list of jobs

MaxNumWorkers maximum number of workers

Name cluster name

582 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

NumWorkers number of workers; should be set typically to the num-
ber of CPU times the number of cores per CPU times the number of
hardware threads per core (hyperthreading or multithreading)

LMEMemory (’local’ only) amount of memory in bytes allocated
to LME by each worker, between 256KB and 2047MB (default:
32MB)

Properties NumWorkers and LMEMemory can be set; all other properties
are read-only.

See also
pardefaultcluster, createJob

pardefaultcluster

Get or set default cluster.

Syntax
cluster = pardefaultcluster
pardefaultcluster(cluster)
pardefaultcluster(name)

Description
Without input argument, pardefaultcluster gives the current de-
fault cluster, i.e. the cluster returned by parcluster when no name is
given.

With an input argument, pardefaultcluster(cluster)
sets cluster as the default cluster. With a string
argument, pardefaultcluster(name) is equivalent to
pardefaultcluster(parcluster(name)).

See also
parcluster

submit

Submit a job for execution.

Syntax
submit(job)

LME Reference — parallel 583

Description
submit(job) submits the specified job so that its tasks are executed
on the cluster job belongs to. It returns immediately.

A job can be submitted only once.

Example
Submit a job, wait until all tasks have completed, and retrieve its re-
sults.

submit(job);
wait(job, ’finished’);
results = fetchOutputs(job);

See also
createJob, wait, cancel, fetchOutputs

wait

Wait until a job state has changed.

Syntax
wait(job)
wait(job, state)

Description
With one input argument, wait(job) waits until the job state has
changed. If the job is already in state ’finished’ or ’failed’, it
returns immediately.

With two input arguments, wait(job,state) waits until the job
state has reached the state specified in the second argument. States
’finished’ and ’failed’ are considered to be equivalent.

Examples
Submit a job and wait until it is completed.

submit(job);
wait(job, ’finished’);

After a job has been submitted, instead of waiting until it is completed
with wait, the percentage of completed tasks can be obtained with
findTask. The following lines can be repeated.

(p, r, c) = findTask(job);
p100Completed = 100 * length(c) / (length(p) + length(r) + length(c))

584 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

After a job is completed, if it has failed, i.e. if at least one task has
thrown an error, get the error identifier and message of the first failed
task and throw the error.

submit(job);
wait(job, ’finished’);
errId = ’’;
if job.State === ’failed’
for task = job.Tasks
if task.State === ’failed’
errId = task.ErrorIdentifier;
errMsg = task.ErrorMessage;
break;

end
end

else
outputs = fetchOutputs(job);

end
delete(job);
if errId
error(errId, errMsg);

end

See also
submit, createJob

10.42 Sysquake Graphics

The main goal of Sysquake is the interactive manipulation of graphics.
Hence, graphical functions play an important role in SQ files. There are
low-level commands for basic shapes as well as high-level commands
for more specialized plots:

Low-level commands Low-level commands add simple shapes
such as lines, marks, polygons, circles and images. With them,
you can display virtually everything you want. Arguments of these
commands are such that it is very easy to work globally with ma-
trices without computing each value sequentially in a loop.

High-level commands High-level commands perform some com-
putation of their own to process their arguments before displaying
the result. This has two benefits: first, the code is simpler, more
compact, and faster to develop. Second, command execution is
faster, because the additional processing is not interpreted by LME,
but implemented as native machine code. The information related
to interactive manipulation is often easier to use, too. Most of these
functions are related to automatic control and signal processing.

LME Reference — graphics 585

Commands which display data in a figure can be used only in the draw
handlers or from the command line interface. Conversely, commands
which change the number of subplots or the subplots themselves can-
not be used in the draw handlers.

Here is the list of these two groups of commands:
Reserved for draw handlers and command-line interface
2D low-level drawing commands

activeregion
area
bar
barh
circle

colormap
contour
fplot
image
line

pcolor
plot
polar
quiver
text

2D high-level drawing commands

bodemag
bodephase
dbodemag
dbodephase
dimpulse
dinitial
dlsim
dnichols
dnyquist

dsigma
dstep
erlocus
hgrid
hstep
impulse
initial
lsim
ngrid

nyquist
nyquist
plotroots
rlocus
sgrid
sigma
step
zgrid

Note that some of these functions can be used in non-draw han-
dlers when the result is retrieved in output arguments and not dis-
played.

Scaling and labels

altscale
label
legend

plotoption
scale
scalefactor

scaleoverview
ticks
title

3D

contour3
line3
mesh

plot3
plotpoly
sensor3

surf

3D scaling and lighting

586 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

camdolly
camorbit
campan
campos
camproj

camroll
camtarget
camup
camva
camzoom

daspect
lightangle
material

Controls

button
popupmenu

pushbutton
settabs

slider
textfield

Cannot be used in draw handlers
clf
defaultstyle
figurestyle
redraw

scalesync
subplot
subplots
subplotpos

subplotprops
subplotparam
subplotspring
subplotsync

Commands from both groups can be typed in the command line
interface. For example, to plot the step response of the continuous-
time system whose Laplace transform is 1/(s3 + 2s2 + 3s + 4), type

> clf
> step(1, [1,2,3,4])

The first command, only valid from the command line interface (or
indirectly in a function called from the command line interface),
clears the figure window (necessary if there was already something
displayed); the second command integrates the system over a
suitable range with a unit entry and null initial conditions.

10.43 Remarks on graphics

Many functions which produce the display of graphical data accept two
optional arguments: one to specify the style of lines and symbols, and
one to identify the graphical element for interactive manipulation.

Style

The style defines the color, the line dash pattern (for continuous
traces) or the shape (for discrete points) of the data.

LME Reference — remarks on graphics 587

There are two different ways to specify the style. The first one, de-
scribed below, is with a single string. The second one, introduced with
Sysquake 5, is with an option structure built with plotset or directly
with named arguments; it is more verbose, hence easier to under-
stand, and gives access to more settings, such as line width or marker
colors.

The possible values in a style string are given below. Note that
the color is ignored on some output devices (such as black and white
printers) and the dash pattern is used only on high-resolution devices
(such as printers or EPS output). The color code is lowercase for thin
lines and uppercase for thicker lines on devices which support it.

Color String
black k
blue b
green g
cyan c
red r
magenta m
yellow y
white w
RGB h(rrggbb)
RGB h(rgb)

Dash Pattern String
solid _ (underscore)
dashed -
dotted :
dash-dot !

Shape String
none (invisible) (space)
point .
circle o
cross x
plus +
star *
triangle up ˆ
triangle down v
square [
diamond <

588 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Miscellaneous String
stairs s
stems t
fill f
arrow at end a
arrows at beginning and end A

Color ’h(rrggbb)’ specifies a color by its red, green, and blue
components; each of them is given by two hexadecimal digits from
00 (minimum brightness) to ff (maximum brightness). Color ’h(rgb)’
specifies each component with a single hexadecimal digit. For exam-
ple, ’h(339933)’ and ’h(393)’ both specify the same greenish gray.
Like for other colors, an uppercase ’H’ means that the line is thick.

Style ’s’ (stairs) is supported only by the plot, dimpulse, dstep,
dlsim, and dinitial functions. It is equivalent to a zero-order hold,
i.e. two points are linked with a horizontal segment followed by a
vertical segment.

Style ’t’ (stems) draws for each value a circle like ’o’ and a verti-
cal line which connects it to the origin (in 2D plots, y=0 for linear scale
or y=1 for logarithmic scale; in 3D plots, z=0). In polar plots, stems
connects points to x=y=0.

Style ’f’ (fill) fills the shape instead of drawing its contour. Exactly
how the shape is filled depends on the underlying graphics architec-
ture; if the contour intersects itself, there may be holes.

Style ’a’ adds an arrow at the end of lines drawn by plot, and
style ’A’ adds arrows to the beginning and the end. The arrow size
depends only on the default character size, neither on the line length
nor on the plot scale. Its color and thickness are the same as the line’s.

Many graphical commands accept data for more than one line. If
the style string contains several sequences of styles, the first line bor-
rows its style from the first sequence, the second line, from the second
sequence, and so on. If there are not enough styles, they are recycled.
A sequence is one or two style specifications, one of them for the color
and the other one for the dash pattern or the symbol shape, in any or-
der. Sequences of two specifications are used if possible. Commas
may be used to remove ambiguity. Here are some examples:

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’k-r!’)

The first line (from (0,1) to (1,1)) is black and dashed, the second line
(from (0,2) to (1,2)) is red and dash-dot, and the third line (from (0,3)
to (1,3)) is black and dashed again.

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’rbk’)

The first line is red, the second line is blue, and the third line is black.

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’-br’)

LME Reference — remarks on graphics 589

The first and third lines are blue and dashed, and the second line is
red and solid.

plot([0,1;0,1;0,1],[1,1;2,2;3,3],’:,H(cccccc)’)

The first and third lines are dotted, and the second line is gray, solid,
and thick.

Graphic ID

The second optional argument is the graphic ID. It has two purposes.
First, it specifies that the graphic element can be manipulated by the
user. When the user clicks in a figure, Sysquake scans all the curves
which have a non-negative graphic ID (the default value of all com-
mands is -1, making the graphical object impossible to grasp) and sets
_z0, _x0, _y0, _id, and _ix such that they correspond to the nearest
element if it is close enough to the mouse coordinates. Second, the ar-
gument _id is set to the ID value so that the mousedown, mousedrag,
and mouseup handlers can identify the different objects the user can
manipulate.

In applications without live interactivity, such as Sysquake Remote,
the graphic ID argument is accepted for compatibility reasons, but
ignored.

Scale

Before any figure can be drawn on the screen, the scale (or equiv-
alently the portion of the plane which is represented on the screen)
must be determined. The scale depends on the kind of graphics, and
consequently is specified in the draw handler, but can be changed by
the user with the zoom and shift commands. What the user specifies
has always the priority. If he or she has not specified a new scale, the
scale command found in the draw handler is used:

scale([xMin,xMax,yMin,yMax])

If scale is not used, or if some of the limits are NaN (not an number),
a default scale is given by the plot commands themselves. If used, the
scale command should always be executed before any plot command,
because several of them use the scale to calculate traces only over
the visible range or to adjust the density of the calculated points of
the traces.

If you need to know the limits of the displayed area in your draw
handler, use scale to get them right after setting the default scale, so
that you take into account the zoom and shift specified by the user:

590 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

scale(optString, [defXMin, defXMax, defYMin, defYMax]);
sc = scale;
xMin = sc(1);
xMax = sc(2);
yMin = sc(3);
yMax = sc(4);

Grids

In addition to the scale ticks displayed along the bounding frame, grids
can be added to give visual clues and make easier the interpretation
of graphics. X and Y grids are vertical or horizontal lines displayed in
the figure background. They can be switched on and off by the user
in the Grid menu, or switched on by programs with the plotoption
command (they are set off by default). In the example below, both X
and Y grids are switched on:

plotoption xgrid
plotoption ygrid
plot(rand(1,10));

Commands which display grids for special kind of graphics are also
available:

Command Intended use
hgrid nyquist, dnyquist
ngrid nichols, dnichols
sgrid plotroots, rlocus (continuous-time)
zgrid plotroots, rlocus (discrete-time)

They can be used without argument, to let the user choose the
level of details: none means the command does not produce any out-
put; basic is the default value and gives a simple, non-obstructive hint
(a single line or a circle); and full gives more details. To change by
program the default level of details (basic), plotoption is used. In
the example below, the grid for the complex plane of the z transform
is displayed with full details. Once the figure is displayed, the user is
free to reduce the level of details with the Grid menu.

scale(’equal’, [-2,2,-2,2]);
zgrid;
plotoption fullgrid;
plotroots([1,-1.5,0.8]);

LME Reference — base graphics 591

10.44 Base Graphical Functions

activeregion

Region associated with an ID.

Syntax
activeregion(xmin, xmax, ymin, ymax, id)
activeregion(X, Y, id)

Description
The command activeregion defines invisible regions with an ID for
interactive manipulations in Sysquake. Contrary to most other graph-
ical objects, a hit is detected when the mouse is inside the region, not
close like with points and lines.

activeregion(xmin,xmax,ymin,ymax,id) defines a rectangular
shape.

activeregion(X,Y,id) defines a polygonal shape. The start and
end points do not have to be the same; the shape is closed automati-
cally.

Example
Rectangular button. If an ID was given to plot without activeregion,
a hit would be detected when the mouse is close to any of the four cor-
ners; with activeregion, a hit is detected when the mouse is inside
the rectangle.

plot([50, 70, 70, 50, 50], [10, 10, 30, 30, 10]);
activeregion(50, 70, 10, 30, id=1);

See also
plot, image

altscale

Alternative y scale for 2D plots.

Syntax
altscale(b)

Description
altscale(b) selects an alternative y scale whose axis and labels are
displayed on the right of the rectangular frame of 2D plots. Its input
argument is a logical value which is true to select the alternative scale
and false to revert to the primary scale.

592 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
bar(1:5, rand(1, 5));
altscale(true);
plot(1:5, 3 * rand(1,5), ’R’);
label(’’, ’y1’, ’y2’);
legend(’y1\ny2’, ’bfR’);

See also
scale, label

area

Area plot.

Syntax
area(y)
area(x, y)
area(x, y, y0)
area(..., style)
area(..., style, id)

Description
With column vector arguments, area(x,y) displays the area between
the horizontal axis y=0 and the points given by x and y. When the
second argument is an array with as many rows as elements in x,
area(x,Y) displays the contribution of each column of Y, summed
along each row. When both the first and second arguments are ar-
rays of the same size, area(X,Y) displays independent area plots for
corresponding columns of X and Y without summation.

With a single argument, area(y) takes integers 1, 2, ..., n for the
horizontal coordinates.

With a third argument, area(x,y,y0) displays the area between
the horizontal line y=y0 and values defined by y.

The optional arguments style and id have their usual meaning.
area uses default colors when argument style is missing.

Examples
Red area defined by points (1,2), (2,3), (3,1), and (5,2) above y=0; on
top of it, blue area defined by points (1,2+1), (2,3+2) etc.

area([1;2;3;5],[2,1;3,2;1,5;2,1], 0, ’rb’);

Two separate areas above y=0.2 defined by points (1,2), (2,3), (3,1),
(5,2); and (6,1), (7,2), (8,5), and (9,1).

area([1,6;2,7;3,8;5,9],[2,1;3,2;1,5;2,1], 0.2, ’rb’);

LME Reference — base graphics 593

See also
plot, bar, hbar

bar

Vertical bar plot.

Syntax
bar(y)
bar(x, y)
bar(x, y, w)
bar(..., kind)
bar(..., kind, style)
bar(......, id)

Description
bar(x,y) plots the columns of y as vertical bars centered around the
corresponding value in x. If x is not specified, its default value is
1:size(y,2).

bar(x,y,w), where w is scalar, specifies the relative width of each
bar with respect to the horizontal distance between the bars; with
values smaller than 1, bars are separated with a gap, while with values
larger than 1, bars overlap. If w is a vector of two components [w1,w2],
w1 corresponds to the relative width of each bar in a group (columns
of y), and w2 to the relative width of each group. Default values, used
if w is missing or is the empty matrix [], is 0.8 for both w1 and w2.

bar(...,kind), where kind is a string, specifies the kind of bar
plot. The following values are recognized:

’grouped’ Columns of y are grouped horizontally (default)
’stacked’ Columns of y are stacked vertically
’interval’ Bars defined with min and max val.

With ’interval’, intervals are defined by two consecutive rows of
y, which must have an even number of rows.

The optional arguments style and id have their usual meaning.
bar uses default colors when argument style is missing.

Examples
Simple bar plot (see Fig. 10.5):

bar([2,4,3,6;3,5,4,1]);

Stacked bar plot:

bar(1:4, magic(4), [], ’stacked’);

Interval plot:

bar(1:4, [2,4,3,1;5,6,4,6], [], ’interval’);

594 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

2 4
0

5

bar([2,4,3,6])

2 4
0

5

bar([2,4,3,6;3,5,4,1])

2 4
0

20

bar(1:4,magic(4),[],’stacked’)

2 4

2

4

6
...[2,4,3,1;5,6,4,6],[],’interval’)

Figure 10.5 Example of bar with different options

See also
barh, plot

barh

Horizontal bar plot.

Syntax
barh(x)
barh(y, x)
barh(y, x, w)
barh(..., kind)
barh(..., kind, style)
barh(..., id)

Description
barh plots a bar plot with horizontal bars. Please see bar for a de-
scription of its behavior and arguments.

Examples
Simple horizontal bar plot:

barh([2,4,3,6;3,5,4,1]);

Stacked horizontal bar plot:

LME Reference — base graphics 595

barh(1:4, magic(4), [], ’stacked’);

Horizontal interval plot:

barh(1:4, [2,4,3,1;5,6,4,6], [], ’interval’);

See also
bar, plot

circle

Add circles to the figure.

Syntax
circle(x,y,r)
circle(x,y,r,style)
circle(x,y,r,style,id)

Description
circle(x,y,r) draws a circle of radius r centered at (x,y). The argu-
ments can be vectors to display several circles. Their dimensions must
match; scalar numbers are repeated if necessary. The optional fourth
and fifth arguments are the style and object ID (cf. their description
above).

In mouse handlers, _x0 and _y0 correspond to the projection of the
mouse click onto the circle; _nb is the index of the circle in x, y and r,
and _ix is empty.

Circles are displayed as circles only if the scales along the x and y
axes are the same, and linear. With different linear scales, circles are
displayed as ellipses. With logarithmic scales, they are not displayed.

Examples
circle(1, 2, 5, ’r’, 1);
circle(zeros(10,1), zeros(10, 1), 1:10);

See also
plot, line

colormap

Current colormap from scalar to RGB.

596 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
colormap(clut)
clut = colormap

Description
Command colormap(clut) changes the color mapping from scalar
values to RGB values used by commands such as pcolor, image and
surf.

Colormaps are arrays of size n-by-3. Each row corresponds to a
color; the first column is the intensity of red from 0 (no red component)
to 1 (maximum intensity), the second column the intensity of green,
and the third column the intensity of blue. Input values are mapped
uniformly to one of the discrete color entries, 0 to the first row and 1
to the last row.

With an input argument, colormap(clut) sets the colormap to
clut. With an output argument, colormap returns the current col-
ormap.

See also
pcolor, image

contour

Level curves.

Syntax
contour(z)
contour(z, [xmin, xmax, ymin, ymax])
contour(z, [xmin, xmax, ymin, ymax], levels)
contour(z, [xmin, xmax, ymin, ymax], levels, style)

Description
contour(z) plots seven contour lines corresponding to the surface
whose samples at equidistant points 1:size(z,2) in the x direction
and 1:size(z,1) on the y direction are given by z. Contour lines
are at equidistant levels. With a second non-empty argument [xmin,
xmax, ymin, ymax], the samples are at equidistant points between
xmin and xmax in the x direction and between ymin and ymax in the y
direction.

The optional third argument levels, if non-empty, gives the num-
ber of contour lines if it is a scalar or the levels themselves if it is a
vector.

LME Reference — base graphics 597

-1 0 1
-1

0

1
contour

Figure 10.6 Example of contour

The optional fourth argument is the style of each line, from the
minimum to the maximum level (styles are recycled if necessary). The
default style is ’kbrmgcy’.

When the style is f for a filled region, the corresponding level is
filled on the side with a lower value of z. If the style argument is
the single character ’f’, all levels are filled with the default colors.
Regions with a value of z smaller than the lowest level are left trans-
parent; an explicit lower level should be specified to fill the whole
rectangle.

Examples
A function is evaluated over a grid of two variables x and y, and is
drawn with contour (see Fig. 10.6):

(x, y) = meshgrid(-2 + (0:40) / 10);
z = exp(-((x-0.2).̂ 2+(y+0.3).̂ 2)) ...

- exp(-((x+0.5).̂ 2+(y-0.1).̂ 2)) + 0.1 * x;
scale equal;
contour(z, [-1,1,-1,1]);

Filled contours:

u = -2 + (0:80) / 20;
x = repmat(u, 81, 1);
y = x’;
z = exp(-((x-0.2).̂ 2+(y+0.3).̂ 2)) ...

- exp(-((x+0.5).̂ 2+(y-0.1).̂ 2)) ...
+ 0.1 * x ...

598 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

+ 0.5 * sin(y);
levels = -1:0.2:1;
scale equal;
contour(z, [-1,1,-1,1], levels, ’f’);

See also
image, quiver

figurestyle

Figure style.

Syntax
figurestyle(name, style)
style = figurestyle(name)

Description
figurestyle sets or gets the style of figures. The same settings
apply to all subplots; settings for specific subplots are changed with
subplotstyle. Styles are set or got separately for each feature of
the graphics (plot background, drawing, title, etc.). They are specified
with the same structures as plotset or fontset (except for
’plotmargin’), or with the corresponding named arguments.

The first argument, name, is the name of the style feature:

Name Type Feature
’controlbg’ plotset Control background
’controlfont’ fontset Font for controls
’draw’ plotset Default line or mark plots
’figfont’ fontset Font for text in figure
’frame’ plotset Plot or subplot frame and ticks
’grid’ plotset Special grids such as hgrid
’hilight’ plotset Hilighted subplot frame for interactive figures
’tickfont’ fontset Font for tick labels
’labelfont’ fontset Font for axis labels
’legend’ plotset Legend box (frame and background)
’legendfont’ fontset Font for legend text
’plotbg’ plotset Plot or subplot background
’plotmargin’ Plot margin size
’scaleoverview’ plotset Scale overview rectangle
’titlefont’ fontset Font used for plot or subplot titles
’winbg’ plotset Background around plots or subplots
’xygrid’ plotset Rectangular grid (or polar in polar plots)

figurestyle(name,style) changes the specified style. The style
can be specified with a style structure, like what is returned by

LME Reference — base graphics 599

plotset or fontset, or with named arguments. Settings which are
not specified keep their default values.

With a single argument, figurestyle(name) returned the current
specified style.

The value for ’plotmargin’ is a structure which describes the mar-
gin width around plots or subplots. It contains the following fields:

Name Value
Left left margin in multiple of a digit width
Right right margin in multiple of a digit width
Top top margin in multiple of line height
Bottom bottom margin in multiple of line height
CenteredLabelWidth see below
CenteredLabelHeight see below
FixedControlVPos see below

The fonts the widths are based on are the title font for Top, and the
label font for the other fields. When an alternative y scale is used with
altscale, the width of the right margin is based on Left instead of
Right.

If field CenteredLabelWidth is larger than 0, it specifies the
width of an additional margin (in multiple of a digit width) where
the label of the Y axis is displayed, centered vertically. If field
CenteredLabelHeight is larger than 0, it specifies the height of an
additional bottom margin (in multiple of a line height) where the label
of the X axis is displayed, centered horizontally. The default location
of axis labels is at the end of the tick labels.

If field FixedControlVPos is false, controls (buttons, sliders etc.)
are centered vertically in the subplot content area, or can be scrolled
vertically by the user if they exceed the available space. If it is true,
controls are aligned at the top and cannot be scrolled.

Considered as a whole, styles should be chosen such that they pro-
vide enough contrast to make all features visible. In particular, the
font color should be changed when a dark background is selected.
Some combinations, such as red on green, are difficult to distinguish
for color-blind persons.

In Sysquake, figurestyle should not be used in figure draw han-
dlers, because it applies to all subplots. It should typically be placed
in init or menu handlers. To change the default figure styles which
are used in all figures unless they are overridden by figurestyle,
defaultstyle should be called instead.

Example
Blue appearance with different dark shades for the backgrounds, and
large fonts.

figurestyle(’winbg’, FillColor=’#002’);
figurestyle(’plotbg’, FillColor=’#005’);

600 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

figurestyle(’legend’, FillColor=’#00a’);
figurestyle(’draw’, Size=18, LineWidth=4, Color=’#88f’);
figurestyle(’grid’, Size=18, LineWidth=2, Color=’#66c’);
figurestyle(’xygrid’, LineWidth=2, Color=’#66c’);
figurestyle(’frame’, LineWidth=3, Color=’#44f’);
figurestyle(’figfont’, Size=20, Color=’white’);
figurestyle(’controlfont’, Size=20, Color=’white’);
figurestyle(’legendfont’, Size=20, Color=’white’);
figurestyle(’titlefont’, Size=32, Bold=true, Color=’white’);
figurestyle(’tickfont’, Size=18, Color=’white’);
figurestyle(’labelfont’, Size=18, Color=’white’);

See also

subplotstyle, plotset, plotfont, plotoption

fontset

Options for fonts.

Syntax

options = fontset
options = fontset(name1=value1, ...)
options = fontset(name1, value1, ...)
options = fontset(options0, name1, value1, ...)

Description

fontset(name1,value1,...) creates the font description used by
text. Options are specified with name/value pairs, where the name
is a string which must match exactly the names in the table below.
Case is significant. Alternatively, options can be given with named
arguments. Options which are not specified have a default value. The
result is a structure whose fields correspond to each option. Without
any input argument, fontset creates a structure with all the default
options. Options can also be passed directly to text or math as named
arguments.

When its first input argument is a structure, fontset adds or
changes fields which correspond to the name/value pairs which
follow.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

LME Reference — base graphics 601

Name Default Meaning
Font ’’ font name
Size 10 character size in points
Bold false true for bold font
Italic false true for italic font
Underline false true for underline characters
Color [0,0,0] text color

The default font is used if the font name is not recognized. The color
is specified as an empty array (black), a scalar (gray) or a 3-element
vector (RGB) of class double (0=black, 1=maximum brightness) or
uint8 (0=black, 255=maximum brightness).

Examples

Default font:

fontset
Font: ’’
Size: 10
Bold: false
Italic: false
Underline: false
Color: real 1x3

Named argument directly in text:

text(0, 0, ’Text’, Font=’Times’, Italic=true, Bold=true)

See also

text

fplot

Function plot.

Syntax
fplot(fun)
fplot(fun, limits)
fplot(fun, limits, style)
fplot(fun, limits, style, id)
fplot(fun, limits, style, id, p1, p2, ...)

602 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
Command fplot(fun,limits) plots function fun, specified by its
name as a string, a function reference, or an inline or anonymous
function. The function is plotted for x between limit(1) and
limit(2); the default limits are [-5,5].

The optional third and fourth arguments are the same as for all
graphical commands.

Remaining input arguments of fplot, if any, are given as additional
input arguments to function fun. They permit to parameterize the
function. For example fplot(’fun’,[0,10],’’,-1,2,5) calls fun as
y=fun(x,2,5) and displays its value for x between 0 and 10.

Examples
Plot a sine:

fplot(@sin);

Plot ( + 0.3)2 + exp−32 in red for  ∈ [−2,3] with  = 7.2 and an
identifier of 1:

fun = inline(...
’function y=f(x,a); y=(x+0.3)̂ 2+a*exp(-3*x̂ 2);’);

fplot(fun, [-2,3], ’r’, 1, 7.2);

Same plot with an anonymous function:

a = 7.2;
fplot(@(x) (x+0.3)̂ 2+a*exp(-3*x̂ 2), [-2,3], ’r’, 1);

See also
plot, inline, operator @

image

Raster RGB or grayscale image.

Syntax
image(gray)
image(red, green, blue)
image(rgb)
image(..., [xmin, xmax, ymin, ymax])
image(..., mode)
image(..., id)

LME Reference — base graphics 603

Description
image displays a raster image (an image defined by a rectangular ar-
ray of patches of colors called pixels). The raster image can be either
grayscale or color. A grayscale image is defined by a double matrix
of pixel values in the range 0 (black) to 1 (white), by a uint8 matrix in
the range 0 (black) to 255 (white), or by a uint16 matrix in the range
0 (black) to 65535 (white). A color image is defined by three matrices
of equal size, corresponding to the red, green, and blue components,
or by an array with three planes along the 3rd dimension. Each com-
ponent is defined between 0 (black) to 1 (maximum intensity) with
double values, between 0 (black) to 255 (maximum intensity) with
uint8 values, or between 0 (black) and 65535 (maximum intensity)
with uint16 values. If a colormap has been defined, grayscale image
rendering uses it.

The position is defined by the the minimum and maximum
coordinates along the horizontal and vertical axes. The
raster image is scaled to fit. The first line of the matrix or
matrices is displayed at the top. The position can be specified
by an argument [xmin,xmax,ymin,ymax]; by default, it is
[0,size(im,2),0,size(im,1)] where im stands for the image array
or one of its RGB components.

If mode is ’e’, the raster image is scaled down such that each pixel
has the same size; otherwise, the specified position is filled with the
raster image. You should use ’e’ when you want a better quality, but
do not add other elements in the figure (such as marks or lines) and
do not have interaction with the mouse.

Pixels on the screen are interpolated using the bilinear method if
mode is ’1’, and the bicubic method if mode is ’3’.

Examples
Two ways to display a table of 10-by-10 random color cells (see
Fig. 10.7):

image(rand(10), rand(10), rand(10));
image(rand(10, 10, 3));

A ramp of gray shades:

image(uint8(0:255));

Operator : and function meshgrid can be used to create the x and y
coordinates used to display a function z(x,y) as an image.

(X, Y) = meshgrid(-pi:0.1:pi);
Z = cos(X.̂ 2 + Y.̂ 2).̂ 2;
image(Z, [-1,1,-1,1], ’3’);

604 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

-1 0 1
-1

0

1
image

Figure 10.7 Example of image

See also

contour, quiver, colormap, pcolor

label

Plot labels.

Syntax
label(label_x)
label(label_x, label_y)
label(label_x, label_y, label_y2)

Description

label(label_x, label_y) displays labels for the x and y axes. Its
arguments are strings. The label for the y axis may be omitted.

When an alternative y scale is used with altscale, its label can be
specified with a third argument.

For a dB scale, an additional label [dB] is automatically displayed
below the text specified by label_y; it is not displayed if there is no
label_y (or an empty label_y). If label_y is a single-space string, it
is replaced by [dB] for a dB scale (i.e. [dB] is aligned correctly with
the top of the figure).

With plotoption math, labels can contain MathML or LaTeX.

LME Reference — base graphics 605

Examples
step(1,[1,2,3,4]);
label(’t [s]’, ’y [m]’);

With literal strings, the command syntax may be more convenient:

label Re Im;

dB scale with only a [dB] label:

scale logdb;
bodemag(1, [1, 2, 3]);
label(’’, ’ ’);

See also
text, legend, title, ticks, altscale, plotoption

legend

Plot legend.

Syntax
legend(str)
legend(str, style)

Description
legend(str,style) displays legends for styles defined in string
style. In string str, legends are separated by linefeed characters \n.
Legends are displayed at the top right corner of the figure in a frame.
All styles are permitted: symbols, lines, and filling. They are recycled
if more legends are defined in str. If str is empty, no legend is
displayed.

With a single input argument, legend(str) uses the default style
’k’.

With plotoption math, legend lines in first argument can contain
MathML or LaTeX.

Example
Legend for two traces (see Fig. 10.8).

plot(1:20, [rand(1,20); randn(1,20)], ’_x’);
legend(’Uniform random\nNormal random’, ’_x’);

See also
label, ticks, title, plotoption

606 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Uniform random

Normal random

10 20

-1

0

1

Figure 10.8 Example of legend

line

Plot lines.

Syntax
line(A, b)
line(V, P0)
line(..., style)
line(..., style, id)

Description
line displays one or several straight line(s). Each line is defined by
an implicit equation or an explicit, parametric equation.

Implicit equation: Lines are defined by equations of the form
1 + 2y = b. The first argument of line is a matrix which contains
the coefficients 1 in the first column and 2 in the second column.
The second argument is a column vector which contains the coeffi-
cients b.

Explicit equations: Lines are defined by equations of the form
P = P0 + λV where P0 is a point of the line, V a vector which defines
its direction, and λ a real parameter. The first argument of line is a
matrix which contains the coefficients  in the first column and y in
the second column. The second argument is a matrix which contains
the coefficients 0 in the first column and y0 in the second column.

In both cases, each row corresponds to a different line. If one of the
arguments has one row and the other has several (or none), the same
row is duplicated to match the other size.

LME Reference — base graphics 607

In figures with a logarithmic scale, only horizontal and vertical lines
are allowed.

The optional third and fourth arguments are the same as for all
graphical commands.

In mouse handlers, _x0 and _y0 correspond to the projection of the
mouse position onto the line; _nb is the index of the line in A and b,
and _ix is empty.

Examples
Vertical line at x=5:

line([1,0],5)

Draggable horizontal blue lines at y=2 and y=3:

line([0,1], [2;3], ’b’, 1)

The same lines with named arguments:

line([0,1], [2;3], Color=’blue’, id=1)

See also
plot, circle

math

Display MathML or LaTeX in a figure.

Syntax
math(x, y, string)
math(x, y, string, justification)
math(..., font)
math(..., id=id)

Description
With three arguments, math(x,y,string) renders a string as
MathML or LaTeX, centered at the specified position. The third
argument is assumed to be MathML unless it starts with a dollar
character; in that case, it is converted to MathML as if it was
processed by latex2mathml.

An optional fourth argument specifies how the MathML equation
should be aligned with respect to the position (x,y). It is a string of
one or two characters from the following set:

608 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Char. Alignment
c Center (may be omitted)
l Left
r Right
t Top
b Bottom

For instance, ’l’ means that the MathML equation is displayed to
the right of the given position and is centered vertically, and ’rt’,
that the equation is to the bottom left of the given position.

An optional trailing argument specifies the font. It is a structure
which is typically created with fontset; but only the base font size is
used. Alternatively, the base font size can be specified with a named
argument.

An ID can be specified with a named argument (not with a normal,
unnamed argument).

The following MathML elements are supported: math, merror,
mfenced, mfrac, mi, mn, mo, mpadded, mphantom, mroot, mrow, msqrt,
mspace, msub, msubsup, msup, mtable, mtd, mtext, mtr.

Examples
math(0, 0, mathml([1,pi,1e30]));
math(0, 0, mathml(1e-6, Format=’e’, NPrec=2), Size=20);
math(0, 0, ’$\\rho=\\sqrt{x̂ 2+ŷ 2}$’);

See also
text, mathml, latex2mathml, fontset

pcolor

Pseudocolor plot.

Syntax
pcolor(C)
pcolor(X, Y, C)
pcolor(..., style)
pcolor(..., style, id)

Description
Command pcolor(C) displays a pseudocolor plot, i.e. a rectangular
array where the color of each cell corresponds to the value of elements
of 2-D array C. These values are real numbers between 0 and 1. The
color used by pcolor depends on the current color map; the default is
a grayscale from black (0) to white (1).

LME Reference — base graphics 609

pcolor(X,Y,C) displays the plot on a grid whose vertex coordi-
nates are given by arrays X and Y. Arrays X, Y and C must all have the
same size.

With an additional string input argument, pcolor(...,style)
specifies the style of the lines drawn between the cells.

The following argument, if it exists, is the ID used for interactivity.
During interactive manipulation, the index obtained with _ix corre-
sponds to the corner of the patch under the mouse with the smallest
index.

Example
use colormaps;
n = 11;
(x, y) = meshgrid(1:n);
phi = pi/8;
X = x*cos(phi)-y*sin(phi);
Y = x*sin(phi)+y*cos(phi);
C = magic(n)/n̂ 2;
pcolor(X, Y, C, ’k’);
colormap(blue2yellow2redcm);
plotoption noframe;

See also
plot, colormap, image

plot

Generic plot.

Syntax
plot(y)
plot(x, y)
plot(..., style)
plot(..., style, id)

Description
The command plot displays graphical data in the current figure. The
data are given as two vectors of coordinates x and y. If x is omitted,
its default value is 1:size(y,2). Depending on the style, the points
are displayed as individual marks or are linked with lines. The stairs
style (’s’) can be used to link two successive points with a horizontal
line followed by a vertical line. If x and y are matrices, each row is
considered as a separate line or set of marks; if only one of them is a
matrix, the other one, a row or column vector, is replicated to match
the size of the other argument.

610 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

The optional fourth argument is an identification number which is
used for interactive manipulation. It should be equal or larger than
1. If present and a mousedown, mousedrag and/or mouseup handler
exists, the position of the mouse where the click occurs is mapped to
the closest graphical element which has been displayed with an ID; for
the command plot, the closest point is considered (lines linking the
points are ignored). If such a point is found at a small distance, the
built-in variables _x0, _y0, and _z0 are set to the position of the point
before it is moved; the variable _id is set to the ID as defined by the
command plot; the variable _nb is set to the number of the row, and
the variable _ix is set to the index of the column of the matrix x and
y.

Examples
Sine between 0 and 2π:

x = 2 * pi * (0:100) * 0.01;
y = sin(x);
plot(x, y);

Ten random crosses:

plot(rand(1,10), rand(1,10), ’x’);

Two traces with different styles:

plot(rand(2, 10),
{Color=’red’, LineWidth=2;
Marker=’[]’, MarkerFaceColor=’navy’, LineStyle=’-’});

A complete SQ file for displaying a red triangle whose corners can be
moved interactively on Sysquake:

variables x, y // x and y are 1-by-3 vectors
init (x,y) = init // init handler
figure "Triangle"
draw drawTri(x, y)
mousedrag (x, y) = dragTri(x, y, _ix, _x1, _y1)

functions
{@
function (x,y) = init
x = [-1,1,0];
y = [-1,-1,2];
subplots(’Triangle’);

function drawTri(x,y)
scale(’equal’, [-3, 3, -3, 3]);
plot(x, y, FillColor=’red’, id=1);

function (x, y) = dragTri(x, y, ix, x1, y1)
if isempty(ix)

LME Reference — base graphics 611

cancel; // not a click over a point
end
x(ix) = x1;
y(ix) = y1;

@}

See also
fplot, line, circle

plotoption

Set plot options.

Syntax
plotoption(str1, str2, ...)
plotoption opt1 opt2 ...

Description
plotoption sets the initial value of the plot options the user can
change. Its arguments, character strings, can each take one of the
following values.

’frame’ Rectangular frame with tick marks and a white
background around the plot (default).

’noframe’ No frame, no tickmarks, no white background.

’label’ Subplot name above the frame (default).

’nolabel’ No subplot name.

’legend’ Legend (if it has been set with legend).

’nolegend’ Hidden legend.

’trlegend’ Legend in top right corner (default).

’tllegend’ Legend in top left corner.

’brlegend’ Legend in bottom right corner.

’bllegend’ Legend in bottom left corner.

’margin’ Margin for title and labels (default).

’nomargin’ No margin.

612 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

’math’ MathML or LaTeX rendering in title, label, legend, and
controls like button and slider. The string (or substring in legend)
is parsed as MathML if the first character is ’<’, or as LaTeX if it
is ’$’. Otherwise, it is displayed as if it was the text content of
an <mtext> element, to guarantee that there is no font mismatch
with mathematical expressions.

’nomath’ No math (default).

’xticks’ Ticks and labels for the x axis.

’noxticks’ No ticks and labels for the x axis.

’yticks’ Ticks and labels for the y axis.

’noyticks’ No ticks and labels for the y axis.

’xyticks’ Ticks and labels for the x and y axes (default).

’noxyticks’ No ticks and labels for the x and y axes.

’xgrid’ Grid of vertical lines for the x axis.

’noxgrid’ No grid for the x axis.

’ygrid’ Grid of horizontal lines for the y axis.

’noygrid’ No grid for the y axis.

’xygrid’ Grid of vertical and horizontal lines for the x and y axes.

’noxygrid’ No grid for the x and y axes (default).

’grid’ Normal details for grids displayed by sgrid, zgrid, etc.
(default).

’nogrid’ Removal of grids displayed by sgrid, zgrid, etc.

’fullgrid’ More details for grids displayed by sgrid, zgrid, etc.

’fill3d’ In 3D graphics, zoom in so that the bounding box fills the
figure.

Examples
Display of a photographic image without frame:

plotoption noframe;
image(photo);

Math in a title:

plotoption math;
title ’$\\hbox{Solution of}\\;\\dot{x}=f(x,t)$’;

LME Reference — base graphics 613

See also
figurestyle, scale, legend

plotset

Options for plot style.

Syntax
options = plotset
options = plotset(name1, value1, ...)
options = plotset(options0, name1, value1, ...)

Description
plotset(name1,value1,...) creates the style option argument used
by functions which display graphics, such as plot and line. Options
are specified with name/value pairs, where the name is a string which
must match exactly the names in the table below. Case is significant.
Options which are not specified have a default value. The result is a
structure whose fields correspond to each option. Without any input
argument, plotset creates a structure with the default style.

When its first input argument is a structure, plotset adds or
changes fields which correspond to the name/value pairs which
follow.

Here is the list of permissible options:

Name Default Meaning
ArrowEnd false arrow at end
ArrowStart false arrow at start
Color [] line color
Fill false fill
FillColor [] filling color
LineStyle ’’ line style
LineWidth [] line width
Marker ’’ marker style
MarkerEdgeColor [] marker edge color
MarkerFaceColor [] marker face (filling) color
Stairs false stairs
Stems false stems

Colors are specified by value or by name. An empty array means
the default color (usually black for lines and marker edge, none for fill-
ing, and white for marker face). A scalar number represents a shade
of gray, an array of 3 numbers an RGB color. An additional element
(last element of array of 2 or 4 numbers) represents the alpha compo-
nent (transparency) where 0 is completely transparent; it is ignored on
some platforms. Color type can be uint8 from 0 to 255, uint16 from

614 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 to 65535, or single or double from 0 to 1. In all cases, 0 represents
black and the largest value, the maximum brightness.

Color names can be one of the following:

Name Value as uint8
’black’ [0,0,0]
’blue’ [0,0,255]
’green’ [0,128,0]
’cyan’ [0,255,255]
’red’ [255,0,0]
’magenta’ [255,0,255]
’yellow’ [255,255,0]
’white’ [255,255,255]
’aqua’ [0,255,255]
’darkgray’ [169,169,169]
’darkgrey’ [169,169,169]
’darkgreen’ [0,64,0]
’fuchsia’ [255,0,255]
’gray’ [128,128,128]
’grey’ [128,128,128]
’lime’ [0,255,0]
’maroon’ [128,0,0]
’navy’ [0,0,128]
’olive’ [128,128,0]
’orange’ [255,165,0]
’purple’ [128,0,128]
’silver’ [192,192,192]
’teal’ [0,128,128]

Option LineStyle is an empty string for the default line style (solid
line unless FillColor is set), or one of the following one-character
strings:

Dash Pattern LineStyle
solid ’_’ (underscore)
dashed ’-’ (hyphen)
dotted ’:’
dash-dot ’!’
hidden ’ ’ (space)

Option Marker is an empty string for the default symbol (usually no
symbol, or a cross for plotroots), or one of the following strings:

LME Reference — base graphics 615

Marker Shape Marker
none ’ ’ (space)
point ’.’
circle ’o’
cross ’x’
plus ’+’
star ’*’
triangle up ’̂ ’
triangle down ’v’
triangle left ’<’
triangle right ’>’
square ’[]’ or ’[’
diamond ’<>’

An explicit Fill=true is usefull only for filling with the default color
or colors, with functions such contour. Otherwise, specifying a filling
color with FillColor implies Fill=true.

When Stems is true, a marker is drawn for each point and is linked
with a vertical line which connects it to the origin (in 2D plots, y=0 for
linear scale or y=1 for logarithmic scale; in 3D plots, z=0). In polar
plots, stems connects points to x=y=0.

Functions which support multiple styles, such as plot where each
trace can have a different style, accept a structure array or a list of
structures. If there are less elements in the style array or list than
there are traces to plot, styles are recycled, restarting from the first
one. If there are too many, superfluous styles are ignored.

When Stairs is true, for functions wihich support it, points are con-
nected with a horizontal line followed by a vertical line.

Examples
Default options:

plotset
ArrowEnd: false
ArrowStart: false
Color: []
FillColor: []
LineStyle: ’’
LineWidth: []
Marker: ’’
MarkerEdgeColor: []
MarkerFaceColor: []

Plot of 5 random lines defined by 10 points each, odd and even ones
with different styles:

data = rand(5, 10);
styleOdd = plotset(ArrowStart=true,

616 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

LineWidth=2,
Color=’red’,
Size=0);

styleEven = plotset(ArrowEnd=true,
LineWidth=2,
Size=10,
Color=’blue’,
MarkerEdgeColor=’black’,
MarkerFaceColor=’yellow’);

plot(data, {styleOdd, styleEven});

Multiple styles can also be built directly as a structure array, without
plotset; missing fields take their default values.

styles = {
LineWidth=2, Color=’red’;
LineStyle=’-’, Color=’blue’

};
plot(data, styles);

See also
plot, plotoption, figurestyle

polar

Polar plot.

Syntax
polar(theta, rho)
polar(..., style)
polar(..., style, id)

Description
Command polar displays graphical data in the current figure with po-
lar coordinates. The data are given as two vectors of coordinates
theta (in radians) and rho. Depending on the style, the points are
displayed as individual marks or are linked with lines. If x and y are
matrices, each row is considered as a separate line or set of marks;
if only one of them is a matrix, the other one, a vector, is reused for
each line.

Automatic scaling is performed the same way as for cartesian plots
after polar coordinates have been converted. The figure axes, ticks
and grids are specific to polar plots. Polar plots can be mixed with
other graphical commands based on cartesian coordinates such as
plot, line and circle.

LME Reference — base graphics 617

Example
theta = 0:0.01:20*pi;
rho = exp(0.1 * theta) .* sin(5 * theta);
polar(theta, rho);

See also
plot

quiver

Quiver plot.

Syntax
quiver(x, y, u, v)
quiver(u, v)
quiver(..., scale)
quiver(..., style)

Description
quiver(x,y,u,v) displays vectors (u,v) starting at (x,y). If the four
arguments are matrices of the same size, an arrow is drawn for each
corresponding element. If x and y are vectors, they are repeated: x
is transposed to a row vector if necessary and repeated to match the
number of rows of u and v; and y is transposed to a column vector
if necessary and repeated to match their number of columns. The
absolute size of arrows is scaled with the average step of the grid
given by x and y, so that they do not overlap if the grid is uniform.

If x and y are missing, their default values are [1,2,...,m] and
[1,2,...,n] respectively, where m and n are the number of rows and
columns of u and v.

With a 5th (or 3rd) argument, quiver(...,scale) multiplies the
arrow lengths by the scalar number scale. If scale is zero, arrows
are not scaled at all: u and v give directly the absolute value of the
vectors.

With a 6th (or 4th) string argument, quiver(...,style) uses the
specified style to draw the arrows.

Example
Force field; complex numbers are used to simplify computation.

scale equal;
z = fevalx(@plus, -5:0.5:5, 1j*(-5:0.5:5)’);
z0 = 0.2+0.3j;
f = 1+20*sign(z-z0)./(max(abs(z-z0).̂ 2,3));

618 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

x = real(z);
y = imag(z);
u = real(f);
v = imag(f);
quiver(x, y, u, v);

See also
plot, image, contour

scale

Set the scale.

Syntax
scale([xmin,xmax,ymin,ymax])
scale([xmin,xmax])
scale([xmin,xmax,ymin,ymax,zmin,zmax])
scale(features)
scale(features, usersettablefeatures)
scale(features, [xmin,xmax,ymin,ymax])
scale(features, usersettablefeatures, [xmin,xmax,ymin,ymax])
sc = scale
(sc, type) = scale

Description
Without output argument, the scale command, which should be
placed before any other graphical command, sets the scale and scale
options. The last parameter contains the limits of the plot, either for
both x and y axes or only for the x axis in 2D graphics, or for x, y and
z axes for 3D graphics. The limits are used only if the user has not
changed them by zooming.

The first parameter(s) specify some properties of the scale, and
which one can be changed by the user. There are two ways to specify
them: with a string or with one or two integer numbers. The recom-
mended way is with a string. The list below enumerates the possible
values.

’equal’ Same linear scale for x and y axes. Typically used for
representation of the complex plane, such as the roots of a poly-
nomial or a Nyquist diagram. For 3D graphics, same effect as
daspect([1,1,1]).

’pixel’ Pixel (unit) linear scale for x and y axes. Used for diagrams
which cannot be scaled, such as block diagrams, Venn diagrams,
or special use interface. The y axis is always oriented upward.

LME Reference — base graphics 619

’lock’ See below.

’linlin’ Linear scale for both axes.

’linlog’ Linear scale for the x axis, and logarithmic scale for the
y axis.

’loglin’ Logarithmic scale for the x axis, and linear scale for the
y axis.

’loglog’ Logarithmic scale for both axes.

’lindb’ Linear scale for the x axis, and dB scale for the y axis.

’logdb’ Logarithmic scale for the x axis, and dB scale for the y
axis.

’lindb/logdb’ Linear scale for the x axis, and dB scale for the y
axis. The user can choose a logarithmic scale for the x axis, and a
logarithmic or linear scale for the y axis.

’loglog/set’ Logarithmic scale for the x and y axes, without pos-
sibility for the user to change them.

The last-but-one setting shows how to enable the options the user can
choose in Sysquake. The setting and the enabled options are sepa-
rated by a dash; if a simple setting is specified, the enabled options
are assumed to be the same. Enabling dB always permits the user to
choose a logarithmic or linear scale, and enabling a logarithmic scale
always permits to choose a linear scale. The ’equal’ option cannot
be combined with anything else. Changing the options in subsequent
redraws is ignored, because options are under the user control.

The last setting ending with /set shows how to force options
without letting the user override them. In this case, options can be
changed during redraws. SQ files with customs ways to change the
kind of scale must use this method.

When the properties are specified with one or two integer numbers,
each bit corresponds to a property. Only the properties in bold in the
table below can be set by the user, whatever the setting is.

620 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Bit Meaning
0 log x
2 tick on x axis
3 grid for x axis
4 labels on x axis
6 log y
7 dB y
8 tick on y axis
9 grid for y axis
10 labels on y axis
12 same scale on both axes
13 minimum grid
14 maximum grid

scale lock locks the scale as if the user had done it by hand. It
fixes only the initial value; the user may change it back afterwards.

The scale is usually limited to a range of 1e-6 for linear scales and
a ratio of 1e-6 for logarithmic scales. This avoids numeric problems,
such as when a logarithmic scale is chosen and the data contain the
value 0. In some rare cases, a large scale may be required. The
’lock’ option is used to push the limits from 1e-6 to 1e-24 for both
linear and logarithmic scales. A second argument must be provided:

scale(’lock’, [xmin,xmax,ymin,ymax]);

The command must be used in a draw handler (or from the command
line interface). To add other options, use a separate scale command:

scale logdb;
scale(’lock’, [1e-5, 1e8, 1e-9, 1e9]);

The scale is locked, and the user may not unlock it. In the example
above, note also that a single string argument can be written without
quote and parenthesis if it contains only letters and digits.

With output arguments, scale returns the current scale as a vector
[xmin,xmax,ymin,ymax]. If the scale is not fixed, the vector is empty.
If only the horizontal scale is set, the vector is [xmin,xmax]. During
a mouse drag, both the horizontal and vertical scales are fixed. The
values returned by scale reflect the zoom chosen by the user. They
can be used to limit the computation of data displayed by plot to the
visible area. The optional second output argument type tells whether
a linear or a logarithmic scale is set for axis x and y; it is a string such
as ’linlin’ or ’loglin’.

Examples
Here are some suggestions for the most usual graphics:

LME Reference — base graphics 621

Time response (default linlin is fine)
Bode mag scale logdb
Bode phase scale loglin
D bode mag scale(’lindb/logdb’,[0,pi/Ts])
D bode phase scale(’linlin/loglin’,[0,pi/Ts])
Poles scale equal
D poles scale(’equal’,[-1,1,-1,1])
Nyquist scale(’equal’,[-1.5,1.5,-1.5,1.5])
Nichols scale lindb

Use of scale to display a sine in the visible x range:

scale([0,10]); % default x range between 0 and 10
sc = scale; % maybe changed by the user (1x2 or 1x4)
xmin = sc(1);
xmax = sc(2);
x = xmin + (xmax - xmin) * (0:0.01:1);

% 101 values between xmin and xmax
y = sin(x);
plot(x, y);

See also
plotoption, scalefactor

scalefactor

Change the scale displayed in axis ticks and labels.

Syntax
scalefactor(f)
f = scalefactor

Description
scalefactor(f) sets the factor used to display the ticks and the la-
bels. Its argument f can be a vector of two or three real positive num-
bers to set separately the x, y, and z axes, or a real positive scalar to
set the same factor for all axes. scalefactor([fx,fy]) is equivalent
to scalefactor([fx,fy,1]). The normal factor value is 1, so that the
ticks correspond to the graphical contents. With a different factor, the
contents are displayed with the same scaling, but the ticks and labels
are changed as if the graphical data had been scaled by the factor. For
instance, you can plot data in radians (the standard angle unit in LME)
and display ticks and labels in degrees by using a factor of 180/pi.

With an output argument, scalefactor gives the current factors
as a 2-elements vector.

622 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Display the sine with a scale in degrees:

phi = 0:0.01:2*pi;
plot(phi, sin(phi));
scalefactor([180/pi, 1]);

See also
scale, plotoption

scaleoverview

Set the scale overview rectangle.

Syntax
scaleoverview([xmin,xmax,ymin,ymax])
scaleoverview([xmin,xmax,ymin,ymax],’xy’)
scaleoverview([xmin,xmax],’x’)
scaleoverview([ymin,ymax],’y’)

Description
scaleoverview sets the limits of a rectangular region used to pro-
vide an overview of the scale used in another plot. Typically, the
same data are displayed in two subplots: one with a large, fixed dis-
played area (set with scale) with a smaller scale overview rectangle
set with scaleoverview, and one with a smaller displayed area (set
with scale) which matches the limits set with scaleoverview in the
first plot. In Sysquake, scale synchronization is used to keep both
subplots synchronized when the user zooms or drags the data in the
second subplot or manipulates directly the scale overview rectangle.

By default, limits on axis x and y are provided. A second argument
can specify which axis has limits: ’xy’ (default), ’x’ or ’y’ (then the
first argument is an array of two elements).

See also
scale

subplotstyle

Subplot style.

Syntax
subplotstyle(name, style)
style = subplotstyle(name)

LME Reference — base graphics 623

Description
subplotstyle sets or gets the style of the current subplot. In
Sysquake’s SQ files, it should be used in draw handlers. It has the
same arguments as figurestyle, which handles the settings globally
for all subplots, or the default settings when both figurestyle and
subplotstyle are used.

Example
subplot 211;
subplotstyle(’plotbg’, FillColor=’yellow’);
subplotstyle(’frame’, LineWidth=2);
step(1, 1:3);
subplot 212;
subplotstyle(’plotbg’, FillColor=’orange’);
step(1, 1:4);

See also
figurestyle, plotset, plotfont, plotoption

text

Display text in a figure.

Syntax
text(x, y, string)
text(x, y, string, justification)
text(..., font)
text(..., id=id)

Description
With three arguments, text(x,y,string) displays a string centered
at the specified position. An optional fourth argument specifies how
the string should be aligned with respect to the position (x,y). It is a
string of one or two characters from the following set:

Char. Alignment
c Center (may be omitted)
l Left
r Right
t Top
b Bottom

For instance, ’l’ means that the string is displayed to the right of
the given position and is centered vertically, and ’rt’, that the string
is to the bottom left of the given position.

624 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

An optional trailing argument specifies the font, size, type face,
and color to use. It is a structure which is typically created with
fontset. Alternatively, named arguments can be used directly, with-
out fontset.

An ID can be specified with a named argument (not with a normal,
unnamed argument).

Examples
A line is drawn between (-1,-1) and (1,1) with labels at both ends.

plot([-1,1], [-1,1]);
text(-1,-1, ’p1’, ’tr’);
text(1, 1, ’p2’, ’bl’);

Text with font specification:

font = fontset(Font=’Times’,
Bold=true,
Size=18,
Color=[1,0,0]);

text(1.1, 4.2, ’Abc’, font);

Same font with named arguments:

text(1.1, 4.2, ’Abc’, font,
Font=’Times’,
Bold=true,
Size=18,
Color=[1,0,0]);

See also
label, fontset, sprintf

tickformat

Subplot tick format.

Syntax
tickformat(axis, format)

Description
tickformat(axis,format) specifies the format to be used for tick
labels. The first argument, axis, specified which axis is affected: it
is 1 or ’x’ for the first axis (horizontal) or 2 or ’y’ for the second
axis (vertical, on the left or the right depending on the last call to

LME Reference — base graphics 625

altscale if any). Second argument, format, is a string similar to the
first argument of sprintf. Only numeric formats are supported (%d,
%e, %f, %g, %h, %i, %k, %n, %o, %P, %x), with their options, width and
precision. Double % gives a single %, and other characters are used
literally.

The format is not used if ticks are specified with function ticks.

Examples
General format with a unit for the x axis, and fixed format with two
fractional digits for the y axis:

step(1, [1, 2, 3, 4]);
tickformat(’x’, ’%g h’);
tickformat(’y’, ’%.2f’);

See also
ticks, sprintf

ticks

Subplot ticks and tick labels.

Syntax
ticks(axis, majorTicks)
ticks(axis, majorTicks, minorTicks)
ticks(axis, majorTicks, minorTicks, tickLabels)

Description
ticks replaces default ticks (small scale marks along the plot frame
and their labels outside the frame) with custom ones.

ticks(axis,majorTicks) specifies the value of major ticks (large
ones). The first argument, axis, specified which axis is affected: it
is 1 or ’x’ for the first axis (horizontal) or 2 or ’y’ for the second
axis (vertical, on the left or the right depending on the last call to
altscale if any). Second argument, majorTicks, is an array of values
where ticks are displayed; the same scaling as the one applied to the
plot contents is used.

With a third argument, ticks(axis,majorTicks,minorTicks)
also displays minor ticks (smaller ones, typically used with a finer
spacing) specified by array minorTicks.

With a fourth argument,
ticks(axis,majorTicks,minorTicks,labels) displays labels
at the position of major ticks. Labels are given as a string of
linefeed-separated substrings, such as ’one\ntwo. If more values are

626 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

specified for major ticks than for labels, labels are reused, starting
from the first one. Superfluous labels are ignored. If no minor tick is
displayed, argument minorTicks is optional.

Values out of range are not displayed. If axis labels are specified
with function label, tick labels which would overlap are not displayed.

3D plots have always default ticks.

Examples
Bar plot where bars correspond to months:

bar([2,4,3,6]);
ticks(’x’, 1:4, ’Jan\nFeb\nMar\nApr’);

Tick labels with units and axis label:

scale([0, 10]);
step(1, [1, 2, 3, 4]);
majorTicks = 0:2:10;
minorTicks = 0:0.5:10;
labels = sprintf(’%g s\n’, majorTicks);
ticks(’x’, majorTicks, minorTicks, labels);
ticks(’y’, 0:0.1:1);
label Time;

Plot without any tick and label:

step(1, [1, 2, 3, 4]);
ticks(’x’, []);
ticks(’y’, []);

See also
label, tickformat, legend, title, text, sprintf

title

Subplot title.

Syntax
title(string)

Description
title(string) sets or changes the title of the current subplot.

With plotoption math, the title can contain MathML or LaTeX.

See also
label, legend, ticks, text, sprintf, plotoption

LME Reference — 3D graphics 627

10.45 3D Graphics

Three-dimension graphic commands enable the representation of ob-
jects defined in three dimensions x, y and z on the two-dimension
screen. The transform from the 3D space to the screen is performed
as if there were a virtual camera in the 3D space with a given posi-
tion, orientation, and angle of view (related to the focal length in a
real camera).

Projection

The projection is defined by the following parameters:

Target point The target point is a 3D vector which defines the
position where the camera is oriented to.

Projection kind Two kinds of projections are supported: ortho-
graphic and perspective.

View point The view point is a 3D vector which defines the posi-
tion of the camera. For orthographic projection, it defines a direc-
tion independent from the target position; for perspective projec-
tion, it defines a position, and the view orientation is defined by
the vector from view point to target point.

Up vector The up vector is a 3D vector which fixes the orientation
of the camera around the view direction. The projection is such that
the up vector is in a plane which is vertical in the 2D projection.
Changing it makes the projection rotate around the image of the
target.

View angle The view angle defines the part of the 3D space which
is projected onto the image window in perspective projections. It is
zero in orthographic mode.

All of these parameters can be set automatically. Here is how the
whole projection and scaling process is performed:

– Scale data separately along each direction according to daspect

– Find bounding box of all displayed data, or use limits set with
scale

– Find radius of circumscribed sphere of bounding box

– If the target point is automatic, set it to the center of the bound-
ing box; otherwise, use position set with camtarget

628 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

– If the view point is automatic, set it to direction [-3;-2;1] at
infinity in orthographic mode, or in that direction with respect to
the target point at a distance such that the view angle of the
circumscribed sphere is about 6 degrees; otherwise, use position
set with campos

– If the up vector is automatic, set it to [0,0,1] (vertical, pointing
upward); otherwise, use position set with camup

– Compute the corresponding homogeneous matrix transform

– Set the base scaling factor so that the circumscribed sphere fits
the display area

– Apply an additional zoom factor which depends on camva and
camzoom

Surface shading

Surface and mesh colors add information to the image, helping the
viewer in interpreting it. Colors specified by the style argument also
accepted by 2D graphical commands are used unchanged. Colors
specified by a single-component value, RGB colors, or implicit, are pro-
cessed differently whether lightangle and/or material have been
executed, or not. In the first case, colors depend directly on the col-
ors specified or the default value; in the second case, the Blinn-Phong
reflection model is used with flat shading. In both cases, single-color
values are mapped to colors using the current color map (set with
colormap). Commands which accept a color argument are mesh, surf,
and plotpoly.

Direct colors
If neither lightangle nor material has been executed, colors depend
only on the color argument provided with x, y, and z coordinates. If
the this argument is missing, color is obtained by mapping linearly the
z coordinates to the full range of the current color map.

Blinn-Phong reflection model
In the Blinn-Phong reflexion model, the color of a surface depends
on the intrinsic object color, the surface reflexion properties, and the
relative positions of the surface, the viewer, and light sources.

camdolly

Move view position and target.

LME Reference — 3D graphics 629

Syntax
camdolly(d)

Description
camdolly(d) translates the camera by 3x1 or 1x3 vector d, moving
the target and the view point by the same amount.

See also
campan, camorbit, campos, camproj, camroll, camtarget, camup,
camva, camzoom

camorbit

Camera orbit around target.

Syntax
camorbit(dphi, dtheta)

Description
camorbit(dphi,dtheta) rotates the camera around the target point
by angle dphi around the up vector, and by angle dtheta around the
vector pointing to the right of the projection plane. Both angles are
given in radians. A positive value of dphi makes the camera move
to the right, and a positive value of dtheta makes the camera move
down.

See also
camdolly, campan, campos, camproj, camroll, camtarget, camup,
camva, camzoom

campan

Tilt and pan camera.

Syntax
campan(dphi, dtheta)

Description
campan(dphi,dtheta) pans the camera by angle dphi and tilts it by
angle dtheta. Both angles are in radians. More precisely, the target
point is changed so that the vector from view point to target is rotated
by angle dphi around the up vector, then by angle dtheta around a
"right" vector (a vector which is horizontal in view coordinates).

630 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
camdolly, camorbit, campos, camproj, camroll, camtarget, camup,
camva, camzoom

campos

Camera position.

Syntax
campos(p)
campos auto
campos manual
p = campos

Description
campos(p) sets the view position to p. p is a 3D vector.

campos auto sets the view position to automatic mode, so that it
follows the target. campos manual sets the view position to manual
mode.

With an output argument, campos gives the current view position.

See also
camdolly, camorbit, campan, camproj, camroll, camtarget, camup,
camva, camzoom

camproj

Projection kind.

Syntax
camproj(str)
str = camproj

Description
camproj(str) sets the projection mode; string str can be either
’orthographic’ (or ’o’) for a parallel projection, or ’perspective’
(or ’p’) for a projection with a view point at a finite distance.

With an output argument, camproj gives the current projection
mode.

See also
camdolly, camorbit, campan, campos, camroll, camtarget, camup,
camva, camzoom

LME Reference — 3D graphics 631

camroll

Camera roll around view direction.

Syntax
camroll(dalpha)

Description
camroll(dalpha) rotates the up vector by angle dalpha around the
vector from view position to target. dalpha is given in radians. A
positive value makes the scene rotate counterclockwise.

See also
camdolly, camorbit, campan, campos, camproj, camtarget, camup,
camva, camzoom

camtarget

Target position.

Syntax
camtarget(p)
camtarget auto
camtarget manual
p = camtarget

Description
camtarget(p) sets the target to p. p is a 3D vector.

camtarget auto sets the target to automatic mode, so that it fol-
lows the center of the objects which are drawn. camtarget manual
sets the target to manual mode.

With an output argument, camtarget gives the current target.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camup,
camva, camzoom

camup

Up vector.

632 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
camup(p)
camup auto
camup manual
p = camup

Description
camup(p) sets the up vector to p. p is a 3D vector.

camup auto sets the up vector to [0,0,1]. camup manual does
nothing.

With an output argument, camup gives the current up vector.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camtarget,
camva, camzoom

camva

View angle.

Syntax
camva(va)
va = camva

Description
camva(va) sets the view angle to va, which is expressed in degrees.
The projection mode is set to ’perspective’. The scale is adjusted
so that the graphics have about the same size.

With an output argument, camva gives the view angle in degrees,
which is 0 for an orthographic projection.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camtarget,
camup, camzoom

camzoom

Zoom in or out.

Syntax
camzoom(f)

LME Reference — 3D graphics 633

Description
camzoom(f) scales the projection by a factor f. The image grows if f
is larger than one, and shrinks if it is smaller.

See also
camdolly, camorbit, campan, campos, camproj, camroll, camtarget,
camup, camva

contour3

Level curves in 3D space.

Syntax
contour3(z)
contour3(z, [xmin, xmax, ymin, ymax])
contour3(z, [xmin, xmax, ymin, ymax], levels)
contour3(z, [xmin, xmax, ymin, ymax], levels, style)

Description
contour3(z) plots in 3D space seven contour lines corresponding to
the surface whose samples at equidistant points 1:size(z,2) in the x
direction and 1:size(z,1) on the y direction are given by z. Contour
lines are at equidistant levels. With a second non-empty argument
[xmin, xmax, ymin, ymax], the samples are at equidistant points
between xmin and xmax in the x direction and between ymin and ymax
in the y direction.

The optional third argument levels, if non-empty, gives the num-
ber of contour lines if it is a scalar or the levels themselves if it is a
vector.

The optional fourth argument is the style of each line, from the
minimum to the maximum level (styles are recycled if necessary). The
default style is ’kbrmgcy’.

See also
contour, mesh, surf

daspect

Scale ratios along x, y and z axis.

Syntax
daspect([rx,ry,rz])
daspect([])
R = daspect

634 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
daspect(R) specifies the scale ratios along x, y and z axis. Argument
R is a vector of 3 elements rx, ry and rz. Coordinates in the 3D space
are divided by rx along the x axis, and so on, before the projection
is performed. For example, a box whose size is [2;5;3] would be
displayed as a cube with daspect([2;5;3]).

daspect([]) sets the scale ratios so that the bounding box of 3D
elements is displayed as a cube.

With an output argument, R=daspect gives the current scale ratios
as a vector of 3 elements.

See also
scale

lightangle

Set light sources in 3D world.

Syntax
lightangle
lightangle(az, el)

Description
lightangle(az,el) set lighting source(s) at infinity, with asimuth az
and elevation el, both in radians. With missing input argument, the
default azimuth is 4 and the default elevation is 1. If az and el are
vectors, they must have the same size (except if one of them is a
scalar, then it is replicated as needed); lightangle sets multiple light
sources.

See also
material

line3

Plot straight lines in 3D space.

Syntax
line3(A, b)
line3(V, P0)
line3(A, b, style)
line3(A, b, style, id)

LME Reference — 3D graphics 635

Description
line3 displays one or several straight line(s) in the 3D space. Each
line is defined by two implicit equations or one explicit, parametric
equation.

Implicit equation: Lines are defined by two equations of the form
1 + 2y + 3z = b. The first argument of line3 is a matrix which
contains the coefficients 1 in the first column, 2 in the second col-
umn, and 3 in the third column; two rows define a different line. The
second argument is a column vector which contains the coefficients
b. If one of these arguments has two rows and the other has several
pairs, the same rows are reused multiple times.

Explicit equations: Lines are defined by equations of the form
P = P0 + λV where P0 is a point of the line, V a vector which defines
its direction, and λ a real parameter. The first argument of line3 is a
matrix which contains the coefficients  in the first column, y in the
second column and z in the third column. The second argument is a
matrix which contains the coefficients 0 in the first column, y0 in the
second column and z0 in the third column.

The optional third and fourth arguments are the same as for all
graphical commands.

Example
Implicit or parametric forms of a vertical line at x=5, y=6:

line3([1,0,0;0,1,0], [5;6])
line3([0, 0, 1], [5, 6, 0])

See also
plot3, line

material

Surface reflexion properties.

Syntax
material(p)

Description
material(p) sets the reflexion properties of the Blinn-Phong model of
following surfaces drawn with surf and plotpoly. Argument p is a
scalar or a vector of two real values between 0 and 1. The first or only
element, ka, is the weight of ambiant light; the second element, kd, is
the weight of diffuse light reflected from all light sources.

636 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
lightangle

mesh

Plot a mesh in 3D space.

Syntax
mesh(x, y, z)
mesh(z)
mesh(x, y, z, color)
mesh(z, color)
mesh(..., kind)
mesh(..., kind, style)
mesh(..., kind, style, id)

Description
mesh(x,y,z) plots a mesh defined by 2-D arrays x, y and z. Ar-
guments x and y must have the same size as z or be vectors of
size(z,2) and size(z,1) elements, respectively. If x and y are miss-
ing, their default values are coordinates from 1 to size(z,2) along
x axis and from 1 to size(z,1) along y axis. Color is obtained by
mapping the full range of z values to the color map.

mesh(x,y,z,color) maps values of array color to the color map.
color must have the same size as z and contain values between 0
and 1, which are mapped to the color map.

mesh(...,kind) specifies which side of the mesh is visible. kind
is a string of 1 or 2 characters: ’f’ if the front side is visible (the side
where increasing y are on the left of increasing x coordinates), and
’b’ if the back side is visible. Default ’’ is equivalent to ’fb’.

mesh(...,style) specifies the line or symbol style of the mesh.
The default ’’ is to map z or color values to the color map.

mesh(...,id) specifies the ID used for interactivity in Sysquake.

Example
(X, Y) = meshgrid([-2:0.2:2]);
Z = X.*exp(-X.̂ 2-Y.̂ 2);
mesh(X, Y, Z);

See also
plot3, surf, plotpoly

plot3

Generic 3D plot.

LME Reference — 3D graphics 637

Syntax
plot3(x, y, z)
plot3(x, y, z, style)
plot3(x, y, z, style, id)

Description
The command plot3 displays 3D graphical data in the current figure.
The data are given as three vectors of coordinates x, y and z. De-
pending on the style, the points are displayed as individual marks or
are linked with lines.

If x, y and z are matrices, each row is considered as a separate line
or set of marks; row or column vectors are replicated to match the size
of matrix arguments if required.

plot3(...,id) specifies the ID used for interactivity in Sysquake.

Example
Chaotic attractor of the Shimizu-Morioka system:

(t,x) = ode45(@(t,x) [x(2); (1-x(3))*x(1)-0.75*x(2); x(1)̂ 2-0.45*x(3)],
[0,300], [1;1;1]);
plot3(x(:,1)’, x(:,2)’, x(:,3)’, ’r’);
label x y z;
campos([-1.5; -1.4; 3.1]);

See also
line3, plotpoly, plot

plotpoly

Plot polygons in 3D space.

Syntax
plotpoly(x, y, z, ind)
plotpoly(x, y, z, ’strip’)
plotpoly(x, y, z, ’fan’)
plotpoly(x, y, z, color, ind)
plotpoly(x, y, z, color, ’strip’)
plotpoly(x, y, z, color, ’fan’)
plotpoly(..., vis)
plotpoly(..., vis, style)
plotpoly(..., vis, style, id)

638 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
plotpoly(x,y,z,ind) plots polygons whose vertices are given by
vectors x, y and z. Rows of argument ind contain the indices of each
polygon in arrays x, y, and z. Vertices can be shared by several poly-
gons. Color of each polygon is mapped linearly from the z coordinate
of the center of gravity of its vertices to the color map. Each poly-
gon can be concave, but must be planar and must not self-intersect
(different polygons may intersect).

plotpoly(x,y,z,’strip’) plots a strip of triangles. Triangles are
made of three consecutive vertices; their indices could be defined by
the following array ind_strip:

ind_strip = ...
[1 2 3
3 2 4
3 4 5
5 4 6
5 6 7
etc.];

Ordering is such that triangles on the same side of the strip have the
same orientation.

plotpoly(x,y,z,’fan’) plots triangles which share the first ver-
tex and form a fan. Their indices could be defined by the following
array ind_fan:

ind_fan = ...
[1 2 3
1 3 4
1 4 5
etc.];

plotpoly(x,y,z,color,...) uses color instead of z to set the filling
color of each polygon. color is always a real double array (or scalar)
whose elements are between 0 and 1. How it is interpreted depends
on its size:

– A scalar defines the color of all polygons; it is mapped to the color
map.

– A vector of three elements defines the RGB color of all polygons
(row vector if there are 3 vertices to avoid ambiguity).

– A vector with as many elements as x, y and z defines the color
of each vertex (column vector if there are 3 vertices to avoid
ambiguity). Polygons have the mean value of all their vertices,
which is mapped to the color map.

LME Reference — 3D graphics 639

– An array with as many columns as elements in x, y and z defines
the RGB color of each vertex. Polygons have the mean value of
all their vertices.

plotpoly(...,vis) uses string vis to specify which side of the sur-
face is visible: ’f’ for front only, ’b’ for back only, or ’fb’ or ’bf’ for
both sides. The front side is defined as the one where vertices have
an anticlockwise orientation. The default is ’f’.

plotpoly(...,vis,style) uses string style to specify the style
of edges.

plotpoly(...,id) specifies the ID used for interactivity in
Sysquake.

See also
plot3, surf

sensor3

Make graphical element sensitivive to 3D interactive displacement.

Syntax
sensor3(type, param, id)
sensor3(type, param, typeAlt, paramAlt, id)

Description
sensor3(type,param,id) specifies how a 3D element can be dragged
interactively. Contrary to 2D graphics where the mapping between the
mouse cursor and the graphical coordinates depends on two separate
scaling factors, manipulation in 3D space must use a surface as an
additional constraint. sensor3 specifies this surface for a graphical
object whose ID is the same as argument id.

The constraint surface is specified with string type and numeric
array param. It always contains the selected point. For instance, if the
user clicks the second point of plot3([1,2],[5,3],[2,4],’’,1) and
sensor3 defines a horizontal plane, the move lies in horizontal plane
z=4. In addition to position _p1, parameters specific to the constraint
surface are provided in special variable _q, a vector of two elements.

type = ’plane’ The constraint surface is the plane defined by
the selected point _p0 and two vectors [vx1;vy1;vz1] and
[vx2;vy2;vz2] given in argument param = [vx1,vy1,vz1;
vx2,vy2,vz2]. During the drag, _q contains the coefficients of
these two vectors, such that _p1 = _p0+_q’*param’.

640 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

type = ’sphere’ The constraint surface is a sphere whose
center is defined by a point param = [px,py,pz]. Its R is such
that the surface contains the selected point _p0. During the
drag, _q contains the spherical coordinates phi and theta,
such that _p1 = param’ + R * [cos(q_(1))*cos(q_(2));
sin(q_(1))*cos(q_(2)); sin(q_(2))].

With five input arguments,
sensor3(type,param,typeAlt,paramAlt,id) specifies an
alternative constraint surface used when the modifier key is held
down.

Examples
(simple XY plane...)

(phi/theta without modifier, R with modifier with plane and ignored
2nd param)

See also
plot3, mesh, plotpoly, surf

surf

Plot a surface defined by a grid in 3D space.

Syntax
surf(x, y, z)
surf(z)
surf(x, y, z, color)
surf(z, color)
surf(..., vis)
surf(..., vis, style)
surf(..., vis, style, id)

Description
surf(x,y,z) plots a surface defined by 2-D arrays x, y and z. Ar-
guments x and y must have the same size as z or be vectors of
size(z,2) and size(z,1) elements, respectively. If x and y are miss-
ing, their default values are coordinates from 1 to size(z,2) along x
axis and from 1 to size(z,1) along y axis. Color of each surface cell
is obtained by mapping the average z values to the color map.

surf(x,y,z,color) maps values of array color to the color map.
color must have the same size as z and contain values between 0
and 1.

LME Reference — dynamical system graphics 641

surf(...,vis) specifies which side of the surface is visible. vis is
a string of 1 or 2 characters: ’f’ if the front side is visible (the side
where increasing y are on the left of increasing x coordinates), and
’b’ if the back side is visible. Default ’’ is equivalent to ’fb’.

surf(...,style) specifies the line or symbol style of the mesh
between surface cells, or the fill style of the surface. The default ’’
is to map z or color values to the color map for the surface cells and
not to draw cell bounds.

mesh(...,id) specifies the ID used for interactivity in Sysquake.

Example
(X, Y) = meshgrid([-2:0.2:2]);
Z = X.*exp(-X.̂ 2-Y.̂ 2);
surf(X, Y, Z, ’k’);

See also
plot3, mesh, plotpoly

10.46 Graphics for Dynamical Systems

Graphical commands described in this section are related to automatic
control. They display the time responses and frequency responses of
linear time-invariant systems defined by transfer functions or state-
space models in continuous time (Laplace transform) or discrete time
(z transform).

Some of these functions can return results in output arguments
instead of displaying them. These values depend not only on the input
arguments, but also on the current scale of the figure. For instance,
the set of frequencies where the response of the system is evaluated
for the Nyquist diagram is optimized in the visible area. Option Range
of responseset can be used when this behavior is not suitable, such
as for phase portraits using lsim. Output can be used for uncommon
display purposes such as special styles, labels, or export. Evaluation
or simulation functions not related to graphics, like polyval, ode45 or
filter, are better suited to other usages.

bodemag

Magnitude Bode diagram of a continuous-time system.

Syntax
bodemag(numc, denc)
bodemag(numc, denc, w)

642 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

bodemag(numc, denc, opt)
bodemag(numc, denc, w, opt)
bodemag(Ac, Bc, Cc, Dc)
bodemag(Ac, Bc, Cc, Dc, w)
bodemag(Ac, Bc, Cc, Dc, opt)
bodemag(Ac, Bc, Cc, Dc, w, opt)
bodemag(..., style)
bodemag(..., style, id)
(mag, w) = bodemag(...)

Description
bodemag(numc,denc) plots the magnitude of the frequency response
of the continuous-time transfer function numc/denc. The range of fre-
quencies is selected automatically or can be specified in an optional
argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

bodemag(Ac,Bc,Cc,Dc) plots the magnitude of the frequency
response Y(jω)/U(jω) of the continuous-time state-space model
(Ac,Bc,Cc,Dc) defined as

jωX(jω) = AcX(jω) + BcU(jω)
Y(jω) = CcX(jω) + DcU(jω)

With output arguments, bodemag gives the magnitude and the fre-
quency as column vectors. No display is produced.

Examples
Green plot for

�

�1/(s3 + 2s2 + 3s + 4)
�

� with s = jω (see Fig. 10.9):

bodemag(1, [1, 2, 3, 4], ’g’);

The same plot, between ω = 0 and ω = 10:

scale([0,10]);
bodemag(1, [1, 2, 3, 4], ’g’);

See also
bodephase, dbodemag, sigma, responseset, plotset

bodephase

Phase Bode diagram for a continuous-time system.

LME Reference — dynamical system graphics 643

1 10

-60

-40

-20

scale(’logdb’); bodemag(1, [1,2,3,4])

Figure 10.9 scale(’logdb’); bodemag(1, [1,2,3,4])

Syntax
bodephase(numc, denc)
bodephase(numc, denc, w)
bodephase(numc, denc, opt)
bodephase(numc, denc, w, opt)
bodephase(Ac, Bc, Cc, Dc)
bodephase(Ac, Bc, Cc, Dc, w)
bodephase(Ac, Bc, Cc, Dc, opt)
bodephase(Ac, Bc, Cc, Dc, w, opt)
bodephase(..., style)
bodephase(..., style, id)
(phase, w) = bodephase(...)

Description
bodephase(numc,denc) plots the phase of the frequency response of
the continuous-time transfer function numc/denc. The range of fre-
quencies is selected automatically or can be specified in an optional
argument w, a vector of frequencies.

Further options (such as time delay) can be provided in a structure
opt created with responseset; fields Delay and Range are utilized.
The optional arguments style and id have their usual meaning.

bodephase(Ac,Bc,Cc,Dc) plots the phase of the frequency
response Y(jω)/U(jω) of the continuous-time state-space model
(Ac,Bc,Cc,Dc) defined as

jωX(jω) = AcX(jω) + BcU(jω)

644 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

1 10

-4

-2

scale(’loglin’); bodephase(1, [1,2,3,4])

Figure 10.10 scale(’loglin’); bodephase(1, [1,2,3,4])

Y(jω) = CcX(jω) + DcU(jω)

With output arguments, bodephase gives the phase and the frequency
as column vectors. No display is produced.

Example
Green plot for rg(1/(s3 + 2s2 + 3s + 4)), with s = jω (see Fig. 10.10):

bodephase(1, [1, 2, 3, 4], ’g’);

See also
bodemag, dbodephase, responseset, plotset

dbodemag

Magnitude Bode diagram for a discrete-time system.

Syntax
dbodemag(numd, dend, Ts)
dbodemag(numd, dend, Ts, w)
dbodemag(numd, dend, Ts, opt)
dbodemag(numd, dend, Ts, w, opt)
dbodemag(Ad, Bd, Cd, Dd, Ts)
dbodemag(Ad, Bd, Cd, Dd, Ts, w)
dbodemag(Ad, Bd, Cd, Dd, Ts, opt)

LME Reference — dynamical system graphics 645

dbodemag(Ad, Bd, Cd, Dd, Ts, w, opt)
dbodemag(..., style)
dbodemag(..., style, id)
(mag, w) = dbodemag(...)

Description
dbodemag(numd,dend,Ts) plots the magnitude of the frequency re-
sponse of the discrete-time transfer function numd/dend with sampling
period Ts. The range of frequencies is selected automatically or can
be specified in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dbodemag(Ad,Bd,Cd,Dd,Ts) plots the magnitude of the frequency
response Y(jω)/U(jω) of the discrete-time state-space model
(Ad,Bd,Cd,Dd) defined as

zX(z) = AdX(z) + BdU(z)
Y(z) = CdX(z) + DdU(z)

where z = ejωTs .
With output arguments, dbodemag gives the magnitude and the fre-

quency as column vectors. No display is produced.

Example
dbodemag(1,poly([0.9,0.7+0.6j,0.7-0.6j]),1);

See also
bodemag, dbodephase, dsigma, responseset, plotset

dbodephase

Phase Bode diagram for a discrete-time system.

Syntax
dbodephase(numd, dend, Ts)
dbodephase(numd, dend, Ts, w)
dbodephase(numd, dend, Ts, opt)
dbodephase(numd, dend, Ts, w, opt)
dbodephase(Ad, Bd, Cd, Dd, Ts)
dbodephase(Ad, Bd, Cd, Dd, Ts, w)
dbodephase(Ad, Bd, Cd, Dd, Ts, opt)
dbodephase(Ad, Bd, Cd, Dd, Ts, w, opt)
dbodephase(..., style)
dbodephase(..., style, id)
(phase, w) = dbodephase(...)

646 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
dbodemag(numd,dend,Ts) plots the phase of the frequency response
of the discrete-time transfer function numd/dend with sampling period
Ts. The range of frequencies is selected automatically or can be spec-
ified in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dbodephase(Ad,Bd,Cd,Dd,Ts) plots the phase of the frequency
response Y(jω)/U(jω) of the discrete-time state-space model
(Ad,Bd,Cd,Dd) defined as

zX(z) = AdX(z) + BdU(z)
Y(z) = CdX(z) + DdU(z)

where z = ejωTs .
With output arguments, dbodephase gives the phase and the fre-

quency as column vectors. No display is produced.

Example
dbodephase(1,poly([0.9,0.7+0.6j,0.7-0.6j]),1);

See also
bodephase, dbodemag, responseset, plotset

dimpulse

Impulse response plot of a discrete-time linear system.

Syntax
dimpulse(numd, dend, Ts)
dimpulse(numd, dend, Ts, opt)
dimpulse(Ad, Bd, Cd, Dd, Ts)
dimpulse(Ad, Bd, Cd, Dd, Ts, opt)
dimpulse(..., style)
dimpulse(..., style, id)
(y, t) = dimpulse(...)

Description
dimpulse(numd,dend,Ts) plots the impulse response of the discrete-
time transfer function numd/dend with sampling period Ts.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

LME Reference — dynamical system graphics 647

dimpulse(Ad,Bd,Cd,Dd,Ts) plots the impulse response of the
discrete-time state-space model (Ad,Bd,Cd,Dd) defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where u(k) is a unit discrete impulse. The state-space model must
have a scalar input, and may have a scalar or vector output.

With output arguments, dimpulse gives the output and the time as
column vectors. No display is produced.

Example
dimpulse(1, poly([0.9,0.7+0.6j,0.7-0.6j]), 1, ’r’);

See also
impulse, dstep, dlsim, dinitial, responseset, plotset

dinitial

Time response plot of a discrete-time linear state-space model with
initial conditions.

Syntax
dinitial(Ad, Bd, Cd, Dd, Ts, x0)
dinitial(Ad, Cd, Ts, x0)
dinitial(..., opt)
dinitial(..., style)
dinitial(..., style, id)
(y, t) = dinitial(...)

Description
dinitial(Ad,Bd,Cd,Dd,Ts,x0) plots the output(s) of the discrete-
time state-space model (Ad,Bd,Cd,Dd) with null input and initial state
x0. The model is defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where u(k) is null. Sampling period is Ts. The state-space model may
have a scalar or vector output.

Since there is no system input, matrices Bd and Dd are not used.
They can be omitted.

648 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

The simulation time range can be provided in a structure opt cre-
ated with responseset. It is a vector of two elements, the start time
and the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

The optional arguments style and id have their usual meaning.
With output arguments, dinitial gives the output and the time as

column vectors. No display is produced.

See also
initial, dimpulse, responseset, plotset

dlsim

Time response plot of a discrete-time linear system with arbitrary in-
put.

Syntax
dlsim(numd, dend, u, Ts)
dlsim(Ad, Bd, Cd, Dd, u, Ts)
dlsim(Ad, Bd, Cd, Dd, u, Ts, x0)
dlsim(..., opt)
dlsim(..., style)
dlsim(..., style, id)
dlsim(..., opt, style)
dlsim(..., opt, style, id)
(y, t) = dlsim(...)

Description
dlsim(numd,dend,u,Ts) plots the time response of the discrete-time
transfer function numd/dend with sampling period Ts. The input is
given in real vector u, where the element i corresponds to time
(i-1)*Ts. Input samples before 0 and after length(u)-1 are 0.

dlsim(Ad,Bd,Cd,Dd,u,Ts) plots the time response of the discrete-
time state-space model (Ad,Bd,Cd,Dd) defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where the system input at time sample k is u(k,:)’. For single-input
systems, u can also be a row vector.

dlsim(Ad,Bd,Cd,Dd,u,Ts,x0) starts with initial state x0 at time
t=0. The length of x0 must match the number of states. The default
initial state is the zero vector.

LME Reference — dynamical system graphics 649

0 50
0

10

dlsim

Figure 10.11 dlsim(1, poly([0.9,0.7+0.6j,0.7-0.6j]), u)

The simulation time range can be provided in a structure opt cre-
ated with responseset. It is a vector of two elements, the start time
and the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

The optional arguments style and id have their usual meaning.
With output arguments, dlsim gives the output and the time as

column vectors (or an array for the output of a multiple-output state-
space model, where each row represents a sample). No display is
produced.

Example
Simulation of a third-order system with a rectangular input (see
Fig. 10.11):

u = repmat([ones(1,10), zeros(1,10)], 1, 3);
dlsim(1, poly([0.9,0.7+0.6j,0.7-0.6j]), u, 1, ’rs’);

See also
dstep, dimpulse, dinitial, lsim, responseset, plotset

dnichols

Nichols diagram of a discrete-time system.

650 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
dnichols(numd, dend)
dnichols(numd, dend, w)
dnichols(numd, dend, opt)
dnichols(numd, dend, w, opt)
dnichols(..., style)
dnichols(..., style, id)
w = dnichols(...)
(mag, phase) = dnichols(...)
(mag, phase, w) = dnichols(...)

Description
dnichols(numd,dend) displays the Nichols diagram of the discrete-
time transfer function given by polynomials numd and dend. In dis-
crete time, the Nichols diagram is the locus of the complex values
of the transfer function evaluated at ejω, where ω is a real number
between 0 and π inclusive, displayed in the phase-magnitude plane.
Usually, the magnitude is displayed with a logarithmic or dB scale; use
scale(’lindb’) or scale(’linlog/lindb’) before dnichols.

The range of frequencies is selected automatically between 0 and
π or can be specified in an optional argument w, a vector of normalized
frequencies.

Further options can be provided in a structure opt created with
responseset; fields NegFreq and Range are utilized. The optional ar-
guments style and id have their usual meaning.

With output arguments, dnichols gives the magnitude and phase
of the frequency response and the frequency as column vectors. No
display is produced.

In Sysquake, when the mouse is over a Nichols diagram, in addition
to the magnitude and phase which can be retrieved with _y0 and _x0,
the normalized frequency is obtained in _q.

Example
scale(’lindb’);
ngrid;
dnichols(3, poly([0.9,0.7+0.6j,0.7-0.6j]))

See also
nichols, ngrid, dnyquist, responseset, plotset

dnyquist

Nyquist diagram of a discrete-time system.

LME Reference — dynamical system graphics 651

Syntax
dnyquist(numd, dend)
dnyquist(numd, dend, w)
dnyquist(numd, dend, opt)
dnyquist(numd, dend, w, opt)
dnyquist(..., style)
dnyquist(..., style, id)
w = dnyquist(...)
(re, im) = dnyquist(...)
(re, im, w) = dnyquist(...)

Description
The Nyquist diagram of the discrete-time transfer function given by
polynomials numd and dend is displayed in the complex plane. In dis-
crete time, the Nyquist diagram is the locus of the complex values of
the transfer function evaluated at ejω, where ω is a real number be-
tween 0 and π inclusive (other definitions include the range between
π and 2π, which gives a symmetric diagram with respect to the real
axis).

The range of frequencies is selected automatically between 0 and
π or can be specified in an optional argument w, a vector of normalized
frequencies.

Further options can be provided in a structure opt created with
responseset; fields NegFreq and Range are utilized. The optional ar-
guments style and id have their usual meaning.

With output arguments, dnichols gives the real and imaginary
parts of the frequency response and the frequency as column vectors.
No display is produced.

In Sysquake, when the mouse is over a Nyquist diagram, in addition
to the complex value which can be retrieved with _z0 or _x0 and _y0,
the normalized frequency is obtained in _q.

Example
Nyquist diagram with the same scale along both x and y axis and a
Hall chart grid (reduced to a horizontal line) (see Fig. 10.12)

scale equal;
hgrid;
dnyquist(3, poly([0.9,0.7+0.6j,0.7-0.6j]))

See also
nyquist, hgrid, dnichols, responseset, plotset

dsigma

Singular value plot for a discrete-time state-space model.

652 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

-50 0 50
-40

-20

0

20

40
dnyquist

Figure 10.12 dnyquist(3, poly([0.9,0.7+0.6j,0.7-0.6j]))

Syntax
dsigma(Ad, Bd, Cd, Dd, Ts)
dsigma(Ad, Bd, Cd, Dd, Ts, w)
dsigma(Ad, Bd, Cd, Dd, Ts, opt)
dsigma(Ad, Bd, Cd, Dd, Ts, w, opt)
dsigma(..., style)
dsigma(..., style, id)
(sv, w) = dsigma(...)

Description
dsigma(Ad,Bd,Cd,Dd,Ts) plots the singular values of the frequency
response of the discrete-time state-space model (Ad,Bd,Cd,Dd) de-
fined as

zX(z) = AdX(z) + BdU(z)
Y(z) = CdX(z) + DdU(z)

where z = ejωTs and Ts is the sampling period.
Further options can be provided in a structure opt created with

responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dsigma is the equivalent of dbodemag for multiple-input systems.
For single-input systems, it produces the same plot.

The range of frequencies is selected automatically or can be speci-
fied in an optional argument w, a vector of frequencies.

With output arguments, dsigma gives the singular values and the
frequency as column vectors. No display is produced.

LME Reference — dynamical system graphics 653

See also
dbodemag, dbodephase, sigma, responseset, plotset

dstep

Step response plot of a discrete-time linear system.

Syntax
dstep(numd, dend, Ts)
dstep(numd, dend, Ts, opt)
dstep(Ad, Bd, Cd, Dd, Ts)
dstep(Ad, Bd, Cd, Dd, Ts, opt)
dstep(..., style)
dstep(..., style, id)
(y, t) = dstep(...)

Description
dstep(numd,dend,Ts) plots the step response of the discrete-time
transfer function numd/dend with sampling period Ts.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

dstep(Ad,Bd,Cd,Dd,Ts) plots the step response of the discrete-
time state-space model (Ad,Bd,Cd,Dd) defined as

(k + 1) = Ad(k) + Bd(t)
y(k) = Cd(k) + Dd(k)

where u(k) is a unit step. The state-space model must have a scalar
input, and may have a scalar or vector output.

With output arguments, dstep gives the output and the time as
column vectors. No display is produced.

Examples
Step response of a discrete-time third-order system (see Fig. 10.13):

dstep(1, poly([0.9,0.7+0.6j,0.7-0.6j]), 1, ’g’);

Step response of a state-space model with two outputs, and a style ar-
gument which is a struct array of two elements to specify two different
styles:

A = [-0.3,0.1;-0.8,-0.4];
B = [2;3];
C = [1,3;2,1];
D = [2;1];
style = {Color=’navy’,LineWidth=3; Color=’red’,LineStyle=’-’};
step(A, B, C, D, style);

654 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 20
0

20

dstep(1, poly([0.9,0.7+0.6j,0.7-0.6j]), 0.2, ’s’)

Figure 10.13 dstep(1,poly([.9,.7+.6j,.7-.6j]),0.2,’s’)

See also
dimpulse, dlsim, step, hstep, responseset, plotset

erlocus

Root locus of a polynomial with coefficients bounded by an ellipsoid.

Syntax
erlocus(C0, P)
erlocus(C0, P, sizes, colors)

Description
erlocus displays the set of the roots of all the polynomial whose coef-
ficients are bounded by an ellipsoid defined by C0 and P. The polyno-
mials are defined as C0 + [0,dC], where dC*inv(P)*dC’ < 1.

If sizes and colors are provided, sizes must be a vector of n val-
ues and colors an n-by-3 matrix whose columns correspond respec-
tively to the red, green, and blue components. The locus correspond-
ing to dC*inv(P)*dC’ < sizes(i)̂ 2 is displayed with colors(i,:).
The vector sizes must be sorted from the smallest to the largest ellip-
soid. The default values are sizes = [0.1;0.5;1;2] and colors =
[0,0,0;0,0,1;0.4,0.4,1;0.8,0.8,0.8] (i.e. black, dark blue, light
blue, and light gray).

Warning: depending on the size of the figure (in pixels) and the
speed of the computer, the computation may be slow (several sec-
onds). The number of sizes does not have a big impact.

LME Reference — dynamical system graphics 655

-2 0 2
-2

0

2
erlocus

Figure 10.14 erlocus(poly([.8,.7+.6j,.7-.6j]), eye(3))

Example
Roots of the polynomial (z − 0.8)(z − 0.7− 0.6j)(z − 0.7+ 0.6j), where
the coefficients, in R3, have an uncertainty bounded by a unit sphere
(see Fig. 10.14).

scale(’equal’, [-2,2,-2,2]);
erlocus(poly([0.8, 0.7+0.6j, 0.7-0.6j]), eye(3));
zgrid;

See also
plotroots, rlocus

hgrid

Hall chart grid.

Syntax
hgrid
hgrid(style)

Description
hgrid plots a Hall chart in the complex plane of the Nyquist diagram.
The Hall chart represents circles which correspond to the same mag-
nitude or phase of the closed-loop frequency response. The optional
argument specifies the style.

656 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

-2 0 2
-2

0

2
scale(’equal’, [-2,2,-2,2]); hgrid;

Figure 10.15 Result of hgrid when the whole grid is displayed.

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the unit circle and the real axis are displayed. The whole grid is made
of the circles corresponding to a closed-loop magnitude of plus or mi-
nus 0, 2, 4, 6, 10, and 20 dB; and to a closed-loop phase of plus or
minus 0, 10, 20, 30, 45, 60, and 75 degrees.

Example
Hall chart grid with a Nyquist diagram (see Fig. 10.15):

scale(’equal’, [-1.5, 1.5, -1.5, 1.5]);
hgrid;
nyquist(20, poly([-1,-2+1j,-2-1j]))

See also
ngrid, nyquist, plotset, plotoption

hstep

Step response plot of a discrete-time transfer function followed by a
continuous-time transfer function.

Syntax
hstep(numd, dend, Ts, numc, denc)
hstep(numd, dend, Ts, numc, denc, style)
hstep(numd, dend, Ts, numc, denc, style, id)

LME Reference — dynamical system graphics 657

0 5
0

0.2

scale([0,5]); hstep(1,[1,-0.5],1,1,[1,5])

Figure 10.16 scale([0,5]); hstep(1,[1,-0.5],1,1,[1,5])

Description
A step is filtered first by numd/dend, a discrete-time transfer
function with sampling period Ts; the resulting signal is converted
to continuous-time with a zero-order hold, and filtered by the
continuous-time transfer function numc/denc.

Most discrete-time controllers are used with a zero-order hold and
a continuous-time system. hstep can display the simulated output of
the system when a step is applied somewhere in the loop, e.g. as
a reference signal or a disturbance. The transfer function numd/dend
should correspond to the transfer function between the step and the
system input; the transfer function numc/denc should be the model of
the system.

Note that the simulation is performed in open loop. If an unsta-
ble system is stabilized with a discrete-time feedback controller, all
closed-loop transfer functions are stable; however, the simulation with
hstep, which uses the unstable model of the system, may diverge if
it is run over a long enough time period, because of round-off errors.
But in most cases, this is not a problem.

Example
Exact simulation of the output of a continuous-time system whose in-
put comes from a zero-order hold converter (see Fig. 10.16):

% unstable system continuous-time transfer function
num = 1;
den = [1, -1];

658 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

% sampling at Ts = 1 (too slow, only for illustration)
Ts = 1;
[numd, dend] = c2dm(num, den, Ts);
% stabilizing proportional controller
kp = 1.5;
% transfer function between ref. signal and input
b = conv(kp, dend);
a = addpol(conv(kp, numd), dend);
% continuous-time output for a ref. signal step
scale([0,10]);
hstep(b, a, Ts, num, den);
% discrete-time output (exact)
dstep(conv(b, numd), conv(a, dend), Ts, ’o’);

See also
step, dstep, plotset

impulse

Impulse response plot of a continuous-time linear system.

Syntax
impulse(numc, denc)
impulse(numc, denc, opt)
impulse(Ac, Bc, Cc, Dc)
impulse(Ac, Bc, Cc, Dc, opt)
impulse(..., style)
impulse(..., style, id)
(y, t) = impulse(...)

Description
impulse(numc,denc) plots the impulse response of the continuous-
time transfer function numc/denc.

Further options can be provided in a structure opt created with
responseset; fields Delay and Range are utilized. The optional argu-
ments style and id have their usual meaning.

impulse(Ac,Bc,Cc,Dc) plots the impulse response of the
continuous-time state-space model (Ac,Bc,Cc,Dc) defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where u is a Dirac impulse. The state-space model must have a scalar
input, and may have a scalar or vector output.

With output arguments, impulse gives the output and the time as
column vectors. No display is produced.

LME Reference — dynamical system graphics 659

Example
impulse(1, 1:4, ’m’);

See also
dimpulse, step, lsim, initial, responseset, plotset

initial

Time response plot for a continuous-time state-space model with initial
conditions.

Syntax
initial(Ac, Bc, Cc, Dc, x0)
initial(Ac, Cc, x0)
initial(Ac, Bc, Cc, Dc, x0, opt)
initial(..., style)
initial(..., style, id)
(y, t) = initial(...)

Description
initial(Ac,Bc,Cc,Dc,x0) plots the output(s) of the continuous-time
state-space model (Ac,Bc,Cc,Dc) with null input and initial state x0.
The model is defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where u(t) is null. The state-space model may have a scalar or vector
output.

Since there is no system input, matrices Bd and Dd are not used.
They can be omitted.

The simulation time range can be provided in a structure opt cre-
ated with responseset. It is a vector of two elements, the start time
and the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

The optional arguments style and id have their usual meaning.
With output arguments, initial gives the output and the time as

column vectors. No display is produced.

Example
Response of a continuous-time system whose initial state is [5;3] (see
Fig. 10.17):

initial([-0.3,0.1;-0.8,-0.4],[2;3],[1,3;2,1],[2;1],[5;3])

660 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 20 40

0

10

initial

Figure 10.17 Example of initial

See also
dinitial, impulse, responseset, plotset

lsim

Time response plot of a continuous-time linear system with piece-wise
linear input.

Syntax
lsim(numc, denc, u, t)
lsim(numc, denc, u, t, opt)
lsim(Ac, Bc, Cc, Dc, u, t)
lsim(Ac, Bc, Cc, Dc, u, t, opt)
lsim(Ac, Bc, Cc, Dc, u, t, x0)
lsim(Ac, Bc, Cc, Dc, u, t, x0, opt)
lsim(..., style)
lsim(..., style, id)
(y, t) = lsim(...)

Description
lsim(numc,denc,u,t) plots the time response of the continuous-time
transfer function numd/dend. The input is piece-wise linear; it is de-
fined by points in real vectors t and u, which must have the same
length. Input before t(1) and after t(end) is 0. The input used for the
simulation is interpolated to have a smooth response.

LME Reference — dynamical system graphics 661

lsim(Ac,Bc,Cc,Dc,u,t) plots the time response of the
continuous-time state-space model (Ac,Bc,Cc,Dc) defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where the system input at time sample t(i) is u(i,:)’. For single-
input systems, u can also be a row vector.

lsim(Ac,Bc,Cc,Dc,u,t,x0) starts with initial state x0 at time t=0.
The length of x0 must match the number of states. The default initial
state is the zero vector.

Options can be provided in a structure opt created with
responseset:

’Range’ The range is a vector of two elements, the start time and
the end time. Such an explicit time range is required when the
response is not displayed in a plot where the x axis represents the
time.

’tOnly’ When opt.tOnly is true, lsim produces output only at
the time instants defined in t. The logical value false gives the
default interpolated values.

The optional arguments style and id have their usual meaning.
With output arguments, lsim gives the output and the time as col-

umn vectors (or an array for the output of a multiple-output state-
space model, where each row represents a sample). No display is
produced.

Example
Response of continuous-time system given by its transfer function with
an input defined by linear segments (see Fig. 10.18):

t = [0, 10, 20, 30, 50];
u = [1, 1, 0, 1, 1];
lsim(1, [1, 2, 3, 4], u, t, ’b’);

See also
step, impulse, initial, dlsim, responseset, plotset

ngrid

Nichols chart grid.

662 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 50

0

0.2

lsim

Figure 10.18 lsim(1, [1,2,3,4], u, t)

Syntax
ngrid
ngrid(mag)
ngrid(..., style)

Description
ngrid plots a Nichols chart in the complex plane of the Nichols dia-
gram (see Fig. 10.19). The Nichols chart is a set of lines which corre-
spond to the same magnitude of the closed-loop frequency response.
The style can be specified with an input argument.

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the lines corresponding to unit magnitude and to a phase equal to
−π(1 + 2k), with integer k, are displayed. The whole grid is made of
the lines corresponding to a closed-loop magnitude of -12, -6, -3, 0, 3,
6 and 12 dB.

The closed-loop magnitude can be specified with an input argu-
ment, a scalar or an array of positive real values. If the style is also
specified, it must follow the magnitue.

Examples
Plain Nichols chart grid for a Nichols diagram:

ngrid;
nichols(7, 1:3);

LME Reference — dynamical system graphics 663

-10 0
-20

0

20

40
scale(’lindb’,[-4*pi,0,0.01,100]); ngrid

Figure 10.19 Result of ngrid in dB when the whole grid is displayed.

Finer Nichols chart with dashed lines:

ngrid(logspace(-2, 1, 20), LineStyle=’-’);

See also
hgrid, nichols, plotset, plotoption

nichols

Nichols diagram of a continuous-time system.

Syntax
nichols(numc, denc)
nichols(numc, denc, w)
nichols(numc, denc, opt)
nichols(numc, denc, w, opt)
nichols(..., style)
nichols(..., style, id)
w = nichols(...)
(mag, phase) = nichols(...)
(mag, phase, w) = nichols(...)

Description
nichols(numc,denc) displays the Nichols diagram of the continuous-
time transfer function given by polynomials numc and denc. In con-

664 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

-4 -2 0

-60

-40

-20

scale(’lindb’); nichols(1,1:4)

Figure 10.20 scale(’lindb’); nichols(1,1:4)

tinuous time, the Nichols diagram is the locus of the complex val-
ues of the transfer function evaluated at jω, where ω is real posi-
tive, displayed in the phase-magnitude plane. Usually, the magnitude
is displayed with a logarithmic or dB scale; use scale(’lindb’) or
scale(’linlog/lindb’) before nichols.

The range of frequencies is selected automatically or can be speci-
fied in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; fields Delay, NegFreq and Range are utilized. The op-
tional arguments style and id have their usual meaning.

With output arguments, nichols gives the phase and magnitude
of the frequency response and the frequency as column vectors. No
display is produced.

In Sysquake, when the mouse is over a Nichols diagram, in addition
to the magnitude and phase which can be retrieved with _y0 and _x0,
the frequency is obtained in _q.

Examples
Nichols diagram of a third-order system (see Fig. 10.20):

scale(’lindb’);
ngrid;
nichols(20,poly([-1,-2+1j,-2-1j]));

Same plot with angles in degrees:

scale(’lindb’);
scalefactor([180/pi, 1]);

LME Reference — dynamical system graphics 665

ngrid;
nichols(20,poly([-1,-2+1j,-2-1j]));

See also
dnichols, ngrid, nyquist, responseset, plotset, scalefactor

nyquist

Nyquist diagram of a continuous-time system.

Syntax
nyquist(numc, denc)
nyquist(numc, denc, w)
nyquist(numc, denc, opt)
nyquist(numc, denc, w, opt)
nyquist(..., style)
nyquist(..., style, id)
w = nyquist(...)
(re, im) = nyquist(...)
(re, im, w) = nyquist(...)

Description
The Nyquist diagram of the continuous-time transfer function given by
polynomials numc and denc is displayed in the complex plane. In con-
tinuous time, the Nyquist diagram is the locus of the complex values
of the transfer function evaluated at jω, where ω is real positive (other
definitions include the real negative values, which gives a symmetric
diagram with respect to the real axis).

The range of frequencies is selected automatically or can be speci-
fied in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; fields Delay, NegFreq and Range are utilized. The op-
tional arguments style and id have their usual meaning.

With output arguments, nyquist gives the real and imaginary parts
of the frequency response and the frequency as column vectors. No
display is produced.

In Sysquake, when the mouse is over a Nyquist diagram, in addition
to the complex value which can be retrieved with _z0 or _x0 and _y0,
the frequency is obtained in _q.

Example
Nyquist diagram of a third-order system (see Fig. 10.21):

scale equal;
hgrid;
nyquist(20, poly([-1,-2+1j,-2-1j]))

666 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 0.2

-0.2

0
scale(’equal’); nyquist(1,1:3)

Figure 10.21 scale equal; nyquist(1,[1,2,3])

See also
dnyquist, hgrid, nichols, responseset, plotset

plotroots

Roots plot.

Syntax
plotroots(pol)
plotroots(pol, style)
plotroots(pol, style, id)

Description
plotroots(pol) displays the roots of the polynomial pol in the com-
plex plane. If this argument is a matrix, each line corresponds to a
different polynomial. The default style is crosses; it can be changed
with a second argument, or with named arguments.

Example
den = [1, 2, 3, 4];
num = [1, 2];
scale equal;
plotroots(den, ’x’);
plotroots(num, ’o’);

LME Reference — dynamical system graphics 667

See also
rlocus, erlocus, sgrid, zgrid, plotset, movezero

responseset

Options for frequency responses.

Syntax
options = responseset
options = responseset(name1, value1, ...)
options = responseset(options0, name1, value1, ...)

Description
responseset(name1,value1,...) creates the option argument used
by functions which display frequency and time responses, such as
nyquist and step. Options are specified with name/value pairs, where
the name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a de-
fault value. The result is a structure whose fields correspond to each
option. Without any input argument, responseset creates a structure
with all the default options. Note that functions such as nyquist and
step also interpret the lack of an option argument as a request to use
the default values. Contrary to other functions which accept options
in structures, such as ode45, empty array [] cannot be used (it would
be interpreted incorrectly as a numeric argument).

When its first input argument is a structure, responseset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
Delay 0 time delay
NegFreq false negative frequencies
Offset 0 offset
Range [] time or frequency range
tOnly false samples for specified time only (lsim)

Option Delay is used only by continuous-time frequency-response
and time-response functions; for frequency responses, it subtracts a
phase of delay*w, where w is the angular frequency. Option Offset
adds a a value to the step or impulse response.

Option NegFreq is used in Nyquist and Nichols diagrams,
continuous-time or discrete-time; when true, the response is
computed for negative frequencies instead of positive frequencies.
Option Range should take into account the sampling period for
discrete-time commands where it is specified.

668 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
Default options:

responseset
Delay: 0
NegFreq: false

Nyquist diagram of e−s/(s + 1):

nyquist(1, [1,1], responseset(’Delay’, 1));

Complete Nyquist diagram of 1/(s3+ 2s2+ 2s+ 1) with dashed line for
negative frequencies:

nyquist(2, [1,2,2,1]);
nyquist(2, [1,2,2,1], responseset(’NegFreq’,true), ’-’);

See also
bodemag, bodephase, dbodemag, dbodephase, dlsim, dnichols,
dnyquist, dsigma, impulse, lsim, nichols, nyquist, sigma, step

rlocus

Root locus.

Syntax
rlocus(num, den)
rlocus(num, den, style)
rlocus(num, den, style, id)
branches = rlocus(num, den)

Description
The root locus is the locus of the roots of the denominator of the
closed-loop transfer function (characteristic polynomial) of the sys-
tem whose open-loop transfer function is num/den when the gain is
between 0 and +∞ inclusive. The characteristic polynomial is num +
k · den, with k ≥ 0. rlocus requires a system with real coefficients,
causal or not. Note that the rlocus is defined the same way in the
domain of the Laplace transform, the z transform, and the delta trans-
form. The root locus is made of length(den)-1 branches which start
from each pole and end to each zero or to a real or complex point at
infinity. The locus is symmetric with respect to the real axis, because
the coefficients of the characteristic polynomial are real. By definition,
closed-loop poles for the current gain (i.e. the roots of num+den) are
on the root locus, and move on it when the gain change. rlocus plots

LME Reference — dynamical system graphics 669

only the root locus, not the particular values of the roots for the cur-
rent gain, a null gain or an infinite gain. If necessary, these values
should be plotted with plotroots.

The part of the root locus which is calculated and drawn depends
on the scale. If no scale has been set before explicitly with scale or
implicitly with plotroots or plot, the default scale is set such that
the zeros of num and den are visible.

With an output argument, rlocus gives the list of root locus
branches, i.e. a list of row vectors which contain the roots. Different
branches do not always have the same numbers of values, because
rlocus adapts the gain steps for each branch. Parts of the root locus
outside the visible area of the complex plane, as defined by the
current scale, have enough points to avoid any interference in
the visible area when they are displayed with plot. The gains
corresponding to roots are not available directly; they can be
computed as real(polyval(den,r)/polyval(num,r)) for root r.

As with other plots, the id is used for interactive manipulation.
Manipulating a root locus means changing the gain of the controller,
which keeps the locus at the same place but makes the closed-loop
poles move on it. Other changes are done by dragging the open-loop
poles and zeros, which are plotted by plotroots. To change the gain,
you must also plot the current closed-loop poles with the plotroots
function and use the same ID, so that the initial click identifies the
nearest closed-loop pole and the mouse drag makes Sysquake use
the root locus to calculate the change of gain, which can be retrieved
in _q (see the example below).

Examples
Root locus of (s2 + 3s+ 2)/(s3 + 2s2 + 3s+ 4) with open-loop poles and
zeros added with plotroots (see Fig. 10.22):

num = [1, 3, 2];
den = [1, 2, 3, 4];
scale(’equal’, [-4,1,-2,2]);
sgrid;
rlocus(num, den);
plotroots(num, ’o’);
plotroots(den, ’x’);

The second example shows how rlocus can be used interactively in
Sysquake.

figure "Root Locus"
draw myPlotRLocus(num, den);
mousedrag num = myDragRLocus(num, _q);

function

670 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

-4 -2 0
-2

0

2
rlocus

Figure 10.22 Example of rlocus

{@
function myPlotRLocus(num, den)
scale(’equal’, [-3, 1, -2, 2]);
rlocus(num, den, ’’, 1);
plotroots(addpol(num, den), ’̂ ’, 1);

function num = myDragRLocus(num, q)
if isempty(q)
cancel;

else
num = q * num;

end
@}

Caveat

The Laguerre algorithm is used for fast evaluation (roots and
plotroots are based on eig and have a better accuracy, but their
evaluation for a single polynomial is typically 10 times slower). The
price to pay is a suboptimal precision for multiple roots and/or
high-order polynomials.

See also

plotroots, plotset, erlocus, sgrid, zgrid

LME Reference — dynamical system graphics 671

-2 0 2
-2

0

2
scale(’equal’, [-2,2,-2,2]); sgrid

Figure 10.23 Result of sgrid when the whole grid is displayed.

sgrid

Relative damping and natural frequency grid for the poles of a
continuous-time system.

Syntax
sgrid
sgrid(damping, freq)
sgrid(..., style)

Description
With no numeric argument, sgrid plots a grid of lines with constant
relative damping and natural frequencies in the complex plane of s
(see Fig. 10.23).

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the imaginary axis (the stability limit for the poles of the Laplace trans-
form) is displayed.

With one or two numeric arguments, sgrid plots only the lines for
the specified values of damping and natural frequency. Let p and p be
the complex conjugate roots of the polynomial s2 + 2ωζs + ω2, where
ω is the natural frequency and ζ < 1 the damping. The locus of roots
with a constant damping ζ is generated by |mp| =

Æ

1 − ζ2Rep with
Rep < 0. The locus of roots with a constant natural frequency ω is a
circle of radius ω.

The style argument has its usual meaning.

672 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Typical use for poles or zeros displayed in the s plane:

scale equal;
sgrid;
plotroots(pol);

See also
zgrid, plotroots, hgrid, ngrid, plotset, plotoption

sigma

Singular value plot for a continuous-time state-space model.

Syntax
sigma(Ac, Bc, Cc, Dc)
sigma(Ac, Bc, Cc, Dc, w)
sigma(Ac, Bc, Cc, Dc, opt)
sigma(Ac, Bc, Cc, Dc, w, opt)
sigma(..., style)
sigma(..., style, id)
(sv, w) = sigma(...)

Description
sigma(Ac,Bc,Cc,Dc) plots the singular values of the frequency re-
sponse of the continuous-time state-space model (Ac,Bc,Cc,Dc) de-
fined as

jωX(jω) = AcX(jω) + BcU(jω)
Y(jω) = CcX(jω) + DcU(jω)

The range of frequencies is selected automatically or can be specified
in an optional argument w, a vector of frequencies.

Further options can be provided in a structure opt created with
responseset; field Range is utilized. The optional arguments style
and id have their usual meaning.

sigma is the equivalent of bodemag for multiple-input systems. For
single-input systems, it produces the same plot.

With output arguments, sigma gives the singular values and the
frequency as column vectors. No display is produced.

See also
bodemag, bodephase, dsigma, responseset, plotset

LME Reference — dynamical system graphics 673

step

Step response plot of a continuous-time linear system.

Syntax
step(numc, denc)
step(numc, denc, opt)
step(Ac, Bc, Cc, Dc)
step(Ac, Bc, Cc, Dc, opt)
step(..., style)
step(..., style, id)
(y, t) = step(...)

Description
step(numc,denc) plots the step response of the continuous-time
transfer function numc/denc.

Further options can be provided in a structure opt created with
responseset; fields Delay and Range are utilized. The optional argu-
ments style and id have their usual meaning.

step(Ac,Bc,Cc,Dc) plots the step response of the continuous-time
state-space model (Ac,Bc,Cc,Dc) defined as

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) + Dc(t)

where u is a unit step. The state-space model must have a scalar
input, and may have a scalar or vector output.

With output arguments, step gives the output and the time as col-
umn vectors. No display is produced.

Example
Step response of the continuous-time system 1/(s3+2s2+3s+4) (see
Fig. 10.24):

step(1, 1:4, ’b’);

See also
impulse, lsim, dstep, hstep, responseset, plotset

zgrid

Relative damping and natural frequency grid for the poles of a
discrete-time system.

674 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

0 10
0

0.2

step(1,1:4)

Figure 10.24 step(1, [1,2,3,4])

Syntax
zgrid
zgrid(damping, freq)
zgrid(..., style)

Description

With no numeric argument, zgrid plots a grid of lines with constant
relative damping and natural frequencies in the complex plane of z
(see Fig. 10.25).

The whole grid is displayed only if the user selects it in the Grid
menu, or after the command plotoption fullgrid. By default, only
the unit circle (the stability limit for the poles of the z transform) is
displayed.

With one or two numeric arguments, zgrid plots only the lines for
the specified values of damping and natural frequency. The damping ζ
and the natural frequency ω are defined the same way as for the sgrid
function, with the mapping z = es (a normalized sampling frequency
is assumed). With a damping ζ, the line z and its complex conjugate

z are generated by z = e(−1+j
p
1−ζ2/ζ), with 0 ≤  ≤ mx and mx

chosen such that the line has a positive imaginary part. With a natural
frequency ω (typically in the range 0 for a null frequency to π for the
Nyquist frequency), the line is generated by eωe

j
, where  is such

that the curve is inside the unit circle.
The style argument has its usual meaning.

LME Reference — Sysquake graphical functions 675

-1 0 1

-1

0

1

scale(’equal’, [-1.2,1.2,-1.2,1.2]); zgrid

Figure 10.25 Result of zgrid when the whole grid is displayed.

Example

Typical use for poles or zeros displayed in the z plane:

scale(’equal’,[-1.2,1.2,-1.2,1.2]);
zgrid;
plotroots(pol);

See also

sgrid, plotroots, hgrid, ngrid, plotset, plotoption

10.47 Sysquake Graphical Functions

Functions

button

Button control.

Syntax
button(label, b, ’checkmark’, style, id)
button(label, n, ’radiobutton’, style, id)

676 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
button(label,b,’checkmark’,style,id) displays one or several
checkmark controls. Checkmark controls are graphical elements
whose state can be set on or off individually. The label argument
contains several fields separated by tabulator characters (\t); the
first field is displayed aligned to the left, and each subsequent field is
displayed to the right of a checkmark button. The number of
tabulators fixes the number of checkmarks. Each bit of the b
argument corresponds to the state of one checkmark; the least
significant bit corresponds to the leftmost checkmark. The style
argument, if present and not empty, is a string which specifies the
color(s) of the controls, and the id argument is the object id (cf. their
description above).

Several rows of controls can be displayed by a single button com-
mand. Labels of each row are separated by newline characters (\n),
and the state b becomes a column vector.

button(label,n,’radiobutton’,style,id) displays one or sev-
eral radio buttons. Radio buttons are similar to checkmarks, but are
mutually exclusive. Their state is given by the n argument, which is
the number of the active radio button on that row. If n is smaller than
1 or larger than the number of radio buttons, none is displayed as
active.

You can display one or several rows of buttons in a single subplot.
You can mix them with text and sliders (commands text and slider),
but not with other graphics.

With plotoption math, label fields can contain MathML or LaTeX.
Usually, figure which contain buttons are associated with a mouse-

drag handler. The new state is provided in _x1 and corresponds to the
value of the second argument of button.

Examples
A single checkmark button:

settabs(’Style:XX\t’);
button(’Style:\tbold’, isBold, ’checkmark’, ’’, 1);

Two rows of checkmark buttons:

settabs(’Style:XX\t\bboldXXX\t’);
button([’Style:\tbold\titalic\n’,...

’Border:\ttop\tbottom\tleft\tright’], ...
[isBold+2*isItalic; borders], ’checkmark’, ’’, 1);

Mutually-exclusive radio buttons on three lines:

settabs(’Radio:XX\t\b1XX\t’);
button(’Radio:\t1\t2\t3\n\t4\t5\t6\n\t7\t8\t9’, ...

[x;x-3;x-6], ’radiobutton’, ’’, 1);

LME Reference — Sysquake graphical functions 677

See also
settabs, pushbutton, popupmenu, slider, textfield, text,
plotoption

clf

Clear the figure window.

Syntax
clf

Description
clf erases all the subplots, sets only one plot, and resets its scale.
It can only be used from the command-line interface (directly or in a
function), not in SQ files where figures are erased automatically before
being updated.

If graphical commands are issued at the command line interface
without clf, but after an SQ file has been loaded, their behavior is
undefined.

drawnow

Immediate drawing of the plots.

Syntax
drawnow
drawnow(id)

Description
drawnow makes Sysquake immediately draws the result of graphical
commands which were executed before. It should be used only from
the command-line interface, or in functions called from the command
line interface. Graphics generated for interactive subplots are buffered
to provide optimal performances. drawnow may be useful for basic
animations or for benchmarking Sysquake.

Without input argument, drawnow draws the contents of the current
figure. An input argument can be used to specify the figure window
identifier.

Example
tic;for i=1:100;clf;step(1,1:4);drawnow;end;toc
2.2212

678 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
clf

currentfigure

Get or set current figure window.

Syntax
id = currentfigure
currentfigure(id)

Description
Without input argument, currentfigure gets the identifier of the cur-
rent figure window.

With an input argument, currentfigure(id) sets the figure win-
dow whose identifier is id as the current figure window. Contrary to
figure, it does not bring it to the front.

currentfigure is not implemented in versions of Sysquake without
support for multiple figure windows.

See also
figure

defaultstyle

Default figure style.

Syntax
defaultstyle(name, style)
style = defaultstyle(name)

Description
defaultstyle sets or gets the default style of figures. It has the same
arguments as figurestyle. Default style settings are used in new
figures, unless they are overridden by figurestyle.

See also
figurestyle

figure

Create or switch figure window.

LME Reference — Sysquake graphical functions 679

Syntax
id = figure
figure(id)

Description
Without input argument, figure creates a new figure window which
becomes the current figure window, i.e. the default target of graphical
commands not in the context of SQ file draw handlers. It returns an
integer number used as an identifier.

With an input argument, figure(id) sets the figure window whose
identifier is id as the current figure window and brings it to the front.

figure is not implemented in versions of Sysquake without support
for multiple figure windows.

Example
id1 = figure;
plot(rand(10));
id2 = figure;
fplot(@sin, [-5, 5]);
figure(id1);
plot(rand(10), ’r’);

See also
currentfigure, figuretitle

figuretitle

Set the title of current figure window.

Syntax
figuretitle(str)

Description
Command figuretitle(str) sets the title of the current figure win-
dow to string str.

figuretitle is not implemented in versions of Sysquake without
support for multiple figure windows.

See also
figure

680 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

popupmenu

Pop-up menu.

Syntax
popupmenu(label, entries, selection)
popupmenu(label, entries, selection, style)
popupmenu(label, entries, selection, style, id)

Description
popupmenu(label,entries,selection) displays a pop-up menu.
Pop-up menu are simple menus which permits to select an entry
among several alternatives. Their normal appearance displays the
selected entry in a rectangular shape similar to a push button. When
clicked, a menu is displayed at the same location, and the user can
move the mouse with the button held down, select another entry,
and release the mouse button.

Argument label contains a string which is displayed on the left.
Argument entries contains the entries as a list of strings. Argument
selected is the current selection, as an integer between 1 and the
number of entries. The style argument, if present and not empty, is
a string which specifies the color of the buttons, and the id argument
is the object id (cf. their description above).

With plotoption math, label can contain MathML or LaTeX.
Usually, figures which contain pop-up menus and buttons are asso-

ciated with a mousedrag handler only. Clicking a pop-up menu calls
the mousedrag handler once, when the mouse button is released. The
button is identified with _id; the index of the new selected entry is
contained in _x1.

Example
A simple menu:

popupmenu(’Color:’, {’Red’, ’Blue’, ’Green’}, 1, ’’, 1);

The corresponding mousedrag handler:

function colorMenuHandler(_id, _x1)
switch _id
case 1
fprintf(’New color index: %d\n’, _x1);

otherwise
cancel;

end

See also
settabs, button, pushbutton, slider, textfield, text, plotoption

LME Reference — Sysquake graphical functions 681

pushbutton

Push button control.

Syntax
pushbutton(label, style, id)

Description
pushbutton(label,style,id) displays one or several push buttons.
Push buttons are simple buttons which triggers an action when they
are pushed and released. They do not maintain any state, unlike
checkmarks and radio buttons created with button. The label ar-
gument contains several fields separated by tabulator characters (\t);
the first field is displayed aligned to the left, and each subsequent field
is displayed as a separate rectangular button. The number of tabula-
tors fixes the number of buttons. The style argument, if present and
not empty, is a string which specifies the color(s) of the buttons, and
the id argument is the object id (cf. their description above).

You can display one or several rows of buttons in a single subplot.
You can mix them with text, other kinds of buttons and sliders, but not
with other graphics.

Usually, figures which contain buttons are associated with a mouse-
drag handler only. Clicking a button calls the mousedrag handler once,
when the mouse button is released. The button is identified with _id
and _ix; no value can be retrieved.

Examples
A single button aligned to the left (a tabulator is placed to the left with
settabs):

settabs(’\t’);
pushbutton(’\tCalculate’, ’’, 1);

Two buttons on the same row, green and red:

settabs(10);
pushbutton(’Motion:\tStart\tStop’, ’gr’, 1);

The corresponding mousedrag handler:

function motionButtonHandler(_ix)
switch _ix
case 1
fprintf(’Start\n’);

case 2
fprintf(’Stop\n’);

otherwise
cancel;

end

682 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
settabs, button, popupmenu, slider, textfield, text

redraw

Force the display of new graphics.

Syntax
redraw

Description
redraw forces Sysquake to immediately update the display of all sub-
plots. It can only be used from the command-line interface (directly or
in a function). It is useful to update the graphics of an SQ script after
the variables have been changed manually from the command-line in-
terface, or for SQ files and SQ scripts whose graphics may change at
each evaluation because of random data or data imported from the
outside.

scalesync

Set scale synchronization between subplots.

Syntax
scalesync(s)
scalesync(s, a)

Description
scalesync(a) sets scale synchronization between the subplots whose
indices are given in array a. Subplot are numbered from the top-left
one, row by row, starting from 1. When subplots have their scale
synchronized, zooming or dragging one of the subplots is applied to
all the members of the group.

With two arguments, scalesync(s,a) synchronizes subplots along
the specified axes: X axis if a is ’x’, Y axis if a is ’y’, or both X and Y
axes if a is ’xy’.

scalesync is typically used in the init handler after a call to
subplots.

In subplots where a scale overview rectangle has been defined with
scaleoverview, it is the scale area which is synchronized and not the
figure itself, as a source when the user drags or resizes the area or as
a target when the user zooms or drags the subplot it is synchronized
with.

LME Reference — Sysquake graphical functions 683

Examples
Synchronize the frequency scale of the magnitude and phase subplots:

subplots(’Step\tBode Magnitude\nNyquist\tBode Phase’);
scalesync([2, 4], ’x’);

SQ file illustrating scale overview:

init subplots(’Simple Plot\tScale Overview’)
init scalesync([1, 2])

figure "Simple Plot"
draw plotSinc(false)

figure "Scale Overview"
draw plotSinc(true)

functions
{@

function plotSinc(isOverview)
if isOverview
scaleoverview([-1, 4, -0.25, 0.2]);
else
scale([-1, 4, -0.25, 0.2]);
end
fplot(@sinc, [-10, 10]);
@}

See also
subplots, subplotsync, scaleoverview

settabs

Set the vertical alignment of text, buttons and sliders.

Syntax
settabs(str)
settabs(vec)

Description
settabs sets tabulator marks which are used by the commands text,
slider, and button which follow. Its argument is either a string of
runs of characters separated by the tabulator character (\t), or a vec-
tor of one or more integers representing the number of ’x’ characters
in runs. Each run is measured and correspond to the width of a col-
umn of text, sliders, and buttons. The argument of settabs is not

684 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

displayed. It should typically match the widest string, plus some mar-
gin, to avoid overlapping columns. Right after a tabulator character,
the backspace character (\b) represents the width of a checkmark or
radio button. The trailing tabulator may be omitted.

If more columns are required by text, slider, or button than what
is defined by settabs, the last column width is replicated.

Examples
Alignment of text:

settabs(’Results:xx\t999.99 \t’);
text(sprintf(’Results:\t%.2f\t%.2f’, 2.435, 5.243));
text(sprintf(’Log:\t%.2f\t%.2f’, log(2.435), log(5.243)));

Alignment of radio buttons:

settabs(’Choice:XXX\t\boneXX\t’);
button(’Choice:\tone\ttwo\tthree’, 2, ’radiobutton’, ’’, 1);

Two ways to set one large column followed by multiple small columns:

settabs(’xxxxxxxxxx\txxxxx\t’);
settabs([10,5]);

See also
text, button, popupmenu, slider, textfield

slider

Slider control for interactive manipulation of a scalar.

Syntax
slider(label, x, [min,max])
slider(label, x, [min,max], scale)
slider(label, x, [min,max], scale, style)
slider(label, x, [min,max], scale, style, id)

Description
The two main ways to manipulate variables in Sysquake consist in
moving an element of a figure or in entering new values in a dialog
box. The command slider provides an additional mean. It displays a
set of sliders in a subplot, i.e. user-interface objects with a cursor you
can drag to change continuously a scalar value. Like for any other user
manipulation in a subplot, the other subplots are updated continuously
if a mousedrag handler is provided.

LME Reference — Sysquake graphical functions 685

You can display one or several sliders in a single subplot, and mul-
tiple thumbs (control element) per slider. You can mix them with text
and buttons (commands text and button), but not with other graph-
ics.

The label argument is a string which contains the labels for each
slider, separated by a linefeed character (\n). Its width can be set with
the settabs command. Argument x is the current value of the slider.
It has one row per slider, and one column per thumb per slider. The
rows of the third argument, an array of two columns, contain the min-
imum and maximum values corresponding to each slider when they
are dragged to the left or right, respectively; it can be a 1-by-2 vector
if the minimum and maximum values are the same for all the sliders.
Argument scale is a string made of characters ’-’ for a linear scale,
and ’l’ or ’L’ for a logarithmic scale; each character corresponds to a
slider. If the string is empty, all sliders are linear; if the string contains
one character, it applies to all sliders.

The style argument has its usual meaning; but only the color is
used. Each color corresponds to a thumb. The corresponding thumbs
of each slider have the same color. The scale argument may be omit-
ted if the style is a structure or a named argument.

With plotoption math, label fields can contain MathML or LaTeX.
Sliders are either read-only if the id argument is missing, or inter-

active if it is provided. In the mousedown, mousedrag, and mouseup
handlers, each slider is identified by _nb and each thumb by _ix. The
_x, _x0, and _x1 parameters can be used to obtain the value corre-
sponding to the position of the click in the slider, the initial value, and
the current value. Note that contrary to other plot commands where
_x is always defined, _x is non-empty only if the click is made inside a
slider; this is so because the scale can be different for each slider.

During a mouse drag, the range of the manipulated slider is locked
by Sysquake, even if you change it in the draw handler. Thus, you can
specify a range relative to the current value:

slider(’x’, x, [x-5, x+5], ’’, ’’, 1)

Examples
Two sliders are displayed. The first one, for variable weight, is linear
and has a fixed range between 0 and 1; the second slider, for variable
alpha, has a logarithmic scale and a dynamic range between 20 % and
500 %.

variable weight, alpha
figure "Sliders"
draw drawSliders(weight, alpha)
mousedrag (weight, alpha) = dragSliders(weight, alpha, _nb, _x1)

functions
{@

686 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

function drawSliders(w1, w2)
slider(’Weight (0-1):\nAlpha:’, ...

[w1; w2], [0,1; w2*[0.2,5]], ...
’-L’, ’kr’, 1);

function (w1, w2) = dragSliders(w1, w2, nb, x1)
if isempty(nb)
cancel;

end
switch nb
case 1
w1 = x1;

case 2
w2 = x1;

end
@}

A slider with two thumbs, blue and red. An empty placeholder ar-
gument is used for the scale so that the style string is interpreted
correctly.

slider(’Values’, [2, 3], [0, 10], ’’, ’br’, 1);

The same slider with a structure array for the colors and a named
argument for the id:

slider(’Values’, [2, 3], [0, 10], {Color=’blue’; Color=’red’}, id=1);

Four sliders in two rows, where the layout is set in the first argument
(labels separated by \t correspond to sliders in the same row). The
same limits, defined in a row vector, are used for the four sliders.

settabs([5,20,5,20]);
slider(’A\tB\nC\tD’, [2;5;3;9], [0,10], id=5);

See also
settabs, textfield, button, pushbutton, popupmenu, text,
plotoption

subplot

Manage subplots.

Syntax
subplot(m, n, i)
subplot(mni)
subplot mni

LME Reference — Sysquake graphical functions 687

Description
The subplot function specifies the layout of subplots and where the
graphical output produced by the commands which follow will be dis-
played. It can be used from the command-line interface (directly or
indirectly in functions) or in SQ scripts. SQ files rely on a different
mechanism, where each subplot is defined with a different draw han-
dler and may be displayed on demand.

subplot(m,n,i), subplot(mni) with a three-digits number, or
subplot mni all set an m-by-n grid layout and select the i:th subplot,
with i between 1 for the top-left subplot and m*n for the bottom-right
subplot. subplot should be executed before each subplot with the
same values of m and n.

Example
Four subplots in a 2-by-2 layout:

subplot 221
title(’Top-left’);
step(1,[1,2,3,4]);
subplot 222
title(’Top-right’);
plot(rand(10));
subplot 223
title(’Bottom-left’);
scale equal
nyquist(1,1:4);
subplot 224
title(’Last one’);
contour(randn(10));

See also
subplots, title

subplotparam

Get or restore the parameter of subplots.

Syntax
subplotparam({p1, p2, ...})
p = subplotparam

Description
The subplotparam function handles the parameter of each subplot.
The subplot parameter is the value of _param, which is specific to each
subplot and can contain any kind of data.

688 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

subplotparam({p1,p2,...}) sets the parameter of each subplot.
Each element corresponds to a subplot.

Without input argument, subplotparam returns the list of parame-
ters of all subplots.

subplotparam complements subplots, subplotprops, and
subplotpos by getting or restoring the subplots set by the user. It is
typically used in the input and output handlers. It may also be used
in the init, menu or key handlers. For restoring the settings, it must
be placed after subplots.

See also
subplots, subplotprops, subplotpos, scale

subplotpos

Get or restore the position of subplots.

Syntax
subplotpos([left1,right1,top1,bottom1;...])
P = subplotpos

Description
The subplotpos function handles the position of subplots in Free Posi-
tion mode, which can be enabled in the View menu.

subplotpos(P) sets the position of each subplot in the Figure win-
dow. Unit is typically 4 pixels, equal to the grid used to snap figures
when you move or resize them with the mouse; the origin is at the top
left corner of the window. subplotpos(P) enables Free Position mode.
Each line corresponds to a subplot.

Without input argument, subplotpos returns the current position
of all subplots if Free Position mode is enabled, or the empty array []
otherwise.

subplotpos complements subplots and subplotprops by getting
or restoring the subplot positions set by the user. It is typically used
in the input and output handlers. It may also be used in init, menu,
or key handlers. For restoring the settings, it must be placed after
subplots.

Example
x = subplotpos
x =
0 30.3125 0 20.625
30.3125 60.625 0 20.625
0 30.3125 20.625 41.25
30.3125 60.625 20.625 41.25

subplotpos([0,29,0,20; 31,60,0,20;0,60,21,25])

LME Reference — Sysquake graphical functions 689

See also
subplots, subplotspring, subplotsize, subplotprops,
subplotparam, scale

subplotprops

Get or restore the properties of subplots.

Syntax
P = subplotprops
(P, P3) = subplotprops
subplotprops(P)
subplotprops(P, P3)

Description
subplotprops complements subplots and subplotpos by getting or
restoring the display options set by the user. These options include
the kind of scale (linear, logarithmic or dB, equal for both axis or not,
grids, etc.), the scale itself, set with the Zoom, Zoom X, and Drag
modes, and the scale overview rectangle if any. Each line corresponds
to a subplot. The second argument, if it exists, contains the options
for 3D graphics.

subplotprops is typically used in the input and output handlers.
It may also be used in init, menu, or key handlers. For restoring the
settings, it must be placed after subplots.

Example
subplotprops
1 0.1 10 1 100
0 -1 1 -1 1
0 -2 0 -1 1
1 0 10 0 0

subplotprops([1,0.1,10,1,100;0,-1,1,-1,1;0,-2,0,-1,1;1,0,10,0,0])

See also
subplots, subplotpos, subplotparam, scale

subplots

Get or restore the number and kind of subplots.

Syntax
s = subplots
subplots(s)

690 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
The subplots can be seen as a matrix of figures. Each figure is iden-
tified by the name given after the figure keyword in the SQ file; an
empty name corresponds to an empty subplot. The subplots function
uses a single string to identify all the subplots. The names of sub-
plots in a row are separated by the tabulator character ’\t’; rows are
separated by the linefeed character ’\n’. These characters play the
same role as respectively the comma and the semicolon in a numeric
matrix. However, rows do not have to have the same length; the row
with the more subplots determines the size of the subplot array.

In Free Position mode, subplots are specified as a one-dimension ar-
ray: names are separated by the linefeed character ’\n’. The position
of each subplot is specified with subplotpos.

The subplots command can be used either with no input and one
output argument to retrieve the subplots currently displayed, or with
one input and no output to set the number of subplots and their con-
tents.

The most common use of subplots is in init handlers to set the
initial set of figures, and in menu handlers to switch easily to precon-
figured layouts.

With an input argument, subplots must not be executed in the
draw, mousedown, mousedrag, mousedragcont, mouseover, mouse-
out, mousescroll, dragin, dragout, or fighandler handlers (the subplots
must not be changed during a drag). However, it can be used in a
mouseup or mousedoubleclick handler to emulate a button click which
could change subplots.

Example
Set the layout to two rows of two subplots, with figures "Step" and
"Nyquist" at top, and "Poles" and "Bode" at bottom:

subplots(’Step\tNyquist\nPoles\tBode’);

See also
scalesync, subplotprops, subplotpos, subplotparam

subplotsize

Window size assumed for subplot placement.

Syntax
subplotsize(width, height)
subplotsize([width, height])
S = subplotsize

LME Reference — Sysquake graphical functions 691

Description
subplotpos sets the position and size of subplots, and subplotspring
how they are resized and moved when the window is resized. Hence
the initial window size has an effect on the subplot placement for a
given size of the window. Function subplotsize specifies the window
size assumed for subplotpos. If the actual window size is different,
subplots are resized using the values provided with subplotspring.

Important: since subplotsize resizes all subplots using the val-
ues set by subplotpos and subplotspring, it must be executed after
both of them.

subplotsize(width,height) or subplotsize(S), where S is an
array of two elements [width,height, sets the assumed size to width
and height, with the same units as those used by subplotpos. Both
numbers must be positive on all platforms.

Without input argument, subplotsize returns the current window
size.

See also
subplotpos, subplotspring

subplotspring

Get or restore the resizing properties of subplots.

Syntax
subplotspring([sl1,sw1,sr1,st1,sh1,sb1;...])
S = subplotspring

Description
The subplotspring function handles how the position of subplots in
Free Position mode is adjusted when the window is resized.

In Free Position mode, the automatic adjustment properties of each
subplot is specified independently by six numbers in the range [0,1]:
three for horizontal size and position, three for vertical size and posi-
tion. These numbers are used when the window is resized, not when
the position of subplots is changed manually or with subplotpos. Sub-
plots are resized as if they were made of three springs along the hori-
zontal axis, and three springs along the vertical axis. subplotspring
sets or retrieves the relative spring stiffness. For instance, if the spring
corresponding to the subplot width is infinitely stiff and the springs cor-
responding to the left and to the right have the same values, resizing
the window will keep the subplot width and move it such that spaces
at left and right grow or shrink proportionally.

692 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Actual values are e/(1 + e), where e = k/ , k = ΔF/Δ is the spring
constant,  is the length, and F is the force. Changing the window
size preserves the force equilibrium. A value of 0 is infinitely flexible
(i.e. other springs will keep their length for any window size change),
and a value of 1 is infinitely stiff (i.e. the corresponding length will be
preserved).

The following triplets are worth mentioning:

0.5,0.5,0.5 subplot size and position proportional to the window
size

1,1,0 fixed size and position with respect to the left or top of the
window

1,0,1 fixed space on the left and on the right of, or above and
below, the subplot

0,1,1 fixed size and position with respect to the right or bottom of
the window

subplotspring(S) sets the spring values of each subplot in the Figure
window. Each row of array S corresponds to a subplot, in the same
order as they are enumerated by function subplots. In each row,
values correspond to the left, width, right, top, height, and bottom
springs.

Without input argument, subplotspring returns the current spring
values of all subplots if Free Position mode is enabled, or the empty
array [] otherwise.

subplotspring complements subplots and subplotpos. It should
be followed by subplotsize so that subplots are immediately resized
if the window size does not match the size assumed by subplotpos. It
is typically used in the input and output handlers; it may also be used
in init, menu, or key handlers.

See also
subplots, subplotpos, subplotsize, subplotprops, subplotparam,
scale

subplotsync

Set scale synchronization between all subplots.

Syntax
S = subplotsync
subplotsync(S)

LME Reference — Sysquake graphical functions 693

Description
Without input argument, subplotsync(S) returns an n-by-2 array
which defines if and how subplot scales are synchronized. When
there is no synchronization at all, S is the empty array []. Otherwise,
it has as many rows as there are subplots. First row correspond to
first subplot (top-left for a grid array), second row to second subplot
of first row, and so on. For each row, the first element is 0 for no
scale synchronization, 1 for synchronization of X axis, 2 for Y axis,
and 3 for both X and Y axes; and the second element is an integer
different for each group of synchronized subplots.

subplotsync(S) sets scale synchronization globally for all
subplots. While scalesync synchronize the scale of a group of
subplots together, subplotsync defines the synchronization for all
subplots in a single call. Typically, subplotsync(S) should be used to
restore the synchronization state obtained with S=subplotsync,
while scalesync is simpler and clearer when writing an init handler.

subplotprops is typically used in the input and output handlers.
It may also be used in init, menu, or key handlers. For restoring the
settings, it must be placed after subplots.

See also
scalesync, subplots, subplotpos, subplotparam

text

Display formatted text in a figure.

Syntax
text(string)
text(string, font)

Description
With a single argument, text displays its string argument in the cur-
rent subplot figure. It can be mixed with sliders and buttons, but no
other graphics should be displayed. The string is split in rows and
columns; columns are separated by the tab character (’\t’), and lines
by the linefeed character (’\n’). The width of the columns can be
specified with settabs.

A second argument specifies the type face and color to use. It is
a structure which is typically created with fontset. The font and size
are ignored. Alternatively, named arguments can be used directly,
without fontset.

With plotoption math, label segments (defined by tab and line-
feed characters) can contain MathML or LaTeX.

694 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

With three arguments or more, text displays a string at the speci-
fied position in graphics.

Examples
Two lines and two columns are displayed, with labels in the first column
and numeric values in the second column. Note the use of sprintf to
format the numbers.

text(sprintf(’One\t%.2f\nPi\t%.f’, 1, pi))

Red bold text:

text(’Results’, Bold=true, Color=’red’);

See also
text (in graphics), settabs, textfield, slider, button, sprintf,
plotoption

textfield

Text field.

Syntax
textfield(label, format, value)
textfield(label, format, value, style)
textfield(label, format, value, style, id)

Description
textfield(label,format,value) displays a text field. Text fields are
rectangular areas which display a numeric or string value and permit
the user to edit it with the keyboard. Argument label contains a string
which is displayed on the left. Argument value, a scalar number or a
string, is the contents of the text field; it is formatted after argument
format and aligned to the right (number) or left (string) of the text
field. format is a string similar to the first argument of sprintf, with a
single number-formatting or string sequence; it begins with a percent
sign, an optional width, an optional dot and precision, and a single let-
ter which must be one of fFgGeEkKdoxX for numbers, or s for string.
Format o interprets input in octal and formats x and X in hexadeci-
mal. The width limits the maximum number of characters (actually
the number of bytes for the UTF-8 representation of the string), but
is extended to accept the representation of value. It is useful mainly
with strings.

LME Reference — Sysquake graphical functions 695

The style argument, if present and not empty, is a string which
specifies the color of the text field. The id argument is the object id
(cf. their description above).

With plotoption math, label can contain MathML or LaTeX.
Usually, figures which contain text fields are associated with a

mousedrag handler only. Editing a text field calls the mousedrag
handler once, when the user types the Return key or clicks in any
figure. The text field is identified with _id. For numbers, the new
value is contained in _x1, with full precision (argument format is
used only to format the value before displaying it, not to decode it).
For strings, the new value is contained in _str1.

A single textfield command can display text fields for multiple
numbers: in that case, argument value is a vector or array of values,
argument label contains the labels displayed in front of each value
as a single string where labels are separated with tabulators (\t) for
values on the same line or line feeds (\n) for values on different lines,
and arguments format and style can contain multiple format and
style specifications. The layout is controlled by the tabulators set with
settabs: the first label left-aligned in the first column, the first value
in the second column, the second label in the third column if it follows
a tabulator chacter, and so on. In the mousedrag handler, each value
is identified with _nb.

Examples
A simple numeric text field:

T = 21.3;
textfield(’Temperature:’, ’%.1f’, T, ’’, 1);

The corresponding mousedrag handler:

function T = temperatureHandler(_id, _x1)
switch _id
case 1
T = _x1;
fprintf(’New temperature: %g\n’, T);

otherwise
cancel;

end

Four text fields with different formats and styles:

v = [1, 2.3, pi/2, -1.7];
settabs(’First value: \t 0000000\t Second value: \t0000000’);
labels = ’First value:\t Second value:\nAlpha:\t Beta:’;
formats = ’%.1g%.1g%.3f%.3f’;
styles = ’rgbk’;
textfield(labels, formats, v, styles, 1);

696 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

A string text field for a string of up to 10 bytes, whose id is specified
with a named argument:

str = ’Hello’;
textfield(’String:’, ’%10s’, str, id = 1);

The corresponding mousedrag handler, with id and new value read
directly in the function instead of being passed as arguments:

function str = stringHandler()
switch _id

case 1
str = _str1;
fprintf(’New string: %s\n’, str);

otherwise
cancel;

end

See also
settabs, slider, text, button, pushbutton, popupmenu, sprintf,
plotoption

10.48 Dialog Functions

Dialog functions display a modal window to request an immediate an-
swer from the user. There is a generic function for messages or input,
and two specialized ones to choose a filename by browsing the file sys-
tem: getfile to select an existing file, and putfile to give a name
for a new file in a specific directory.

dialog

Display a dialog box.

Syntax
dialog(str)
ok = dialog(str)
(x1,x2,...) = dialog(str,x10,x20,...)
(ok,x1,x2,...) = dialog(str,x10,x20,...)
... = dialog(opt, ...)
dialog(opt1=value1,...)
ok = dialog(opt1=value1,...)
... = dialog(x10,x20,...,opt1=value1,...)

LME Reference — dialogs 697

Description
dialog(str) displays the string str in a dialog box with a button la-
beled OK, and waits until the user clicks the button.

With an output argument, ok=dialog(str) displays the string str
in a dialog box with two buttons, labeled OK and Cancel, and waits
until the user clicks one of them; the result is true if the user clicks OK
and false if he clicks Cancel.

With more than one input argument and the same number of input
and output arguments, (ok,x1,x2,...)=dialog(str,x10,x20,...)
displays in a dialog box the string str, a text field with the value of the
remaining input arguments separated by commas, and two buttons
labeled OK and Cancel. The user may edit the values in the text field. If
he clicks OK, the first output argument is set to true, and the remaining
arguments are set to the new value of the expressions in the text field.
Should the user click the Cancel button, ok is set to false and all the
other outputs are set to an empty matrix. With one output argument
less, (x1,x2,...)=dialog(str,x10,x20,...) returns the new values if the
user clicks OK; otherwise, it throws a Cancel error, which may simplify
menu handlers.

Instead of a string, the first input argument of dialog can be a
structure of options created by dialogset. In addition to the prompt
message, options permit to provide a title for the dialog window and
to limit the precision of double numbers.

Alternatively, all options can be provided as named arguments.
Named option arguments may not be mixed with an initial message
string or an initial option structure; the unnamed arguments are all
considered to be the initial values to be edited in a text field.

The syntax permitted for the expressions typed in the dialog box is
a small subset of LME’s. In addition to scalars, complex numbers (en-
tered as 2+3j without the multiplication operator), arrays and strings,
are authorized the addition and subtraction operators, the negation,
the transpose and complex transpose, the matrix construction func-
tions zeros, ones, and eye, and the range operator :. Functions
struct, class and inline and operator @ are also permitted to cre-
ate structures, objects, inline and anonymous functions respectively.
If the expression typed by the user does not satisfy these rules, or if
the number of comma-separated values is not equal to the number of
expected arguments, the entry is rejected and the dialog box is dis-
played again. The user can always click the Cancel button to close the
dialog box, whatever is typed in the entry field.

Examples
Simple alert box:

dialog(sprintf([’You cannot have more zeros than poles ’,...
’(currently %d)’], np));

698 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Dialog box with OK and Cancel buttons:

if dialog(’Do you really want to reset the weights?’)
w = [];

end

Dialog with options:

opt = dialogset(Title=’System’,
Prompt=’Transfer function of the system’,
NPrec=4);

num = 1/3;
den = [1/3, 1/7];
(num, den) = dialog(opt, num, den);

The same dialog with options provided directly to dialog as named
arguments:

(num, den) = dialog(num, den,
Title=’System’,
Prompt=’Transfer function of the system’,
NPrec=4);

Two equivalent menu handlers:

function (num, den) = menuHandler1(num, den)
(ok, num, den) = dialog(’Numerator, denominator’, num, den);
if õk

cancel;
end

function (num, den) = menuHandler2(num, den)
(num, den) = dialog(’Numerator, denominator’, num, den);

Caveats
Some simplified versions of Sysquake may not implement dialog. In
this case, dialog does not display any dialog box and always returns
false and empty values.

See also
dialogset, cancel

dialogset

Options for dialog.

Syntax
options = dialogset
options = dialogset(name1, value1, ...)
options = dialogset(options0, name1, value1, ...)

LME Reference — dialogs 699

Description
dialogset(name1,value1,...) creates the option argument used by
dialog. Options are specified with name/value pairs, where the name
is a string which must match exactly the names in the table below.
Case is significant. Options which are not specified have a default
value. The result is a structure whose fields correspond to each option.
Without any input argument, dialogset creates a structure with all
the default options.

When its first input argument is a structure, dialogset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
Title ’’ title of the dialog
Prompt ’’ prompt (message)
NPrec 15 maximum number of digits for double numbers
OKIsDefault true Return key is a shortcut for OK
SingleLine false single-line representation
NoChangeIsCancel false no change means Cancel

Option NPrec is used only to display the initial value in the dialog
edit field. The full precision entered is used when decoding output
values.

Option SingleLine can be used to display values without line
breaks in the edit field (for example, matrix rows are separated with
semicolons instead of line breaks).

If option NoChangeIsCancel is true and the edit field has not been
changed at all by the user, the dialog is reported to be cancelled.

Examples
Default options:

dialogset
Title: ’’
Prompt: ’’
NPrec: 15

See also
dialog

getfile

Display a dialog box for choosing a file.

700 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
path = getfile
path = getfile(prompt)
path = getfile(prompt, mimetypes)

Description
Without input argument, getfile displays a dialog box where the user
may choose an existing file. It gives the full path of the selected file
if the user clicks the OK button, or an empty string if he clicks the
Cancel button. getfile(prompt) displays the string prompt in the
file dialog box. getfile(prompt,mimetypes) displays only the files
corresponding to the MIME types enumerated in the string mimetypes.
Different MIME types are separated by semicolons.

Note that the actual functionality may be limited by the implemen-
tation of the standard file dialog of the windowing system. For in-
stance, the prompt may be ignored. Versions of Sysquake without
low-level access return an empty string without displaying any dialog.

Example

path = getfile(’Image file:’, ’image/tiff;image/jpeg;image/png’)
/Users/sysquake/sunset.jpg

See also
putfile

putfile

Display a dialog box to enter a filename at a specific location.

Syntax
path = putfile
path = putfile(prompt)
path = putfile(prompt, defaultfilename)

Description
Without input argument, putfile displays a dialog box where the user
may enter the name of a new file at a specific location. It gives the full
path of the file if the user clicks the OK button, or an empty string if he
clicks the Cancel button. putfile(prompt) displays the string prompt
in the file dialog box. putfile(prompt,defaultfilename) proposes
the string defaultfilename as default file name.

LME Reference — Sysquake misc. functions 701

Note that the actual functionality may be limited by the implemen-
tation of the standard file dialog of the windowing system. For in-
stance, the prompt may be ignored. Versions of Sysquake without
low-level access return an empty string without displaying any dialog.

Example
path = putfile(’Save as HTML:’, ’report.html’)
D:\WORK\REP02.HTM

See also
getfile

10.49 Sysquake Miscellaneous Functions

cancel

Cancel an operation.

Syntax
cancel
cancel(false)

Description
In a handler, it is often useful to cancel the whole operation. Avoiding
changing any variable is not enough, because it would leave a new
set of variables which would make the Undo command not behave as
expected. The cancel command tells Sysquake to cancel completely
the operation, be it a menu handler or the sequence of mousedown,
mousedrag and mouseup handlers. cancel throws an error; hence its
effect will be caught if it occurs in a try block.

In the middle of a mousedrag operation, it may happen that the
mouse cursor in over an invalid region, but the drag should not be
canceled. cancel(false) cancels the current execution of the mouse-
drag or mousedragcont handler, keeping the current value of the out-
put variables.

In a mouseover handler or idle handler, cancel(false) prevents
the figures to be updated with execution of draw handlers.

Example
if d̃ialog(’Do you really want to make the system unstable?’)
cancel;

end
closedLoopRoot = 2;

702 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
try, error

hasfeature

Check if a feature is available.

Syntax
b = hasfeature(str)

Description
hasfeature(str) returns true if Sysquake supports the feature whose
name is given is string str, and false otherwise (even if the feature
does not exist in any version). Currently, the following features are
supported in some versions of Sysquake:

Feature name Description
fileio low-level file I/O (fopen etc.)
lapack Lapack-based linear algebra functions
xml XML DOM functions

efopen

Open a file embedded in the SQ file.

Syntax
fd = efopen(efblockname)
fd = efopen(efblockname, encoding)

Description
efopen(efblockname) gives a file descriptor to read the contents of a
block of type embeddedfile in the current SQ file. The file descriptor
can be used exactly as if it was obtained with fopen for a real file in
text mode, with functions like fgets, fgetl, fscanf, fread, fseek,
and feof. Function fclose must be used to release the file descriptor.

efopen(efblockname,encoding) specifies one of two possible en-
codings for the contents of the block: ’text’ for text (default value),
or ’base64’ for base64. Base64 is used to represent binary data as
text. Each character of encoded data represents 6 bits of binary data;
i.e. one needs four characters for three bytes. The six bits represent
64 different values, encoded with the characters ’A’ to ’Z’, ’a’ to ’z’,
’0’ to ’9’, ’+’, and ’/’ in this order. When the binary data have a length

LME Reference — Sysquake misc. functions 703

which is not a multiple of 3, encoded data are padded with one or
two characters ’=’ to have a multiple of 4. The encoded data is usu-
ally split in multiple lines of about 60 characters. The decoder ignores
characters not used for encoding.

With a base64 encoding, input functions have the same effect as
if an nonencoded file had been opened; i.e. the encoded data are
decoded on the fly.

Base64 encoding is an Internet standard described in RFC 1521.

Example
To convert a file to base64 in order to embed it in an SQ file, you can
use function base64encode as follow:

fd = fopen(getfile);
while f̃eof(fd)
fprintf(’%s\n’,base64encode(char(fread(fd,45))));

end
fclose(fd);

If the file is too large to let you easily copy the result from the
command-line interface to the SQ file, you can store it in an
intermediate file:

fd = fopen(getfile(’Input’));
out = fopen(putfile(’Output’), ’wt’);
while f̃eof(fd)
fprintf(out,’%s\n’,base64encode(char(fread(fd,45))));

end
fclose(fd);

See also
fopen, fclose, base64encode, base64decode

idlestate

Control the state of idle processing.

Syntax
idlestate(b)
b = idlestate

Description
idlestate(b) enables the periodic execution of the idle handler if b
is true, or disables it otherwise.

With an output argument, idlestate gives the current state of idle
handler execution.

704 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

progress

Computation progress.

Syntax
progress(r)

Description
When a Sysquake handler executes slowly, typically for more than 1
second, Sysquake displays a hint that it is working and the user should
wait. The exact appearance of the hint depends on the platform: it can
be graphical or textual.

With multiple calls to progress(r), a handler can indicate to
Sysquake the ratio of work completed thus far, from r=0 (start) to r=1
(end). Depending on the platform, Sysquake uses the value to display
the progress hint as a progress bar or a percentage. The hint is
always hidden automatically at the end of the handler execution.

progress should be called in handlers expected to take some time
to execute, such as menu, import or export handlers. But it does
not harm to call it in fast handlers or often, because its own execu-
tion is quick and the display update rate remains under the control of
Sysquake.

Example
function doComputation
n = 1e3;
for i = 1:n
doComputationStep(i);
progress(i / n);

end

quit

Quit Sysquake.

Syntax
quit

Description
quit quits Sysquake. It has the same effect as choosing Quit or Exit
in the File menu.

LME Reference — Sysquake misc. functions 705

textoutputopen

Create a new text window for output.

Syntax
fd = textoutputopen(title)
fd = textoutputopen(title, markup)

Description
Function textoutputopen(title) creates a new text window with
whose title is the string title. It returns a file descriptor which can
be used with all output functions, such as fprintf. Text output is
accumulated into a buffer which is displayed in the window.

With a second input argument, textoutputopen(title,markup)
creates a new text window for plain text if markup is false, or text with
markup if markup is true. The markup is the same as what is accepted
on file descriptor 4.

The text window can be closed with fclose(fd). The contents of
the buffer can be reset with clc(fd). Depending on the application
and the platform, the

See also
fprintf, fclose, clc

Example
Create a window for text with markup and write some text:

fd = textoutputopen(’Example’, true);
fprintf(fd, ’=Example=\n’);
fprintf(fd, ’This is a paragraph.\n\n’);
fprintf(fd, ’Here is a list:\n* Alpha\n* Beta\n’);

Close window:

fclose(fd);

sqcurrentlanguage

Get current language.

Syntax
(lang, code) = sqcurrentlanguage
sqcurrentlanguage(lang)
sqcurrentlanguage(code)

706 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
sqcurrentlanguage retrieve the current language chosen by the user
for the user interface. It returns up to two output arguments: the
first one if the language and the second one is the language code, as
defined with beginlanguage in the SQ file.

With a string input argument, sqcurrentlanguage changes the cur-
rent language to the one specified by language name or code.

sqfilepath

Get path of SQ file.

Syntax
str = sqfilepath

Description
sqfilepath gives the path of the current SQ file. If the path is not
available (e.g. if the SQ file was not loaded from a file), sqfilepath
returns an empty string.

Example
Get the path of a data file stored in the same directory as the SQ file:

pathDir = fileparts(sqfilepath);
pathDataFile = fullfile(pathDir, ’data.txt’);

See also
fileparts, fullfile

Chapter 11

Libraries

Libraries are collections of functions which complement the set of
built-in functions and operators of LME, the programming language
of Sysquake. To use them, type (or add in the functions block of the
SQ files which rely on them) a use command, such as

use stdlib

bench bench implements a benchmark which can be used to com-
pare the performance of LME on different platforms.

bitfield bitfield implements constructors and methods for bit
fields (binary numbers). Standard operators are redefined to en-
able the use of & and | for bitwise operations, and subscripts for bit
extraction and assignment.

colormaps colormaps defines functions which create color maps
for command colormap.

constants constants defines physical constants in SI units.

date date implements functions for date and time manipulation
and conversion to and from strings.

filter filter implements functions for the design of analog and
digital filters.

lti lti implements constructors and methods for Linear
Time-Invariant models, whcih may represent dynamical systems
as continuous-time or discrete-time state-space models or
transfer functions. With them, you can use standard operator
notations such as + or *, array building operators such as
[A,B;C,D], connection functions such as parallel or feedback,
and much more.

708 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

lti_filter lti_filter implements functions for the design of
analog and digital filters given as lti objects.

lti_gr lti_gr, loaded automatically with lti, defines methods
which provide for lti objects the same functionality as the native
graphical functions of Sysquake for dynamical systems, such as
bodemag for the magnitude of the Bode diagram or step for the
step response.

polyhedra polyhedra implements functions which create solid
shapes with polygonal faces in 3D.

polynom polynom implements constructors and methods for poly-
nomial and rational functions. With them, you can use standard
operator notations such as + or *.

probdist probdist defines classes for probability distributions.

sigenc sigenc implements functions related to signal encoding to
and decoding from a digital representation.

solids solids implements functions which create solid shapes in
3D. Solids are generated with parametric equations and displayed
with surf.

stat stat provides more advanced statistical functions.

stdlib stdlib is the standard library of general-purpose functions
for LME. Functions span from array creation and manipulation to
coordinates transform and basic statistics.

wav wav implements functions for reading and writing WAV files, or
encoding and decoding data encoded as WAV in memory.

11.1 stdlib

stdlib is a library which extends the native LME functions in the fol-
lowing areas:

– creation of matrices: blkdiag, compan, hankel, toeplitz

– geometry: subspace

– functions on integers: primes

– statistics: corrcoef, perms

– data processing: circshift, cumtrapz, fftshift, filter2,
hist, ifftshift, polyfit, polyvalm, trapz

Libraries — stdlib 709

– other: isreal, sortrows

The following statement makes available functions defined in stdlib:

use stdlib

Functions

circshift

Shift the elements of a matrix in a circular way.

Syntax
use stdlib
B = circshift(A, shift_vert)
B = circshift(A, [shift_vert, shift_hor])

Description
circshift(A,sv) shifts the rows of matrix A downward by sv rows.
The sv bottom rows of the input matrix become the sv top rows of the
output matrix. sv may be negative to go the other way around.

circshift(A,[sv,sh]) shifts the rows of matrix A downward by sv
rows, and its columns to the right by sh columns. The sv bottom rows
of the input matrix become the sv top rows of the output matrix, and
the sh rightmost columns become the sh leftmost columns.

See also
rot90, fliplr, flipud

blkdiag

Block-diagonal matrix.

Syntax
use stdlib
X = blkdiag(B1, B2, ...)

Description
blkdiag(B1,B2,...) creates a block-diagonal matrix with matrix
blocks B1, B2, etc. Its input arguments do not need to be square.

710 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
use stdlib
blkdiag([1,2;3,4], 5)
1 2 0
3 4 0
0 0 5

blkdiag([1,2], [3;4])
1 2 0
0 0 3
0 0 4

See also
diag

compan

Companion matrix.

Syntax
use stdlib
X = compan(pol)

Description
compan(pol) gives the companion matrix of polynomial pol, a square
matrix whose eigenvalues are the roots of pol.

Example
use stdlib
compan([2,3,4,5])
-1.5 -2.0 -2.5
1.0 0.0 0.0
0.0 1.0 0.0

See also
poly, eig

corrcoef

Correlation coefficients.

Syntax
use stdlib
S = corrcoef(X)
S = corrcoef(X1, X2)

Libraries — stdlib 711

Description
corrcoef(X) calculates the correlation coefficients of the columns of
the m-by-n matrix X. The result is a square n-by-n matrix whose diag-
onal is 1.

corrcoef(X1,X2) calculates the correlation coefficients of
X1 and X2 and returns a 2-by-2 matrix. It is equivalent to
corrcoef([X1(:),X2(:)]).

Example
use stdlib
corrcoef([1, 3; 2, 5; 4, 4; 7, 10])
1 0.8915
0.8915 1

corrcoef(1:5, 5:-1:1)
1 -1

-1 1

See also
cov

cumtrapz

Cumulative numeric integration with trapezoidal approximation.

Syntax
use stdlib
S = cumtrapz(Y)
S = cumtrapz(X, Y)
S = cumtrapz(X, Y, dim)

Description
cumtrapz(Y) calculates an approximation of the cumulative integral
of a function given by the samples in Y with unit intervals. The trape-
zoidal approximation is used. If Y is neither a row nor a column vector,
integration is performed along its columns. The result has the same
size as Y. The first value(s) is (are) 0.

cumtrapz(X,Y) specifies the location of the samples. A third argu-
ment may be used to specify along which dimension the integration is
performed.

Example
use stdlib
cumtrapz([2, 3, 5])
0 2.5 6.5

cumtrapz([1, 2, 5], [2, 3, 5])
0 2.5 14.5

712 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
cumsum, trapz

fftshift

Shift DC frequency of FFT from beginning to center of spectrum.

Syntax
use stdlib
Y = fftshift(X)

Description
fftshift(X) shifts halves of vector (1-d) or matrix (2-d) X to move
the DC component to the center. It should be used after fft or fft2.

See also
fft, ifftshift

filter2

Digital 2-d filtering of data.

Syntax
use stdlib
Y = filter2(F, X)
Y = filter2(F, X, shape)

Description
filter2(F,X) filters matrix X with kernel F with a 2-d correlation. The
result has the same size as X.

An optional third argument is passed to conv2 to specify another
method to handle the borders.

filter2 and conv2 have three differences: arguments F and X are
permuted, filtering is performed with a correlation instead of a con-
volution (i.e. the kernel is rotated by 180 degrees), and the default
method for handling the borders is ’same’ instead of ’full’.

See also
filter, conv2

hankel

Hankel matrix.

Libraries — stdlib 713

Syntax
use stdlib
X = hankel(c, r)

Description
hankel(c,r) creates a Hankel matrix whose first column contains the
elements of vector c and whose last row contains the elements of
vector r. A Hankel matrix is a matrix whose antidiagonals have the
same value. In case of conflict, the first element of r is ignored. The
default value of r is a zero vector the same length as c.

Example
use stdlib
hankel(1:3, 3:8)
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8

See also
toeplitz, diag

hist

Histogram.

Syntax
use stdlib
(N, X) = hist(Y)
(N, X) = hist(Y, m)
(N, X) = hist(Y, m, dim)
N = hist(Y, X)
N = hist(Y, X, dim)

Description
hist(Y) gives the number of elements of vector Y in 10 equally-
spaced intervals. A second input argument may be used to specify
the number of intervals. The center of the intervals may be obtained
in a second output argument.

If Y is an array, histograms are computed along the dimension spec-
ified by a third argument or the first non-singleton dimension; the re-
sult N has the same size except along that dimension.

When the second argument is a vector, it specifies the centers of
the intervals.

714 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
use stdlib
(N, X) = hist(logspace(0,1), 5)
N =
45 21 14 11 9

X =
1.9 3.7 5.5 7.3 9.1

ifftshift

Shift DC frequency of FFT from center to beginning of spectrum.

Syntax
use stdlib
Y = ifftshift(X)

Description
ifftshift(X) shifts halves of vector (1-d) or matrix (2-d) X to move
the DC component from the center. It should be used before ifft or
ifft2. It reverses the effect of fftshift.

See also
ifft, fftshift

isreal

Test for a real number.

Syntax
use stdlib
b = isreal(x)

Description
isreal(x) is true if x is a real scalar or a matrix whose entries are all
real.

Examples
use stdlib
isreal([2,5])
true

isreal([2,3+2j])
false

isreal(exp(pi*1j))
true

Libraries — stdlib 715

See also
isnumeric, isfloat, isscalar

perms

Array of permutations.

Syntax
use stdlib
M = perms(v)

Description
perm(v) gives an array whose rows are all the possible permutations
of vector v.

Example
use stdlib
perms(1:3)
3 2 1
3 1 2
2 3 1
1 3 2
2 1 3
1 2 3

See also
sort

polyfit

Polynomial fit.

Syntax
use stdlib
pol = polyfit(x, y, n)

Description
polyfit(x,y,n) calculates the polynomial (given as a vector of de-
scending power coefficients) of order n which best fits the points given
by vectors x and y. The least-square algorithm is used.

716 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
use stdlib
pol = polyfit(1:5, [2, 1, 4, 5, 2], 3)
pol =
-0.6667 5.5714 -12.7619 9.8000

polyval(pol, 1:5)
1.9429 1.2286 3.6571 5.2286 1.9429

polyvalm

Value of a polynomial with square matrix argument.

Syntax
use stdlib
Y = polyvalm(pol, X)

Description
polyvalm(pol,X) evaluates the polynomial given by the coefficients
pol (in descending power order) with a square matrix argument.

Example
use stdlib
polyvalm([1,2,8],[2,1;0,1])
16 5
0 11

See also
polyval

primes

List of primes.

Syntax
use stdlib
v = primes(n)

Description
primes(n) gives a row vector which contains the primes up to n.

Example
use stdlib
primes(20)
2 3 5 7 11 13 17 19

Libraries — stdlib 717

sortrows

Sort matrix rows.

Syntax
use stdlib
(S, index) = sortrows(M)
(S, index) = sortrows(M, sel)
(S, index) = sortrows(M, sel, dim)

Description
sortrows(M) sort the rows of matrix M. The sort order is based on the
first column of M, then on the second one for rows with the same value
in the first column, and so on.

sortrows(M,sel) use the columns specified in sel for comparing
the rows of M. A third argument dim can be used to specify the dimen-
sion of the sort: 1 for sorting the rows, or 2 for sorting the columns.

The second output argument of sortrows gives the new order of
the rows or columns as a vector of indices.

Example
use stdlib
sortrows([3, 1, 2; 2, 2, 1; 2, 1, 2])
2 1 2
2 2 1
3 1 2

See also
sort

subspace

Angle between two subspaces.

Syntax
use stdlib
theta = subspace(A, B)

Description
subspace(A,B) gives the angle between the two subspaces spanned
by the columns of A and B.

718 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
Angle between two vectors in R 2̂:

use stdlib
a = [3; 2];
b = [1; 5];
subspace(a, b)
0.7854

Angle between the vector [1;1;1] and the plane spanned by [2;5;3]
and [7;1;0] in R 3̂:

subspace([1;1;1], [2,7;5,1;3,0])
0.2226

toeplitz

Toeplitz matrix.

Syntax
use stdlib
X = toeplitz(c, r)
X = toeplitz(c)

Description
toeplitz(c,r) creates a Toeplitz matrix whose first column contains
the elements of vector c and whose first row contains the elements of
vector r. A Toeplitz matrix is a matrix whose diagonals have the same
value. In case of conflict, the first element of r is ignored. With one
argument, toeplitz gives a symmetric square matrix.

Example
use stdlib
toeplitz(1:3, 1:5)
1 2 3 4 5
2 1 2 3 4
3 2 1 2 3

See also
hankel, diag

trapz

Numeric integration with trapezoidal approximation.

Libraries — stat 719

Syntax
use stdlib
s = trapz(Y)
s = trapz(X, Y)
s = trapz(X, Y, dim)

Description
trapz(Y) calculates an approximation of the integral of a function
given by the samples in Y with unit intervals. The trapezoidal approxi-
mation is used. If Y is an array, integration is performed along the first
non-singleton dimension.

trapz(X,Y) specifies the location of the samples. A third argument
may be used to specify along which dimension the integration is per-
formed.

Example
use stdlib
trapz([2, 3, 5])
6.5

trapz([1, 2, 5], [2, 3, 5])
14.5

See also
sum, cumtrapz

11.2 stat

stat is a library which adds to LME advanced statistical functions.
The following statement makes available functions defined in stat:

use stat

Functions

bootstrp

Bootstrap estimate.

Syntax
use stat
(stats, samples) = bootstrp(n, fun, D1, ...)

720 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
bootstrp(n,fun,D) picks random observations from the rows of ma-
trix (or column vector) D to form n sets which have all the same size
as D; then it applies function fun (a function name or reference or an
inline function) to each set and returns the results in the columns of
stats. Up to three different set of data can be provided.

bootstrp gives an idea of the robustness of the estimate with re-
spect to the choice of the observations.

Example
use stat
D = rand(1000, 1);
bootstrp(5, @std, D)

0.2938
0.2878
0.2793
0.2859
0.2844

geomean

Geometric mean of a set of values.

Syntax
use stat
m = geomean(A)
m = geomean(A, dim)

Description
geomean(A) gives the geometric mean of the columns of array A or of
the row vector A. The dimension along which geomean proceeds may
be specified with a second argument.

The geometric mean of vector v of length n is defined as (
∏

 )
1/n.

Example
use stat
geomean(1:10)
4.5287

mean(1:10)
5.5

exp(mean(log(1:10)))
4.5287

See also
harmmean, mean

Libraries — stat 721

harmmean

Harmonic mean of a set of values.

Syntax
use stat
m = harmmean(A)
m = harmmean(A, dim)

Description
harmmean(A) gives the harmonic mean of the columns of array A or of
the row vector A. The dimension along which harmmean proceeds may
be specified with a second argument.

The inverse of the harmonic mean is the arithmetic mean of the
inverse of the observations.

Example
use stat
harmmean(1:10)
3.4142

mean(1:10)
5.5

See also
geomean, mean

iqr

Interquartile range.

Syntax
use stat
m = iqr(A)
m = iqr(A, dim)

Description
iqr(A) gives the interquartile range of the columns of array A or of
the row vector A. The dimension along which iqr proceeds may be
specified with a second argument.

The interquartile range is the difference between the 75th per-
centile and the 25th percentile.

722 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
use stat
iqr(rand(1,1000))
0.5158

See also
trimmean, prctile

mad

Mean absolute deviation.

Syntax
use stat
m = mad(A)
m = mad(A, dim)

Description
mad(A) gives the mean absolute deviation of the columns of array A
or of the row vector A. The dimension along which mad proceeds may
be specified with a second argument.

The mean absolute deviation is the mean of the absolute value of
the deviation between each observation and the arithmetic mean.

Example
use stat
mad(rand(1,1000))
0.2446

See also
trimmean, mean, iqr

nancorrcoef

Correlation coefficients after discarding NaNs.

Syntax
use stat
S = nancorrcoef(X)
S = nancorrcoef(X1, X2)

Libraries — stat 723

Description
nancorrcoef(X) calculates the correlation coefficients of the columns
of the m-by-n matrix X. NaN values are ignored. The result is a square
n-by-n matrix whose diagonal is 1.

nancorrcoef(X1,X2) calculates the correlation coefficients of X1
and X2 and returns a 2-by-2 matrix, ignoring NaN values. It is equiva-
lent to nancorrcoef([X1(:),X2(:)]).

See also
nanmean, nanstd, nancov, corrcoef

nancov

Covariance after discarding NaNs.

Syntax
use stat
M = nancov(data)
M = nancov(data, 0)
M = nancov(data, 1)

Description
nancov(data) returns the best unbiased estimate m-by-m covariance
matrix of the n-by-m matrix data for a normal distribution. NaN values
are ignored. Each row of data is an observation where n quantities
were measured. nancov(data,0) is the same as nancov(data).

nancov(data,1) returns the m-by-m covariance matrix of the n-by-
m matrix data which contains the whole population; NaN values are
ignored.

See also
nanmean, nanstd, nancorrcoef, cov

nanmean

Mean after discarding NaNs.

Syntax
use stat
y = nanmean(A)
y = nanmean(A, dim)

724 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
nanmean(v) returns the arithmetic mean of the elements of vector v.
nanmean(A) returns a row vector whose elements are the means of the
corresponding columns of array A. nanmean(A,dim) returns the mean
of array A along dimension dim; the result is a row vector if dim is 1,
or a column vector if dim is 2. In all cases, NaN values are ignored.

Examples
use stat
nanmean([1,2,nan;nan,6,7])
1 4 7

nanmean([1,2,nan;nan,6,7],2)
1.5
6.5

nanmean([nan,nan])
nan

See also
nanmedian, nanstd, mean

nanmedian

Median after discarding NaNs.

Syntax
use stat
y = nanmedian(A)
y = nanmedian(A, dim)

Description
nanmedian(v) gives the median of vector v, i.e. the value x such
that half of the elements of v are smaller and half of the elements are
larger. NaN values are ignored.

nanmedian(A) gives a row vector which contains the median of the
columns of A. With a second argument, nanmedian(A,dim) operates
along dimension dim.

See also
nanmean, median

nanstd

Standard deviation after discarding NaNs.

Libraries — stat 725

Syntax
use stat
y = nanstd(A)
y = nanstd(A, p)
y = nanstd(A, p, dim)

Description
nanstd(v) returns the standard deviation of vector v with NaN values
ignored, normalized by one less than the number of non-NaN values.
With a second argument, nanstd(v,p) normalizes by one less than
the number of non-NaN values if p is true, or by the number of non-
NaN values if p is false.

nanstd(M) gives a row vector which contains the standard devi-
ation of the columns of M. With a third argument, nanstd(M,p,dim)
operates along dimension dim. In all cases, NaN values are ignored.

Example
use stat
nanstd([1,2,nan;nan,6,7;10,11,12])
6.3640 4.5092 3.5355

See also
nanmedian, nanstd, mean

nansum

Sum after discarding NaNs.

Syntax
use stat
y = nansum(A)
y = nansum(A, dim)

Description
nansum(v) returns the sum of the elements of vector v. NaN values
are ignored. nansum(A) returns a row vector whose elements are the
sums of the corresponding columns of array A. nansum(A,dim) returns
the sum of array A along dimension dim; the result is a row vector if
dim is 1, or a column vector if dim is 2.

See also
nanmean, sum

726 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

pdist

Pairwise distance between observations.

Syntax
use stat
d = pdist(M)
d = pdist(M, metric)
d = pdist(M, metric, p)

Description
pdist calculates the distance between pairs of rows of the observation
matrix M. The result is a column vector which contains the distances
between rows i and j with i<j. It can be reshaped into a square
matrix with squareform.

By default, the metric used to calculate the distance is the eu-
clidean distance; but it can be specified with a second argument:

Metric Description
’euclid’ euclidean distance
’seuclid’ standardized euclidean distance
’mahal’ Mahalanobis distance
’cityblock’ sum of absolute values
’minkowski’ Minkowski metric with parameter p

The standardized euclidean distance is the euclidean distance after
each column of M has been divided by its standard deviation. The
Minkowski metric is based on the p-norm of vector differences.

Examples
use stat
pdist((1:3)’)
1 2 1

squareform(pdist((1:3)’))
0 1 2
1 0 1
2 1 0

squareform(pdist([1,2,6; 3,1,7;6,1,2]))
0 2.4495 6.4807
2.4495 0 5.831
6.4807 5.831 0

See also
squareform

Libraries — stat 727

prctile

Percentile.

Syntax
use stat
m = prctile(A, prc)
m = prctile(A, prc, dim)

Description
prctile(A,prc) gives the smallest values larger than prc percent
of the elements of each column of array A or of the row vector A.
The dimension along which prctile proceeds may be specified with a
third argument.

Example
prctile(rand(1,1000),90)
0.8966

See also
trimmean, iqr

range

Data range.

Syntax
use stat
m = range(A)
m = range(A, dim)

Description
range(A) gives the differences between the maximum and minimum
values of the columns of array A or of the row vector A. The dimension
along which range proceeds may be specified with a second argu-
ment.

Example
range(rand(1,100))
0.9602

See also
iqr

728 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

squareform

Reshape a vector of pairwise distances into a square matrix.

Syntax
use stat
D = squareform(d)

Description
squareform(d) reshapes d, which should be the output of pdist, into
a symmetric square matrix D, so that the distance between observa-
tions i and j is D(i,j).

See also
pdist

trimmean

Trimmed mean of a set of values.

Syntax
use stat
m = trimmean(A, prc)
m = trimmean(A, prc, dim)

Description
trimmean(A,prc) gives the arithmetic mean of the columns of array A
or of the row vector A once prc/2 percent of the values have been re-
moved from each end. The dimension along which trimmean proceeds
may be specified with a third argument.

trimmean is less sensitive to outliers than the regular arithmetic
mean.

See also
prctile, geomean, median, mean

zscore

Z score (normalized deviation).

Syntax
use stat
Y = zscore(X)
Y = zscore(X, dim)

Libraries — probdist 729

Description
zscore(X) normalizes the columns of array X or the row vector X by
subtracting their mean and dividing by their standard deviation. The
dimension along which zscore proceeds may be specified with a sec-
ond argument.

11.3 probdist

probdist is a library which adds to LME classes related to probabil-
ity distributions. They provide an alternative interface to the algo-
rithms in functions pdf, cdf, icdf and random. In addition, they pro-
vide methods to compute their mean, their median, their variance and
their standard deviation when an explicit formula is known.

Probability distribution objects, which bundle both the distribution
type and parameters, should be created with function makedist.

The following statement makes available classes defined in
probdist:

use probdist

Functions

distribution::cdf

Cumulative distribution function for a distribution.

Syntax
s = cdf(pd, x)

Description
cdf(pd,x) calculates the integral of a probability density function
from -infinity to x. The distribution is specified by the distribution ob-
ject pd, typically created by makedist.

Example
use probdist
pd = makedist(’normal’, mu=1, sigma=0.5);
x = linspace(-1, 3);
p = pdf(pd, x);
c = cdf(pd, x);
plot(x, p, ’-’);
plot(x, c);

730 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also

distribution::pdf, distribution::icdf, distribution::random,
makedist, cdf

distribution::icdf

Inverse cumulative distribution function for a distribution.

Syntax
x = icdf(pd, p)

Description
icdf(pd,p) calculates the value of x such that cdf(pd,x) is p. The
distribution is specified by the distribution object pd, typically created
by makedist.

icdf is defined for distributions beta, chi2, gamma, lognormal,
normal, student, and uniform.

Example
use probdist
pd = makedist(’student’, nu=3);
p = cdf(pd, 4)
p =
0.9860

x = icdf(pd, p)
x =
4.0000

See also
distribution::cdf, distribution::pdf, distribution::random,
makedist, icdf

makedist

Make a distribution object.

Syntax
use probdist
pd = makedist(name, param1=value1, ...)

Libraries — probdist 731

Description
makedist(name) creates a distribution object with the default param-
eters. Parameters can be specified with named arguments. The result
is an object whose class is a subclass of distribution.

Here is a list of distributions with the default parameter values.

Name Default parameters Class
’beta’ a=1,b=1 betaDistribution
’chi’ nu=1 chiDistribution
’chi2’ nu=1 chi2Distribution
’exp’ mu=1 exponentialDistribution
’logn’ mu=1,sigma=1 lognormalDistribution
’nakagami’ mu=1,omega=1 nakagamiDistribution
’norm’ mu=0,sigma=1 normalDistribution
’rayl’ b=1 rayleighDistribution
’t’ nu=1 studentDistribution
’unif’ Lower=0,Upper=1 uniformDistribution
’weib’ a=1,b=1 weibullDistribution

Example
use probstat
pd = makedist(’chi2’, nu=3)
pd =
Chi2 distribution

m_th = mean(pd)
m_th =
3

m_data = mean(random(pd, [1, 10000]))
m_data =
3.0027

distribution::mean

Mean of a distribution.

Syntax
m = mean(pd)

Description
mean(pd) gives the arithmetic mean of a distribution.

Example
use probdist
pd = makedist(’normal’, mu=3, sigma=2);
mean(pd)
3

732 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
distribution::var, distribution::sdev, distribution::median,
makedist, mean

distribution::median

Median of a distribution.

Syntax
m = median(pd)

Description
median(pd) gives the arithmetic median of a distribution, or NaN if it
cannot be computed.

Example
use probdist
pd = makedist(’exp’, mu=2);
median(pd)
3

See also
distribution::var, distribution::sdev, distribution::median,
makedist, median

distribution::pdf

Probability density function of a distribution.

Syntax
s = pdf(pd, x)

Description
pdf(pd,x) gives the probability of a distribution. The distribution is
specified by the distribution object pd, typically created by makedist.

Example
use probdist
pd = makedist(’lognormal’, mu=2, sigma=1.5);
x = logspace(-2,1);
p = pdf(pd, x);
plot(x, p);

Libraries — probdist 733

See also
distribution::cdf, distribution::icdf, distribution::random,
makedist, pdf

distribution::random

Random generator for a distribution.

Syntax
x = random(pd)
x = random(pd, size)

Description
random(pd) calculates a pseudo-random number whose distribution
function is specified by the distribution object pd, typically created by
makedist.

Additional input arguments specify the size of the result, either as
a vector (or a single scalar for a square matrix) or as scalar values.
The result is an array of the specified size where each value is an
independent pseudo-random variable. The default size is 1 (scalar).

Example
use probdist
pd = makedist(’exp’);
dataSize = [10, 100];
data = random(pd, dataSize);

See also
distribution::pdf, makedist, random

distribution::std

Standard deviation of a distribution.

Syntax
s = std(pd)

Description
std(pd) gives the standard deviation of a distribution.

734 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
use probdist
pd = makedist(’lognormal’, mu=2, sigma=1.5);
std(pd)
66.3080

std(random(pd,[1,100000]))
68.0868

See also
distribution::var, distribution::mean, distribution::median,
makedist, std

distribution::var

Variance of a distribution.

Syntax
s2 = var(pd)

Description
var(pd) gives the variance of a distribution.

Example
use probdist
pd = makedist(’uniform’, Lower=2, Upper=10);
var(pd)
5.3333

var(random(pd,[1,100000]))
5.3148

See also
distribution::mean, distribution::sdev,
distribution::median, makedist, var

11.4 polynom

Library polynom implements the constructors and methods of two
classes: polynom for polynomials, and ratfun for rational functions.
Basic arithmetic operators and functions are overloaded to support
expressions with the same syntax as for numbers and matrices.

The following statement makes available functions defined in
polynom:

Libraries — polynom 735

use polynom

Methods for conversion to MathML are defined in library
polynom_mathml. Both libraries can be loaded with a single
statement:

use polynom, polynom_mathml

Functions

polynom::polynom

Polynom object constructor.

Syntax
use polynom
p = polynom
p = polynom(coef)

Description
polynom(coef) creates a polynom object initialized with the coeffi-
cients in vector coef, given in descending powers of the variable.
Without argument, polynom returns a polynom object initialized to 0.

The following operators and functions may be used with polynom
arguments, with results analog to the corresponding functions of LME.
Function roots ignores leading zero coefficients.

Op. Function Op. Function
- minus + plus
ˆ mpower rem
\ mldivide roots
/ mrdivide - uminus
* mtimes + uplus

Examples
use polynom
p = polynom([3,0,1,-4,2])
p =
3x̂ 4+x̂ 2-4x+2

q = 3 * p̂ 2 + 8
q =
27x̂ 8+18x̂ 6-72x̂ 5+39x̂ 4-24x̂ 3+60x̂ 2-48x+20

736 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
polynom::disp, polynom::double, polynom::subst,
polynom::diff, polynom::int, polynom::inline, polynom::feval,
ratfun::ratfun

polynom::disp

Display a polynom object.

Syntax
use polynom
disp(p)

Description
disp(p) displays polynomial p. It is also executed implicitly when LME
displays the polynom result of an expression which does not end with
a semicolon.

Example
use polynom
p = polynom([3,0,1,-4,2])
p =
3x̂ 4+x̂ 2-4x+2

See also
polynom::polynom, disp

polynom::double

Convert a polynom object to a vector of coefficients.

Syntax
use polynom
coef = double(p)

Description
double(p) converts polynomial p to a row vector of descending-power
coefficients.

Example
use polynom
p = polynom([3,0,1,-4,2]);
double(p)
3 0 1 -4 2

Libraries — polynom 737

See also
polynom::polynom

polynom::subst

Substitute the variable of a polynom object with another polynomial.

Syntax
use polynom
subst(a, b)

Description
subst(a,b) substitutes the variable of polynom a with polynom b.

Example
use polynom
p = polynom([1,2,3])
p =
x̂ 2+3x+9

q = polynom([2,0])
q =
2x

r = subst(p, q)
r =
4x̂ 2+6x+9

See also
polynom::polynom, polynom::feval

polynom::diff

Polynom derivative.

Syntax
use polynom
diff(p)

Description
diff(p) differentiates polynomial p.

738 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
use polynom
p = polynom([3,0,1,-4,2]);
q = diff(p)
q =
12x̂ 3+2x-4

See also
polynom::polynom, polynom::int, polyder

polynom::int

Polynom integral.

Syntax
use polynom
int(p)

Description
int(p) integrates polynomial p.

Example
use polynom
p = polynom([3,0,1,-4,2]);
q = int(p)
q =
0.6x̂ 5+0.3333x̂ 3-2x̂ 2+2x

See also
polynom::polynom, polynom::diff, polyint

polynom::inline

Conversion from polynom object to inline function.

Syntax
use polynom
fun = inline(p)

Description
inline(p) converts polynomial p to an inline function which can then
be used with functions such as feval and ode45.

Libraries — polynom 739

Example
use polynom
p = polynom([3,0,1,-4,2]);
fun = inline(p)
fun =
<inline function>

dumpvar(’fun’, fun);
fun = inline(’function y=f(x);y=polyval([3,0,1,-4,2],x);’);

See also
polynom::polynom, polynom::feval, ode45

polynom::feval

Evaluate a polynom object.

Syntax
use polynom
y = feval(p, x)

Description
feval(p,x) evaluates polynomial p for the value of x. If x is a vector
or a matrix, the evaluation is performed separately on each element
and the result has the same size as x.

Example
use polynom
p = polynom([3,0,1,-4,2]);
y = feval(p, 1:5)
y =
2 46 242 770 1882

See also
polynom::polynom, polynom::inline, feval

polynom::mathml

Conversion to MathML.

Syntax
use polynom, polynom_mathml
str = mathml(p)
str = mathml(p, false)

740 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

mathml(p) converts its argument p to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a last
input argument equal to the logical value false can be specified to
suppress <math>.

Example
use polynom, polynom_mathml
p = polynom([3,0,1,-4,2]);
m = mathml(p);
math(0, 0, m);

See also

mathmlpoly, mathml

ratfun::ratfun

Ratfun object constructor.

Syntax
use polynom
r = ratfun
r = ratfun(coefnum)
r = ratfun(coefnum, coefden)

Description

ratfun(coefnum,coefden) creates a ratfun object initialized with the
coefficients in vectors coefnum and coefden, given in descending pow-
ers of the variable. Without argument, ratfun returns a ratfun object
initialized to 0. If omitted, coefden defaults to 1.

The following operators and functions may be used with ratfun ar-
guments, with results analog to the corresponding functions of LME.

Op. Function Op. Function
inv * mtimes

- minus + plus
\ mldivide - uminus
ˆ mpower + uplus
/ mrdivide

Libraries — polynom 741

Example
use polynom
r = ratfun([3,0,1,-4,2], [2,5,0,1])
r =
(3x̂ 4+x̂ 2-4x+2)/(2x̂ 3+5x̂ 2+1)

See also
ratfun::disp, ratfun::inline, ratfun::feval, polynom::polynom

ratfun::disp

Display a ratfun object.

Syntax
use polynom
disp(r)

Description
disp(r) displays rational function r. It is also executed implicitly when
LME displays the ratfun result of an expression which does not end
with a semicolon.

See also
ratfun::ratfun, disp

ratfun::num

Get the numerator of a ratfun as a vector of coefficients.

Syntax
use polynom
coef = num(r)

Description
num(r) gets the numerator of r as a row vector of descending-power
coefficients.

See also
ratfun::den, ratfun::ratfun

742 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

ratfun::den

Get the denominator of a ratfun as a vector of coefficients.

Syntax
use polynom
coef = den(a)

Description
den(a) gets the denominator of a as a row vector of descending-power
coefficients.

See also
ratfun::num, ratfun::ratfun

ratfun::diff

Ratfun derivative.

Syntax
use polynom
diff(r)

Description
diff(r) differentiates ratfun r.

Example
use polynom
r = ratfun([1,3,0,1],[2,5]);
q = diff(r)
q =
(4x̂ 3+21x̂ 2+30x-2)/(4x̂ 2+20x+25)

See also
ratfun::ratfun

ratfun::inline

Conversion from ratfun to inline function.

Syntax
use polynom
fun = inline(r)

Libraries — polynom 743

Description
inline(r) converts ratfun r to an inline function which can then be
used with functions such as feval and ode45.

See also
ratfun::ratfun, ratfun::feval, ode45

ratfun::feval

Evaluate a ratfun object.

Syntax
use polynom
y = feval(r, x)

Description
feval(r,x) evaluates ratfun r for the value of x. If x is a vector or a
matrix, the evaluation is performed separately on each element and
the result has the same size as x.

Example
use polynom
r = ratfun([1,3,0,1],[2,5]);
y = feval(r, 1:5)
y =
0.7143 2.3333 5.0000 8.6923 13.4000

See also
ratfun::ratfun, ratfun::inline, feval

ratfun::mathml

Conversion to MathML.

Syntax
use polynom, polynom_mathml
str = mathml(r)
str = mathml(r, false)

744 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
mathml(r) converts its argument r to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a last
input argument equal to the logical value false can be specified to
suppress <math>.

Example
use polynom, polynom_mathml
r = ratfun([1,3,0,1],[2,5]);
m = mathml(r);
math(0, 0, m);

See also
mathml

11.5 ratio

Library ratio implements the constructors and methods of class
ratio for rational numbers. It is based on long integers, so that the
precision is limited only by available memory. Basic arithmetic
operators and functions are overloaded to support expressions with
the same syntax as for numbers.

The following statement makes available functions defined in
ratio:

use ratio

Functions

ratio::ratio

Ratio object constructor.

Syntax
use ratio
r = ratio
r = ratio(n)
r = ratio(num, den)
r = ratio(r)

Libraries — ratio 745

Description
ratio(num, den) creates a rational fraction object whose value is
num/den. Arguments num and den may be double integer numbers
or longint. Common factors are canceled out. With one numeric input
argument, ratio(n) creates a rational fraction whose denominator is
1. Without input argument, ratio creates a rational number whose
value is 0.

With one input argument which is already a ratio object, ratio
returns it without change.

The following operators and functions may be used with ratio ob-
jects, with results analog to the corresponding functions of LME.

Op. Function Op. Function
== eq \ mldivide
>= ge ˆ mpower
> gt / mrdivide

inv * mtimes
<= le =̃ ne
< lt + plus

max - uminus
min + uplus

- minus

Examples
use ratio
r = ratio(2, 3)
r =
2/3

q = 5 * r - 1
q =
7/3

See also
ratio::disp, ratio::double, ratio::char

ratio::char

Display a ratio object.

Syntax
use ratio
char(r)

Description
char(r) converts ratio r to a character string.

746 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
ratio::ratio, ratio::disp, char

ratio::disp

Display a ratio object.

Syntax
use ratio
disp(r)

Description
disp(r) displays ratio r with the same format as char. It is also ex-
ecuted implicitly when LME displays the ratio result of an expression
which does not end with a semicolon.

See also
ratio::ratio, ratio::char, disp

ratio::double

Convert a ratio object to a floating-point number.

Syntax
use ratio
x = double(r)

Description
double(r) converts ratio r to a floating-point number of class double.

Example
use ratio
r = ratio(2, 3);
double(r)
0.6666

See also
ratio::ratio

Libraries — bitfield 747

11.6 bitfield

Library bitfield implements the constructor and methods of class
bitfield for bit fields (binary numbers). Basic arithmetic operators
and functions are overloaded to support expressions with the same
syntax as for numbers and matrices. Contrary to integer numbers,
bitfield objects have a length (between 1 and 32) and are displayed in
binary.

The following statement makes available functions defined in
bitfield:

use bitfield

Functions

bitfield::beginning

First bit position in a bitfield.

Syntax
use bitfield
a(...beginning...)

Description
In the index expression of a bitfield, beginning is the position of the
least-significant bit, i.e. 0.

See also

bitfield::bitfield, bitfield::end

bitfield::bitfield

Bitfield object constructor.

Syntax
use bitfield
a = bitfield
a = bitfield(n)
a = bitfield(n, wordlength)

748 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
bitfield(n,wordlength) creates a bitfield object initialized with the
wordlength least significant bits of the nonnegative integer number
n. The default value of wordlength is 32 if n is a double, an int32 or
a uint32 number; 16 is n is an int16 or uint16 number; or 8 if n is an
int8 or uint8 number. Without argument, bitfield gives a bit field of
32 bits 0. Like any integer number in LME, n may be written in base 2,
8, 10, or 16: 0b1100, 014, 12, and 0xc all represent the same number.

The following operators and functions may be used with bitfield
arguments, with results analog to the corresponding functions of LME.
Logical functions operate bitwise.

Op. Function Op. Function
& and ˜ not
== eq | or
- minus + plus
\ mldivide - uminus
/ mrdivide + uplus
* mtimes xor
=̃ ne

Indexes into bit fields are non-negative integers: 0 represents the
least-significant bit, and wordlength-1 the most-significant bit. Unlike
arrays, bits are not selected with logical arrays, but with other bit fields
where ones represent the bits to be selected; for example a(0b1011)
selects bits 0, 1 and 3. This is consistent with the way bitfield::find
is defined.

Examples
use bitfield
a = bitfield(123, 16)
a =
0b0000000001111011

b = ã
b =
0b1111111110000100

b = a * 5
b =
0b0000001001100111

See also
bitfield::disp, bitfield::double

bitfield::disp

Display a bitfield object.

Libraries — bitfield 749

Syntax
use bitfield
disp(a)

Description
disp(a) displays bitfield a. It is also executed implicitly when LME
displays the bitfield result of an expression which does not end with a
semicolon.

See also
bitfield::bitfield, disp

bitfield::double

Convert a bitfield object to a double number.

Syntax
use bitfield
n = double(a)

Description
double(a) converts bitfield a to double number.

Example
use bitfield
a = bitfield(123, 16);
double(a)
123

See also
bitfield::bitfield

bitfield::end

Last bit position in a bitfield.

Syntax
use bitfield
a(...end...)

750 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
In the index expression of a bitfield, end is the position of the most-
significant bit, i.e. 1 less than the word length.

See also
bitfield::bitfield, bitfield::beginning

bitfield::find

Find the ones in a bitfield.

Syntax
use bitfield
ix = find(a)

Description
find(a) finds the bits equal to 1 in bitfield a. The result is a vector of
bit positions in ascending order; the least-significant bit is number 0.

Example
use bitfield
a = bitfield(123, 16)
a =
0b0000000001111011

ix = find(a)
ix =

0 1 3 4 5 6

See also
bitfield::bitfield, find

bitfield::int8 bitfield::int16 bitfield::int32

Convert a bitfield object to a signed integer number, with sign exten-
sion.

Syntax
use bitfield
n = int8(a)
n = int16(a)
n = int32(a)

Libraries — bitfield 751

Description
int8(a), int16(a), and int32(a) convert bitfield a to an int8, int16,
or int32 number respectively. If a has less bits than the target integer
and the most significant bit of a is 1, sign extension is performed;
i.e. the most significant bits of the result are set to 1, so that it is
negative. If a has more bits than the target integer, most significant
bits are ignored.

Example
use bitfield
a = bitfield(9, 4);
a =
0x1001

i = int8(a)
i =
210

b = bitfield(i)
b =
0b11111001

See also
uint8, uint16, uint32, bitfield::int8, bitfield::int16,
bitfield::int32, bitfield::double, bitfield::bitfield

bitfield::length

Word length of a bitfield.

Syntax
use bitfield
wordlength = length(a)

Description
length(a) gives the number of bits of bitfield a.

Example
use bitfield
a = bitfield(123, 16);
length(a)
16

See also
bitfield::bitfield, length

752 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

bitfield::sign

Get the sign of a bitfield.

Syntax
use bitfield
s = sign(a)

Description
sign(a) gets the sign of bitfield a. The result is -1 if the
most-significant bit of a is 1, 0 if all bits of a are 0, or 1 otherwise.

Example
use bitfield
a = bitfield(5, 3)
a =
0b101

sign(a)
-1

See also
bitfield::bitfield, sign

bitfield::uint8 bitfield::uint16 bitfield::uint32

Convert a bitfield object to an unsigned integer number.

Syntax
use bitfield
n = uint8(a)
n = uint16(a)
n = uint32(a)

Description
uint8(a), uint16(a), and uint32(a) convert bitfield a to a uint8,
uint16, or uint32 number respectively. If a has more bits than the
target integer, most significant bits are ignored.

Example
use bitfield
a = bitfield(1234, 16);
uint8(a)
210

Libraries — filter 753

See also
uint8, uint16, uint32, bitfield::int8, bitfield::int16,
bitfield::int32, bitfield::double, bitfield::bitfield

11.7 filter

filter is a library which adds to LME functions for designing analog
(continuous-time) and digital (discrete-time) linear filters.

The following statement makes available functions defined in
filter:

use filter

This library provides three kinds of functions:

– besselap, buttap, cheb1ap, cheb2ap, and ellipap, which com-
pute the zeros, poles and gain of the prototype of analog low-pass
filter with a cutoff frequency of 1 rad/s. They correspond respec-
tively to Bessel, Butterworth, Chebyshev type 1, Chebyshev type
2, and elliptic filters.

– besself, butter, cheby1, cheby2, and ellip, which provide a
higher-level interface to design filters of these different types.
In addition to the filter parameters (degree, bandpass and band-
stop ripples), one can specify the kind of filter (lowpass, highpass,
bandpass or bandstop) and the cutoff frequency or frequencies.
The result can be an analog or a digital filter, given as a rational
transfer function or as zeros, poles and gain.

– lp2lp, lp2hp, lp2bp, and lp2bs, which convert analog lowpass
filters respectively to lowpass, highpass, bandpass, and bandstop
with specified cutoff frequency or frequencies.

Transfer functions are expressed as the coefficient vectors of their nu-
merator num and denominator den in decreasing powers of s (Laplace
transform for analog filters) or z (z transform for digital filters); or as
the zeros z, poles p, and gain k.

Functions

besselap

Bessel analog filter prototype.

754 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
use filter
(z, p, k) = besselap(n)

Description
besselap(n) calculates the zeros, the poles, and the gain of a Bessel
analog filter of degree n with a cutoff angular frequency of 1 rad/s.

See also
besself, buttap, cheb1ap, cheb2ap, ellipap

besself

Bessel filter.

Syntax
use filter
(z, p, k) = besself(n, w0)
(num, den) = besself(n, w0)
(...) = besself(n, [wl, wh])
(...) = besself(n, w0, ’high’)
(...) = besself(n, [wl, wh], ’stop’)
(...) = besself(..., ’s’)

Description
besself calculates a Bessel filter. The result is given as zeros, poles
and gain if there are three output arguments, or as numerator and
denominator coefficient vectors if there are two output arguments.

besself(n,w0), where w0 is a scalar, gives a digital lowpass filter
of order n with a cutoff frequency of w0 relatively to half the sampling
frequency.

besself(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a digital bandpass filter of order 2*n with pass-
band between wl and wh relatively to half the sampling frequency.

besself(n,w0,’high’) gives a digital highpass filter of order n
with a cutoff frequency of w0 relatively to half the sampling frequency.

besself(n,[wl,wh],’stop’), where the second input argument
is a vector of two numbers, gives a digital bandstop filter of order
2*n with stopband between wl and wh relatively to half the sampling
frequency.

With an additional input argument which is the string ’s’, besself
gives an analog Bessel filter. Frequencies are given in rad/s.

Libraries — filter 755

See also
besselap, butter, cheby1, cheby2, ellip

bilinear

Analog-to-digital conversion with bilinear transformation.

Syntax
use filter
(zd, pd, kd) = bilinear(zc, pc, kc, fs)
(numd, dend) = bilinear(numc, denc, fs)

Description
bilinear(zc,pc,kc,fs) converts the analog (continuous-time)
transfer function given by its zeros zc, poles pc, and gain kc
to a digital (discrete-time) transfer function given by its zeros,
poles, and gain in the domain of the forward-shift operator q. The
sampling frequency is fs. Conversion is performed with the bilinear
transormation zd = (1 + zc/2ƒs)/(1 − zc/2ƒs). If the analog transfer
function has less zeros than poles, additional digital zeros are added
at -1 to avoid a delay.

With three input arguments, bilinear(numc,denc,fs) uses the
coefficients of the numerators and denominators instead of their ze-
ros, poles and gain.

buttap

Butterworth analog filter prototype.

Syntax
use filter
(z, p, k) = buttap(n)

Description
buttap(n) calculates the zeros, the poles, and the gain of a Butter-
worth analog filter of degree n with a cutoff angular frequency of 1
rad/s.

See also
butter, besselap, cheb1ap, cheb2ap, ellipap

756 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

butter

Butterworth filter.

Syntax
use filter
(z, p, k) = butter(n, w0)
(num, den) = butter(n, w0)
(...) = butter(n, [wl, wh])
(...) = butter(n, w0, ’high’)
(...) = butter(n, [wl, wh], ’stop’)
(...) = butter(..., ’s’)

Description
butter calculates a Butterworth filter. The result is given as zeros,
poles and gain if there are three output arguments, or as numera-
tor and denominator coefficient vectors if there are two output argu-
ments.

butter(n,w0), where w0 is a scalar, gives a nth-order digital low-
pass filter with a cutoff frequency of w0 relatively to half the sampling
frequency.

butter(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a 2nth-order digital bandpass filter with pass-
band between wl and wh relatively to half the sampling frequency.

butter(n,w0,’high’) gives a nth-order digital highpass filter with
a cutoff frequency of w0 relatively to half the sampling frequency.

butter(n,[wl,wh],’stop’), where the second input argument is
a vector of two numbers, gives a 2nth-order digital bandstop filter with
stopband between wl and wh relatively to half the sampling frequency.

With an additional input argument which is the string ’s’, butter
gives an analog Butterworth filter. Frequencies are given in rad/s.

See also
buttap, besself, cheby1, cheby2, ellip

cheb1ap

Chebyshev type 1 analog filter prototype.

Syntax
use filter
(z, p, k) = cheb1ap(n, rp)

Libraries — filter 757

Description

cheb1ap(n,rp) calculates the zeros, the poles, and the gain of a
Chebyshev type 1 analog filter of degree n with a cutoff angular fre-
quency of 1 rad/s. Ripples in the passband have a peak-to-peak mag-
nitude of rp dB, i.e. the peak-to-peak ratio is 10̂ (rp/20).

See also

cheby1, cheb2ap, ellipap, besselap, buttap

cheb2ap

Chebyshev type 2 analog filter prototype.

Syntax
use filter
(z, p, k) = cheb2ap(n, rs)

Description

cheb2ap(n,rs) calculates the zeros, the poles, and the gain of a
Chebyshev type 2 analog filter of degree n with a cutoff angular fre-
quency of 1 rad/s. Ripples in the stopband have a peak-to-peak mag-
nitude of rs dB, i.e. the peak-to-peak ratio is 10̂ (rs/20).

See also

cheby1, cheb1ap, ellipap, besselap, buttap

cheby1

Chebyshev type 1 filter.

Syntax
use filter
(z, p, k) = cheby1(n, rp, w0)
(num, den) = cheby1(n, rp, w0)
(...) = cheby1(n, rp, [wl, wh])
(...) = cheby1(n, rp, w0, ’high’)
(...) = cheby1(n, rp, [wl, wh], ’stop’)
(...) = cheby1(..., ’s’)

758 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
cheby1 calculates a Chebyshev type 1 filter. The result is given as
zeros, poles and gain if there are three output arguments, or as nu-
merator and denominator coefficient vectors if there are two output
arguments.

cheby1(n,rp,w0), where w0 is a scalar, gives a nth-order digital
lowpass filter with a cutoff frequency of w0 relatively to half the sam-
pling frequency. Ripples in the passband have a peak-to-peak magni-
tude of rp dB, i.e. the peak-to-peak ratio is 10̂ (rp/20).

cheby1(n,rp,[wl,wh]), where the second input argument is a
vector of two numbers, gives a 2nth-order digital bandpass filter with
passband between wl and wh relatively to half the sampling
frequency.

cheby1(n,rp,w0,’high’) gives a nth-order digital highpass filter
with a cutoff frequency of w0 relatively to half the sampling frequency.

cheby1(n,rp,[wl,wh],’stop’), where the second input
argument is a vector of two numbers, gives a 2nth-order digital
bandstop filter with stopband between wl and wh relatively to half the
sampling frequency.

With an additional input argument which is the string ’s’, cheby1
gives an analog Chebyshev type 1 filter. Frequencies are given in
rad/s.

See also
cheb1ap, besself, butter, cheby2, ellip

cheby2

Chebyshev type 2 filter.

Syntax
use filter
(z, p, k) = cheby2(n, rs, w0)
(num, den) = cheby2(n, rs, w0)
(...) = cheby2(n, rs, [wl, wh])
(...) = cheby2(n, rs, w0, ’high’)
(...) = cheby2(n, rs, [wl, wh], ’stop’)
(...) = cheby2(..., ’s’)

Description
cheby2 calculates a Chebyshev type 2 filter. The result is given as
zeros, poles and gain if there are three output arguments, or as nu-
merator and denominator coefficient vectors if there are two output
arguments.

Libraries — filter 759

cheby2(n,rs,w0), where w0 is a scalar, gives a nth-order digital
lowpass filter with a cutoff frequency of w0 relatively to half the sam-
pling frequency. Ripples in the stopband have a peak-to-peak magni-
tude of rs dB, i.e. the peak-to-peak ratio is 10̂ (rs/20).

cheby2(n,rs,[wl,wh]), where the second input argument is a
vector of two numbers, gives a 2nth-order digital bandpass filter with
passband between wl and wh relatively to half the sampling
frequency.

cheby2(n,rs,w0,’high’) gives a nth-order digital highpass filter
with a cutoff frequency of w0 relatively to half the sampling frequency.

cheby2(n,rs,[wl,wh],’stop’), where the second input
argument is a vector of two numbers, gives a 2nth-order digital
bandstop filter with stopband between wl and wh relatively to half the
sampling frequency.

With an additional input argument which is the string ’s’, cheby2
gives an analog Chebyshev type 2 filter. Frequencies are given in
rad/s.

See also
cheb2ap, besself, butter, cheby1, ellip

ellip

Elliptic filter.

Syntax
use filter
(z, p, k) = ellip(n, rp, rs, w0)
(num, den) = ellip(n, rp, rs, w0)
(...) = ellip(n, rp, rs, [wl, wh])
(...) = ellip(n, rp, rs, w0, ’high’)
(...) = ellip(n, rp, rs, [wl, wh], ’stop’)
(...) = ellip(..., ’s’)

Description
ellip calculates a elliptic filter, or Cauer filter. The result is given
as zeros, poles and gain if there are three output arguments, or as
numerator and denominator coefficient vectors if there are two output
arguments.

ellip(n,rp,rs,w0), where w0 is a scalar, gives a nth-order digital
lowpass filter with a cutoff frequency of w0 relatively to half the sam-
pling frequency. Ripples have a peak-to-peak magnitude of rp dB in
the passband and of rs dB in the stopband (peak-to-peak ratios are
respectively 10̂ (rp/20) and 10̂ (rs/20)).

760 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

ellip(n,rp,rs,[wl,wh]), where the second input argument is a
vector of two numbers, gives a 2nth-order digital bandpass filter with
passband between wl and wh relatively to half the sampling frequency.

ellip(n,rp,rs,w0,’high’) gives a nth-order digital highpass fil-
ter with a cutoff frequency of w0 relatively to half the sampling fre-
quency.

ellip(n,rp,rs,[wl,wh],’stop’), where the second input argu-
ment is a vector of two numbers, gives a 2nth-order digital bandstop
filter with stopband between wl and wh relatively to half the sampling
frequency.

With an additional input argument which is the string ’s’, ellip
gives an analog elliptic filter. Frequencies are given in rad/s.

See also
ellipap, besself, butter, cheby1, cheby2

ellipap

Elliptic analog filter prototype.

Syntax
use filter
(z, p, k) = ellipap(n, rp, rs)

Description
ellipap(n,rp,rs) calculates the zeros, the poles, and the gain of an
elliptic analog filter of degree n with a cutoff angular frequency of 1
rad/s. Ripples have a peak-to-peak magnitude of rp dB in the pass-
band and of rs dB in the stopband (peak-to-peak ratios are respec-
tively 10̂ (rp/20) and 10̂ (rs/20)).

See also
ellip, cheb1ap, cheb1ap, besselap, buttap

lp2bp

Lowpass prototype to bandpass filter conversion.

Syntax
use filter
(z, p, k) = lp2bp(z0, p0, k0, wc, ww)
(num, den) = lp2bp(num0, den0, wc, ww)

Libraries — filter 761

Description
lp2bp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a bandpass analog filter with the specified center angular
frequency w0 and bandwidth ww. lp2bp(z0,p0,k0,wc,ww) converts
a filter given by its zeros, poles, and gain; lp2bp(num0,den0,wc,ww)
converts a filter given by its numerator and denominator coefficients
in decreasing powers of s.

The new filter F(s) is

F(s) = F0

�

s2 + ω2
c
− ω2


/4

ωs

�

where F0(s) is the filter prototype. The filter order is doubled.

See also
lp2lp, lp2hp, lp2bs

lp2bs

Lowpass prototype to bandstop filter conversion.

Syntax
use filter
(z, p, k) = lp2bs(z0, p0, k0, wc, ww)
(num, den) = lp2bs(num0, den0, wc, ww)

Description
lp2bs convert a lowpass analog filter prototype (with unit angular fre-
quency) to a bandstop analog filter with the specified center angular
frequency w0 and bandwidth ww. lp2bs(z0,p0,k0,wc,ww) converts
a filter given by its zeros, poles, and gain; lp2bs(num0,den0,wc,ww)
converts a filter given by its numerator and denominator coefficients
in decreasing powers of s.

The new filter F(s) is

F(s) = F0

�

ωs

s2 + ω2
c
− ω2


/4

�

where F0(s) is the filter prototype. The filter order is doubled.

See also
lp2lp, lp2hp, lp2bp

762 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

lp2hp

Lowpass prototype to highpass filter conversion.

Syntax
use filter
(z, p, k) = lp2hp(z0, p0, k0, w0)
(num, den) = lp2hp(num0, den0, w0)

Description
lp2hp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a highpass analog filter with the specified cutoff angular
frequency w0. lp2hp(z0,p0,k0,w0) converts a filter given by its ze-
ros, poles, and gain; lp2hp(num0,den0,w0) converts a filter given by
its numerator and denominator coefficients in decreasing powers of s.

The new filter F(s) is

F(s) = F0(
1

ω0s
)

where F0(s) is the filter prototype.

See also
lp2lp, lp2bp, lp2bs

lp2lp

Lowpass prototype to lowpass filter conversion.

Syntax
use filter
(z, p, k) = lp2lp(z0, p0, k0, w0)
(num, den) = lp2lp(num0, den0, w0)

Description
lp2lp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a lowpass analog filter with the specified cutoff angular
frequency w0. lp2lp(z0,p0,k0,w0) converts a filter given by its ze-
ros, poles, and gain; lp2lp(num0,den0,w0) converts a filter given by
its numerator and denominator coefficients in decreasing powers of s.

The new filter F(s) is

F(s) = F0

�

s

ω0

�

where F0(s) is the filter prototype.

Libraries — lti 763

See also
lp2hp, lp2bp, lp2bs

11.8 lti

Library lti defines methods related to objects which represent linear
time-invariant dynamical systems. LTI systems may be used to model
many different systems: electro-mechanical devices, robots, chemical
processes, filters, etc. LTI systems map one or more inputs u to one
or more outputs y. The mapping is defined as a state-space model
or as a matrix of transfer functions, either in continuous time or in
discrete time. Methods are provided to create, combine, and analyze
LTI objects.

Graphical methods are based on the corresponding graphical func-
tions; the numerator and denominator coefficient vectors or the state-
space matrices are replaced with an LTI object. They accept the same
optional arguments, such as a character string for the style.

The following statement makes available functions defined in lti:

use lti

Methods for conversion to MathML are defined in library lti_mathml.
Both libraries can be loaded with a single statement:

use lti, lti_mathml

Class overview

The LTI library defines six classes. The three central ones correspond
to the main model structures used for linear time-invariant systems in
automatic control: ss for state-space models, tf for rational transfer
functions given by the coefficients of the numerator and denominator
polynomials, and zpk for rational transfer functions given by their ze-
ros, poles and gain. State-space representation is restricted to causal
systems, while transfer functions can be non-causal. Three additional
classes are more specialized: frd (frequency response data) for sys-
tems described by a discrete set of frequency/complex response pairs,
and pid or pidstd for PID controllers.

LTI classes share many properties and methods. They can repre-
sent systems with single or multiple inputs and/or outputs. Inputs,
outputs and internal states are continuous in time (continuous-time
systems) or defined at a fixed sampling frequency (discrete-time sys-
tems).

The variable of the Laplace transform can be ’s’ or ’p’. The vari-
able of the z transform can be ’z’ or ’q’. By multiplying the numer-
ator and the denominator of a rational transfer function by a suitable

764 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

power of q̂ -1 (or ẑ -1), polynomials in q̂ -1 can be obtained, where
q̂ -1 is the delay operator; this yields directly a recurrence relation.

Conversion

Conversion between ss, tf and zpk can be done simply by calling
the target constructor. The only restriction is that systems to be con-
verted to state-space models must be causal. For instance, a transfer
function given by its zeros, poles and gain can be converted to a state-
space model as follows:

use lti;
P = zpk([1], [-3+1j, -3-1j], 2)
P =
continuous-time zero-pole-gain transfer function
2(s-1)/(s-(-3+1j))(s-(-3-1j))

S = ss(P)
S =
continuous-time LTI state-space system
A =

-6 -10
1 0
B =
1
0
C =
2 -2
D =
0

Conversion from pid or pidstd objects is performed the same way.
Conversion to pid or pidstd objects is possible only if the system to
be converted has the structure of a P, PI, PD, or PID controller, with or
without filter on the derivative term.

Conversion to an frd object requires an array of frequency points
where the frequency response is evaluated. Conversion of frd objects
to other LTI objects is not possible.

Conversion between continuous-time and discrete-time objects of
the same class is performed with c2d and d2c.

Building large systems

Simple systems can be combined to create larger ones. All systems
can be seen as matrices mapping inputs to outputs via a matrix prod-
uct. Larger systems can be created by matrix concatenation, addition
or multiplication. More specialized connections can be obtained with
methods connect and feedback.

Libraries — lti 765

Mixing objects of different classes is possible for all classes except
for frd (where a frequency array must be provided explicitly, which
can only be done with a call of the frd constructor). Continuous-time
objects cannot be connected with discrete-time objects, and discrete-
time objects must have the same sampling period.

Functions

frd::frd

LTI frequency response data constructor.

Syntax
use lti
a = frd
a = frd(resp, freq)
a = frd(resp, freq, Ts)

Description
frd(response,frequency,Ts) creates an LTI object which represents
a discrete set of frequency response data. Argument response is an
array of complex frequency responses corresping to frequency array
freq.

A single-input single-output (SISO) PID controller has scalar param-
eters. If the parameters are matrices, they must all have the same
size (scalar values are replicated as required), and the resulting con-
troller has as many inputs as parameters have columns and as many
outputs as parameters have rows; mapping from each input to each
output is and independent SISO PID controller.

Examples
Simple continuous-time frd object:

use lti
freq = 0:100;
resp = 3 ./ (1 + 0.1 * freq * 1j) + 0.1 * randn(size(freq));
r = frd(resp, freq)
r =
continuous-time frequency response, units=rad/s
1 input, 1 output
101 frequencies

Conversion from a transfer function object:

766 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

freq = 0:100;
G = tf(1, [1, 2, 3, 4]);
r = frd(G, freq)
r =
continuous-time frequency response, units=rad/s
1 input, 1 output
101 frequencies

See also
frd::frdata

pid::pid

LTI PID controller constructor.

Syntax
use lti
a = pid
a = pid(Kp, Ki, Kd, Tf)
a = pid(Kp, Ki, Kd, Tf, Ts)
a = pid(Kp, Ki, Kd, Tf, Ts, var)
a = pid(..., IFormula=f1, DFormula=f2)

Description
pid(Kp, Ki, Kd, Tf) creates an LTI object which represents the
continuous-time PID controller Kp + K/s+ Kds/(Tƒ s+ 1), where s is the
variable of the Laplace transform. Kp is the proportional gain, Ki is
the integral gain, Kd is the derivative gain, and Tf is the time
constant of the first-order filter of the derivative term. Missing Ki, Kd
or Tf default to 0; without any input argument, Kp defaults to 1. If
Tf=0 and Kd!=0, the derivative term is not filtered and the controller
is not causal.

A single-input single-output (SISO) PID controller has scalar param-
eters. If the parameters are matrices, they must all have the same
size (scalar values are replicated as required), and the resulting con-
troller has as many inputs as parameters have columns and as many
outputs as parameters have rows; mapping from each input to each
output is an independent SISO PID controller.

pid(Kp, Ki, Kd, Tf, Ts) creates an LTI object which represents
the discrete-time PID controller Kp+K(z)+Kd/(Tƒ + d(z)), where (z)
is the integration formula used for the integral term, d(z) is the inte-
gration formula used for the derivative term, and z is the variable of
the z transform. The formulae can be specified by named arguments
IFormula and DFormula, strings with the following values:

Libraries — lti 767

Name Value
’ForwardEuler’ Ts/(z − 1)
’BackwardEuler’ Tsz/(z − 1)
’Trapezoidal’ Ts/2 (z + 1)/(z − 1)

The default formula for both the integral and the derivative terms
is ’ForwardEuler’.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’
for forward time shift, ’ẑ -1’ or ’q̂ -1’ for backward time shift).

For PID controllers based on the standard parameters Kp, Ti and
Td, where Ki=Kp/Ti and Kd=Kp*Td, pidstd objects should be used
instead.

Examples
Simple continuous-time PID controller:

use lti
C = pid(5,2,1)
C =
continuous-time PID controller
Kp + Ki/s + Kd s/(Tf s + 1)
Kp = 5 Ki = 2 Kd = 1 Tf = 0

Discrete-time PD controller where the derivative term, filtered with
a time constant of 20ms, is approximated with the Backward Euler
formula, with a sampling period of 1ms. The controller is displayed
with the backward-shift operator q̂ -1.

C = pid(5,0,1,20e-3,1e-3,’q̂ -1’,DFormula=’BackwardEuler’)
C =
discrete-time PD controller, Ts=1e-3
Kp + Kd/(Tf + Id(q̂ -1))
Id(q̂ -1) = Ts/(1-q̂ -1) (BackwardEuler)
Kp = 5 Kd = 1 Tf = 2e-2

Conversion of a first-order continuous-time transfer function with pole
at 0 (integrator effect) to a continuous-time PI controller:

G = tf([1, 2], [1, 0])
G =
continuous-time transfer function
(s+2)/s

C = pid(G)
C =
continuous-time PI controller
Kp + Ki/s
Kp = 1 Ki = 2

768 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Conversion of a discrete-time PID controller with the Backward Eu-
ler formula for the integral term and the Trapezoidal formula for the
derivative term to a transfer function, and back to a PID controller:

C1 = pid(5, 2, 3, 0.1, 0.01,
IFormula=’BackwardEuler’, DFormula=’Trapezoidal’)

C1 =
discrete-time PID controller, Ts=1e-2
Kp + Ki Ii(z) + Kd/(Tf + Id(z))
Ii(z) = Ts z/(z-1) (BackwardEuler)
Id(z) = Ts/2 (z+1)/(z-1) (Trapezoidal)

Kp = 5 Ki = 2 Kd = 3 Tf = 0.1
G = tf(C1)
G =
discrete-time transfer function, Ts=1e-2
(3.5271ẑ 2-7.0019z+3.475)/(0.105ẑ 2-0.2z+9.5e-2)

C2 = pid(G, IFormula=’BackwardEuler’, DFormula=’Trapezoidal’)
C2 =
discrete-time PID controller, Ts=1e-2
Kp + Ki Ii(z) + Kd/(Tf + Id(z))
Ii(z) = Ts z/(z-1) (BackwardEuler)
Id(z) = Ts/2 (z+1)/(z-1) (Trapezoidal)
Kp = 5 Ki = 2 Kd = 3 Tf = 10e-2

See also
pidstd::pidstd, tf::tf

pidstd::pidstd

LTI standard PID controller constructor.

Syntax
use lti
a = pidstd
a = pidstd(Kp, Ti, Td, N)
a = pidstd(Kp, Ti, Td, N, Ts)
a = pidstd(Kp, Ti, Td, N, Ts, var)
a = pidstd(..., IFormula=f1, DFormula=f2)

Description
pidstd(Kp,Ti,Td,N) creates an LTI object which represents the stan-
dard continuous-time PID controller Kp(1/Ts+ Tds/(Tds/N+ 1), where
s is the variable of the Laplace transform. Kp is the proportional gain,
Ti is the integral time, Td is the derivative time, and N is the relative
frequency of the first-order filter of the derivative term. Missing Ti
defaults to infinity (no integral term), missing Td to zero (no derivative

Libraries — lti 769

term), and missing N to infinity (no filter on the derivative term, which
means that the controller is noncausal if Td is nonzero).

A single-input single-output (SISO) PID controller has scalar param-
eters. If the parameters are matrices, they must all have the same
size (scalar values are replicated as required), and the resulting con-
troller has as many inputs as parameters have columns and as many
outputs as parameters have rows; mapping from each input to each
output is and independent SISO PID controller.

pid(Kp,Ti,Td,N,Ts) creates an LTI object which represents the
standard discrete-time PID controller Kp((z)/T + Td/(Td/N + d(z))),
where (z) is the integration formula used for the integral term, d(z)
is the integration formula used for the derivative term, and z is the
variable of the z transform. The formulae can be specified by named
arguments IFormula and DFormula, strings with the following values:

Name Value
’ForwardEuler’ Ts/(z − 1)
’BackwardEuler’ Tsz/(z − 1)
’Trapezoidal’ Ts/2 (z + 1)/(z − 1)

The default formula for both the integral and the derivative terms
is ’ForwardEuler’.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’
for forward time shift, ’ẑ -1’ or ’q̂ -1’ for backward time shift).

For PID controllers based on the gain parameters Kp, Ki=Kp/Ti,
Kd=Kp*Td, and Tf=Td/N, pid objects should be used instead. Class
pidstd is a subclass of pid. The only differences are the arguments
of their constructors and the way their objects are displayed by char,
disp and mathml.

Examples
Simple standard continuous-time PID controller:

use lti
C = pidstd(5,4,1)
C =
continuous-time PID controller
Kp (1 + 1/(Ti s) + Td s/(Td/N s + 1))
Kp = 5 Ti = 4 Td = 1 N = inf

Conversion to a pid object:

C1 = pid(C)
C1 =
continuous-time PID controller
Kp + Ki/s + Kd s/(Tf s + 1)
Kp = 5 Ki = 1.25 Kd = 5 Tf = 0

770 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Standard discrete-time PD controller where the derivative term, fil-
tered with a time constant 20 times smaller than the derivator time, is
approximated with the Backward Euler formula, with a sampling period
of 1ms. The controller is displayed with the backward-shift operator
q̂ -1.

C = pidstd(5,0,1,20,1e-3,’q̂ -1’,DFormula=’BackwardEuler’)
C =
discrete-time PID controller, Ts=1e-3
Kp (1 + Ii(q̂ -1)/Ti + Td/(Td/N + Id(q̂ -1)))
Ii(q̂ -1) = Ts q̂ -1/(1-q̂ -1) (ForwardEuler)
Id(q̂ -1) = Ts/(1-q̂ -1) (BackwardEuler)
Kp = 5 Ti = 0 Td = 1 N = 20

See also
pid::pid, tf::tf

ss::ss

LTI state-space constructor.

Syntax
use lti
a = ss
a = ss(A, B, C, D)
a = ss(A, B, C, D, Ts)
a = ss(A, B, C, D, Ts, var)
a = ss(A, B, C, D, b)
a = ss(b)

Description
ss(A,B,C,D) creates an LTI object which represents the continuous-
time state-space model

x’(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t)

ss(A,B,C,D,Ts) creates an LTI object which represents the discrete-
time state-space model with sampling period Ts

x(k+1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k)

In both cases, if D is 0, it is resized to match the size of B and C if neces-
sary. An additional argument var may be used to specify the variable
of the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or
’q’).

Libraries — lti 771

ss(A,B,C,D,b), where b is an LTI object, creates a state-space
model of the same kind (continuous/discrete time, sampling time and
variable) as b.

ss(b) converts the LTI object b to a state-space model.

Examples
use lti
sc = ss(-1, [1,2], [2;5], 0)
sc =
continuous-time LTI state-space system
A =

-1
B =

1 2
C =

2
5

D =
0 0
0 0

sd = ss(tf(1,[1,2,3,4],0.1))
sd =
discrete-time LTI state-space system, Ts=0.1
A =
-2 -3 -4
1 0 0
0 1 0

B =
1
0
0

C =
0 0 1

D =
0

See also
tf::tf

tf::tf

LTI transfer function constructor.

Syntax
use lti
a = tf
a = tf(num, den)

772 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

a = tf(numlist, denlist)
a = tf(..., Ts)
a = tf(..., Ts, var)
a = tf(..., b)
a = tf(gain)
a = tf(b)

Description
tf(num,den) creates an LTI object which represents the continuous-
time transfer function specified by descending-power coefficient vec-
tors num and den. tf(num,den,Ts) creates an LTI object which repre-
sents a discrete-time transfer function with sampling period Ts.

In both cases, num and den can be replaced with cell arrays of coef-
ficients whose elements are the descending-power coefficient vectors.
The number of rows is the number of system outputs, and the number
of columns is the number of system inputs.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’).

tf(...,b), where b is an LTI object, creates a transfer function of
the same kind (continuous/discrete time, sampling time and variable)
as b.

tf(b) converts the LTI object b to a transfer function.
tf(gain), where gain is a matrix, creates a matrix of gains.

Examples
Simple continuous-time system with variable p (p is used only for dis-
play):

use lti
sc = tf(1,[1,2,3,4],’p’)
sc =
continuous-time transfer function
1/(p̂ 3+2p̂ 2+3p+4)

Matrix of discrete-time transfer functions for one input and two out-
puts, with a sampling period of 1ms:

sd = tf({0.1; 0.15}, {[1, -0.8]; [1; -0.78]}, 1e-3)
sd =
discrete-time transfer function, Ts=1e-3
y1/u1: 0.1/(s-0.8)
y2/u1: 0.15/(s-0.78)

See also
zpk::zpk, pid::pid, pidstd::pidstd, ss::ss

Libraries — lti 773

zpk::zpk

LTI zero-pole-gain constructor.

Syntax
use lti
a = zpk(z, p, k)
a = zpk(Z, P, K)
a = zpk(..., Ts)
a = zpk(..., Ts, var)
a = zpk(..., b)
a = zpk(b)

Description
zpk creates a zero-pole-gain LTI object. It accepts a vector of zeros,
a vector of poles, and a scalar gain for a simple-input simple-output
(SISO) system; or a cell array of zeros, a cell array of poles, and a
real array of gains for multiple-input multiple-output (MIMO) systems.
zpk(z,p,k,Ts) creates an LTI object which represents a discrete-time
transfer function with sampling period Ts.

In both cases, z and p can be replaced with cell arrays of coeffi-
cients whose elements are the zeros and poles vectors, and k with a
matrix of the same size. The number of rows is the number of system
outputs, and the number of columns is the number of system inputs.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’).

zpk(...,b), where b is an LTI object, creates a zero-pole-gain
transfer function of the same kind (continuous/discrete time,
sampling time and variable) as b.

zpk(b) converts the LTI object b to a zero-pole-gain transfer func-
tion.

Example
use lti
sd = zpk(0.3, [0.8+0.5j; 0.8-0.5j], 10, 0.1)
discrete-time zero-pole-gain transfer function, Ts=0.1
10(z-0.3)/(z-(0.8+0.5j)(z-(0.8-0.5j)

See also
tf::tf, pid::pid, pidstd::pidstd, ss::ss

lti::append

Append the inputs and outputs of systems.

774 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
use lti
b = append(a1, a2, ...)

Description
append(a1,a2) builds a system with inputs [u1;u2] and outputs
[y1;y2], where u1 and u2 are the inputs of a1 and y1 and y2
their outputs, respectively. append accepts any number of input
arguments.

See also
lti::connect, ss::augstate

ss::augstate

Extend the output of a system with its states.

Syntax
use lti
b = augstate(a)

Description
augstate(a) extends the ss object a by adding its states to its out-
puts. The new output is [y;x], where y is the output of a and x is its
states.

See also
lti::append

lti::beginning

First index.

Syntax
use lti
var(...beginning...)

Description
In an expression used as an index between parenthesis, beginning(a)
gives the first valid value for an index. It is always 1.

Libraries — lti 775

See also
lti::end, lti::subsasgn, lti::subsref

lti::c2d

Conversion from continuous time to discrete time.

Syntax
use lti
b = c2d(a, Ts)
b = c2d(a, Ts, method)

Description
c2d(a,Ts) converts the continuous-time system a to a discrete-time
system with sampling period Ts.

c2d(a,Ts,method) uses the specified conversion method. method
is one of the methods supported by c2dm for classes ss, tf and zpk,
and ’ForwardEuler’, ’BackwardEuler’ or ’Trapezoidal’ for classes
pid and pidstd.

See also
lti::d2c, c2dm

lti::connect

Arbitrary feedback connections.

Syntax
use lti
b = connect(a, links, in, out)

Description
connect(a,links,in,out) modifies lti object a by connecting some
of the outputs to some of the inputs and by keeping some of the inputs
and some of the outputs. Connections are specified by the rows of
matrix link. In each row, the first element is the index of the system
input where the connection ends; other elements are indices to system
outputs which are summed. The sign of the indices to outputs gives
the sign of the unit weight in the sum. Zeros are ignored. Arguments
in and out specify which input and output to keep.

See also
lti::feedback

776 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

lti::ctranspose

Conjugate transpose.

Syntax
use lti
b = a’
b = ctranspose(a)

Description
a’ or ctranspose(a) gives the conjugate transpose of a.

The conjugate of the single-input single-output (SISO) continuous-
time transfer function G(s) is defined as G(-s), and the conjugate of
the SISO discrete-time transfer function G(z) is defined as G(1/z); the
conjugate transpose is the conjugate of the transpose of the original
system.

See also
lti::transpose, operator ’

ss::ctrb

Controllability matrix.

Syntax
use lti
C = crtb(a)

Description
ctrb(a) gives the controllability matrix of system a, which is full-rank
if and only if a is controllable.

See also
ss::obsv

lti::d2c

Conversion from discrete time to continuous time.

Syntax
use lti
b = d2c(a)
b = d2c(a, method)

Libraries — lti 777

Description

d2c(a) converts the discrete-time system a to a continuous-time sys-
tem.

d2c(a,method) uses the specified conversion method. method is
one of the methods supported by d2cm for classes ss, tf and zpk, and
is ignored for class pid and pidstd.

See also

lti::c2d, d2cm

lti::dcgain

Steady-state gain.

Syntax
use lti
g = dcgain(a)

Description

dcgain(a) gives the steady-state gain of system a.

See also

lti::norm

lti::end

Last index.

Syntax
use lti
var(...end...)

Description

In an expression used as an index between parenthesis, end gives the
last valid value for that index. It is size(var,1) or size(var,2).

778 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Time response when the last input is a step:

use lti
P = ss([1,2;-3,-4],[1,0;0,1],[3,5]);
P1 = P(:, end)
continuous-time LTI state-space system
A =

1 2
-3 -4

B =
0
1

C =
3 5

D =
0

step(P1);

See also
lti::beginning, lti::subsasgn, lti::subsref

lti::evalfr

Frequency value.

Syntax
use lti
y = evalfr(a, x)

Description
evalfr(a,x) evaluates system a at complex value or values x. If x is
a vector of values, results are stacked along the third dimension.

Example
use lti
sys = [tf(1, [1,2,3]), tf(2, [1,2,3,4])];
evalfr(sys, 0:1j:3j)
ans =
1x2x4 array
(:,:,1) =
0.3333 0.5

(:,:,2) =
0.25 -0.25j 0.5 -0.5j

(:,:,3) =
-5.8824e-2-0.2353j -0.4 +0.2j
(:,:,4) =
-8.3333e-2-8.3333e-2j -5.3846e-2+6.9231e-2j

Libraries — lti 779

See also

polyval

frd::fcat

Frequency concatenation.

Syntax
use lti
c = fcat(a, b)

Description

fcat(a,b) concatenates the frequency response data of frd objects a
and b along the frequency axis, and sort data by increasing frequency.
The size of a and b must be the same (same numbers of inputs and
outputs).

Example
use lti
G = tf(1, [1, 2, 3, 4]);
a = frd(G, 0:5);
b = frd(G, 6:20);
c = fcat(a, b);
d = frd(G, 0:20); // same as c

See also

frd::frd

lti::feedback

Feedback connection.

Syntax
use lti
c = feedback(a, b)
c = feedback(a, b, sign)
c = feedback(a, b, ina, outa)
c = feedback(a, b, ina, outa, sign)

780 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

feedback(a,b) connects all the outputs of lti object a to all its inputs
via the negative feedback lti object b.

feedback(a,b,sign) applies positive feedback with weight sign;
the default value of sign is -1.

feedback(a,b,ina,outa) specifies which inputs and outputs of a
to use for feedback. The inputs and outputs of the result always cor-
respond to the ones of a.

See also

lti::connect

frd::frdata

Get frequency response data.

Syntax
use lti
(resp, freq) = frdata(f)
(resp, freq, Ts) = frdata(f)

Description

frdata(f), where f is an frd object, gives the complex frequency
response, the corresponding frequencies, and optionally the sampling
period or the empty array [] for continuous-time systems.

See also

frd::frd

frd::fselect

Frequency selection.

Syntax
use lti
b = fselect(a, ix)
b = fselect(a, sel)
b = fselect(a, freqmin, freqmax)

Libraries — lti 781

Description
fselect(a,ix) selects frequencies of frd object a whose index are in
array ix. The frequencies of the result are a.freq(ix).

fselect(a,sel) selects frequencies of frd object a corresponding
to true values in logical array sel. The frequencies of the result are
a.freq(sel).

fselect(a,freqmin,freqmax) selects frequencies of frd
object a which are greater than or equal to freqmin and less
than or equal to freqmax. The frequencies of the result are
a.freq(a.freq>=freqmin&a.freq<=freqmax).

See also
frd::frd, operator ()

frd::interp

Frequency interpolation.

Syntax
use lti
b = interp(a, freq)
b = interp(a, freq, method)

Description
interp(a,freq) interpolates response data of frd object a at the fre-
quencies in array freq. The frequencies of the result are freq. The
interpolation method is linear. Interpolation for frequencies outside
the frequency range of a yields nan (not a number).

interp(a,freq,method) use the specified method for
interpolation. Method is one of the strings accepted by interp1 (’0’
or ’nearest’, ’<’, ’>’, ’1’ or ’linear’, ’3’ or ’cubic’, ’p’ or
’pchip’).

See also
frd::frd, interp1

lti::inv

System inverse.

Syntax
use lti
b = inv(a)

782 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
inv(a) gives the inverse of system a.

See also
lti::mldivide, lti::mrdivide

isct

Test for a continous-time LTI.

Syntax
use lti
b = isct(a)

Description
isct(a) is true if system a is continuous-time or static, and false oth-
erwise.

See also
isdt

isdt

Test for a discrete-time LTI.

Syntax
use lti
b = isdt(a)

Description
isdt(a) is true if system a is discrete-time or static, and false other-
wise.

See also
isct

lti::isempty

Test for an LTI without input/output.

Libraries — lti 783

Syntax
use lti
b = isempty(a)

Description
isempty(a) is true if system a has no input and/or no output, and false
otherwise.

See also
lti::size, lti::issiso

lti::isproper

Test for a proper (causal) LTI.

Syntax
use lti
b = isproper(a)

Description
isproper(a) is true if lti object a is causal, or false otherwise. An
ss object is always causal. A tf object is causal if all the transfer
functions are proper, i.e. if the degrees of the denominators are at
least as large as the degrees of the numerators.

lti::issiso

Test for a single-input single-output LTI.

Syntax
use lti
b = issiso(a)

Description
issiso(a) is true if lti object a has one input and one output (single-
input single-output system, or SISO), or false otherwise.

lti::size, lti::isempty

tf::mathml zpk::mathml pid::mathml pidstd::mathml

Conversion to MathML.

784 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
use lti, lti_mathml
str = mathml(G)
str = mathml(G, false)
str = mathml(..., Format=f, NPrec=n)

Description
mathml(x) converts its argument x to MathML presentation, returned
as a string.

By default, the MathML top-level element is <math>. If the result
is to be used as a MathML subelement of a larger equation, a last
input argument equal to the logical value false can be specified to
suppress <math>.

By default, mathml converts numbers like format ’%g’ of sprintf.
Named arguments can override them: format is a single letter format
recognized by sprintf and NPrec is the precision (number of deci-
mals).

Example
use lti, lti_mathml
G = zpk(-1, [1, 2+j, 2-j], 2);
m = mathml(G);
math(0, 0, m);

See also
mathml, sprintf

lti::minreal

Minimum realization.

Syntax
use lti
b = minreal(a)
b = minreal(a, tol)

Description
minreal(a) modifies lti object a in order to remove states which are
not controllable and/or not observable. For tf objects, identical zeros
and poles are canceled out.

minreal(a,tol) uses tolerance tol to decide whether to discard a
state or a pair of pole/zero.

Libraries — lti 785

lti::minus

System difference.

Syntax
use lti
c = a - b
c = minus(a, b)

Description
a-b computes the system whose inputs are fed to both a and b and
whose outputs are the difference between outputs of a and b. If a
and b are transfer functions or matrices of transfer functions, this is
equivalent to a difference of matrices.

See also
lti::parallel, lti::plus, lti::uminus

lti::mldivide

System left division.

Syntax
use lti
c = a \ b
c = mldivide(a, b)

Description
a/b is equivalent to inv(a)*b.

See also
lti::mrdivide, lti::times, lti::inv

lti::mrdivide

System right division.

Syntax
use lti
c = a / b
c = mrdivide(a, b)

786 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
a/b is equivalent to a*inv(b).

See also
lti::mldivide, lti::times, lti::inv

lti::mtimes

System product.

Syntax
use lti
c = a * b
c = mtimes(a, b)

Description
a*b connects the outputs of lti object b to the inputs of lti object a.
If a and b are transfer functions or matrices of transfer functions, this
is equivalent to a product of matrices.

See also
lti::series

lti::norm

H2 norm.

Syntax
use lti
h2 = norm(a)

Description
norm(a) gives the H2 norm of the system a.

See also
lti::dcgain

ss::obsv

Observability matrix.

Libraries — lti 787

Syntax
use lti
O = obsv(a)

Description
obsv(a) gives the observability matrix of system a, which is full-rank
if and only if a is observable.

See also
ss::ctrb

lti::parallel

Parallel connection.

Syntax
use lti
c = parallel(a, b)
c = parallel(a, b, ina, inb, outa, outb)

Description
parallel(a,b) connects lti objects a and b in such a way that the
inputs of the result is applied to both a and b, and the outputs of the
result is their sum.

parallel(a,b,ina,inb,outa,outb) specifies which inputs are
shared between a and b, and which outputs are summed. The inputs
of the result are partitioned as [ua,uab,ub] and the outputs as
[ya,yab,yb]. Inputs uab are fed to inputs ina of a and inb of b;
inputs ua are fed to the remaining inputs of a, and ub to the
remaining inputs of b. Similarly, outputs yab are the sum of outputs
outa of a and outputs outb of b, and ya and yb are the remaining
outputs of a and b, respectively.

See also
lti::series

lti::piddata

Get PID parameters.

Syntax
use lti
(Kp, Ki, Kd, Tf) = piddata(a)
(Kp, Ki, Kd, Tf, Ts) = piddata(a)

788 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
piddata(a), where a is any kind of LTI object which has the structure
of a PID controller except for frd, gives the PID parameters Kp, Ki, Kd
and Tf, and optionally the sampling period or the empty array [] for
continuous-time systems. The parameters are given as matrices; the
rows correspond to the outputs, and their columns to the inputs.

See also
pid::pid, lti::pidstddata, lti::tfdata

lti::pidstddata

Get standard PID parameters.

Syntax
use lti
(Kp, Ti, Td, N) = pidstddata(a)
(Kp, Ti, Td, N, Ts) = pidstddata(a)

Description
pidstddata(a), where a is any kind of LTI object which has the struc-
ture of a PID controller except for frd, gives the standard PID parame-
ters Kp, Ti, Td and N, and optionally the sampling period or the empty
array [] for continuous-time systems. The parameters are given as
matrices; the rows correspond to the outputs, and their columns to
the inputs.

See also
pidstd::pidstd, lti::piddata, lti::tfdata

lti::plus

System sum.

Syntax
use lti
c = a + b
c = plus(a, b)

Description
a+b computes the system whose inputs are fed to both a and b and
whose outputs are the sum of the outputs of a and b. If a and b are
transfer functions or matrices of transfer functions, this is equivalent
to a sum of matrices.

Libraries — lti 789

See also
lti::parallel, lti::minus

lti::repmat

Replicate a system.

Syntax
use lti
b = repmat(a, n)
b = repmat(a, [m,n])
b = repmat(a, m, n)

Description
repmat(a,m,n), when a is an lti object and m and n are positive in-
tegers, creates a new system of the same class with m times as many
outputs and n times as many inputs. If a is a matrix of transfer func-
tions, it is replicated m times vertically and n horizontally, as if a were
a numeric matrix. If a is a state-space system, matrices B, C, and D
are replicated to obtain the same effect.

repmat(a,[m,n]) gives the same result as repmat(a,m,n);
repmat(a,n) gives the same result as repmat(a,n,n).

See also
lti::append

lti::series

Series connection.

Syntax
use lti
c = series(a, b)
c = series(a, b, outa, inb)

Description
series(a,b) connects the outputs of lti object a to the inputs of lti
object b.

series(a,b,outa,inb) connects outputs outa of a to inputs inb
of b. Unconnected outputs of a and inputs of b are discarded.

See also
lti::mtimes, lti::parallel

790 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

lti::size

Number of outputs and inputs.

Syntax
use lti
s = size(a)
(nout, nin) = size(a)
n = size(a, dim)

Description
With one output argument, size(a) gives the row vector [nout,nin],
where nout is the number of outputs of system a and nin its number
of inputs. With two output arguments, size(a) returns these results
separately as scalars.

size(a,1) gives only the number of outputs, and size(a,2) only
the number of inputs.

See also
lti::isempty, lti::issiso

lti::ssdata

Get state-space matrices.

Syntax
use lti
(A, B, C, D) = ssdata(a)
(A, B, C, D, Ts) = ssdata(a)

Description
ssdata(a), where a is any kind of LTI object except for frd, gives the
four matrices of the state-space model, and optionally the sampling
period or the empty array [] for continuous-time systems.

See also
ss::ss, lti::tfdata

lti::subsasgn

Assignment to a part of an LTI system.

Libraries — lti 791

Syntax
use lti
var(i,j) = a
var(ix) = a
var(select) = a
var.field = value
a = subsasgn(a, s, b)

Description
The method subsasgn(a) permits the use of all kinds of assignments
to a part of an LTI system. If the variable is a matrix of transfer func-
tions, subsasgn produces the expected result, converting the right-
hand side of the assignment to a matrix of transfer function if required.
If the variable is a state-space model, the result is equivalent; the re-
sult remains a state-space model. For state-space models, changing
all the inputs or all the outputs with the syntax var(expr,:)=sys or
var(:,expr)=sys is much more efficient than specifying both sub-
scripts or a single index.

The syntax for field assignment, var.field=value, is defined for
the following fields: for state-space models, A, B, C, and D (matrices
of the state-space model); for transfer functions, num and den (cell ar-
rays of coefficients); for zero-pole-gain transfer functions, z and p (cell
arrays of zero or pole vectors), and k (gain matrix); for PID controllers,
Kp, Ki, Kd, Tf, Ti and Td (controller parameter matrices); for all LTI ob-
jects, var (string) and Ts (scalar, or empty array for continuous-time
systems). Field assignment must preserve the size of matrices and
arrays.

The syntax with braces (var{i}=value) is not supported.

See also
lti::subsref, operator (), subsasgn

lti::subsref

Extraction of a part of an LTI system.

Syntax
use lti
var(i,j)
var(ix)
var(select)
var.field
b = subsref(a, s)

792 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
The method subsref(a) permits the use of all kinds of extraction of
a part of an LTI system. If the variable is a matrix of transfer func-
tions, subsref produces the expected result. If the variable is a state-
space model, the result is equivalent; the result remains a state-space
model, with the same state vector (the same matrix A) as the original
system. For state-space models, extracting all the inputs or all the
outputs with the syntax var(expr,:) or var(:,expr) is much more
efficient than specifying both subscripts or a single index.

If the variable is an frd object, var(’freq’,i) produces a new frd
object where the frequency vector is var.frequency(i) amd the re-
sponse array contains the corresponding reponse. i can be a scalar
index, a vector of indices or a logical array with the same size as
var.frequency.

The syntax for field access, var.field, is defined for the following
fields: for state-space models, A, B, C, and D (matrices of the state-
space model); for transfer functions, num and den (cell arrays of co-
efficients); for zero-pole-gain transfer functions, z and p (cell arrays
of zero or pole vectors), and k (gain matrix); for PID controllers, Kp,
Ki, Kd, Tf, Ti and Td (controller parameter matrices); for all LTI ob-
jects, var (string) and Ts (scalar, or empty array for continuous-time
systems).

The syntax with braces (var{i}) is not supported.

See also
lti::subsasgn, operator (), subsasgn

lti::tfdata

Get transfer functions.

Syntax
use lti
(num, den) = tfdata(a)
(num, den, Ts) = tfdata(a)

Description
tfdata(a), where a is any kind of LTI object except for frd, gives the
numerator and denominator of the transfer function model, and op-
tionally the sampling period or the empty array [] for continuous-time
systems. The numerators and denominators are given as a cell array
of power-descending coefficient vectors; the rows of the cell arrays
correspond to the outputs, and their columns to the inputs.

Libraries — lti 793

See also
tf::tf, lti::zpkdata, lti::ssdata

lti::transpose

Transpose.

Syntax
use lti
b = a.’
b = transpose(a)

Description
a.’ or transpose(a) gives the transpose of a, i.e. a.’(i,j)=a(j,i).

See also
lti::ctranspose, operator .’

lti::uminus

Negative.

Syntax
use lti
b = -a
b = uminus(a)

Description
-a multiplies all the outputs (or all the inputs) of system a by -1. If a is
a transfer functions or a matrix of transfer functions, this is equivalent
to the unary minus.

See also
lti::minus, lti::uplus

lti::uplus

Positive.

Syntax
use lti
b = +a
b = uplus(a)

794 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
+a gives a.

See also
lti::uminus, lti::plus

lti::zpkdata

Get zeros, poles and gains.

Syntax
use lti
(z, p, k) = zpkdata(a)
(z, p, k, Ts) = zpkdata(a)

Description
zpkdata(a), where a is any kind of LTI object except for frd, gives the
zeros, poles and gains of the transfer function model, and optionally
the sampling period or the empty array [] for continuous-time sys-
tems. The zeros and poles are given as a cell array of vectors; the
rows of the cell arrays correspond to the outputs, and their columns to
the inputs.

See also
zpk::zpk, lti::tfdata

11.9 lti (graphics)

In addition to the class definitions and the computational methods, li-
brary lti includes methods which provide for lti objects the same
functionality as the native graphical functions of Sysquake for dynam-
ical systems, such as bodemag for the magnitude of the Bode diagram
or step for the step response. The system is provided as a single lti
object instead of separate vectors for the numerator and denominator
or four matrices for state-space models. For discrete-time systems,
the sampling time is also obtained from the object, and the method
name is the same as its continuous-time equivalent, without an ini-
tial d (e.g. step(G) is the discrete-time step response of G if G is a
discrete-time tf, zpk or ss object).

The method definitions are stored in a separate file which is refer-
enced in lti with includeifexists; this means that only lti must
be loaded, with

use lti

Libraries — lti (graphics) 795

Functions

lti::bodemag

Magnitude of the Bode plot.

Syntax
use lti
bodemag(a)
bodemag(a, style, id)
(mag, w) = bodemag(a)

Description
bodemag(a) plots the magnitude of the Bode diagram of system a,
which can be any lti object with a single input (size(a,2) must be 1),
continuous-time or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, bodemag gives the magnitude and the fre-

quency as column vectors. No display is produced.

Examples
Green plot for

�

�1/(s3 + 2s2 + 3s + 4)
�

� with s = jω (see Fig. 10.9):

G = tf(1, [1, 2, 3, 4]);
bodemag(G, ’g’);

The same plot, between ω = 0 and ω = 10, with a named argument
for the color:

scale([0,10]);
bodemag(G, Color=’green’);

Frequency response of the discrete-time system 1/(z − 0.9)(z − 0.7 −
0.6j)(z − 0.7 + 0.6j) with unit sampling period:

H = zpk([], [0.9,0.7+0.6j,0.7-0.6j], 1, 1);
bodemag(H);

See also
lti::bodephase, lti::nichols, lti::nyquist, plotset, bodemag

lti::bodephase

Phase of the Bode plot.

796 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
use lti
bodephase(a)
bodephase(a, style, id)
(phase, w) = bodephase(a)

Description
bodephase(a) plots the phase of the Bode diagram of system a,
which can be any lti object with a single input (size(a,2) must be 1),
continuous-time or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, bodephase gives the phase and the fre-

quency as column vectors. No display is produced.

See also
lti::bodemag, lti::nichols, lti::nyquist, plotset, bodephase

lti::impulse

Impulse response.

Syntax
use lti
impulse(a)
impulse(a, style, id)
(y, t) = impulse(a)

Description
impulse(a) plots the impulse response of system a, which can be any
lti object with a single input (size(a,2) must be 1), continuous-time
or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, impulse gives the output and the time as

column vectors. No display is produced.

Example
Impulse response of the first order transfer function 1/(s/2 + 1):

G = tf(1, [1/2, 1]);
impulse(G);

See also
lti::step, lti::lsim, ss::initial, plotset, impulse

Libraries — lti (graphics) 797

ss::initial

Time response with initial conditions.

Syntax
use lti
initial(a, x0)
initial(a, x0, style, id)
(y, t) = initial(a, x0)

Description
initial(a,x0) plots the time response of state-space system a with
initial state x0 and null input. System a can be continuous-time or
discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, initial gives the output and the time as

column vectors. No display is produced.

Example
Response of a continuous-time system whose initial state is [5;3]:

a = ss([-0.3,0.1;-0.8,-0.4], [2;3], [1,3;2,1], [2;1]);
initial(a, [5;3])

See also
lti::impulse, lti::step, lti::lsim, plotset, initial

lti::lsim

Time response.

Syntax
use lti
lsim(a, u, t)
lsim(a, u, t, style, id)
(y, t) = lsim(a, u, t)

Description
lsim(a,u,t) plots the time response of system a. For continuous-
time systems, the input is piece-wise linear; it is defined by points in
real vectors t and u, which must have the same length. Input before
t(1) and after t(end) is 0. For discrete-time systems, u is sampled at
the rate given by the system, and t is ignored or can be omitted.

The optional arguments style and id have their usual meaning.
With output arguments, lsim gives the output and the time as col-

umn vectors. No display is produced.

798 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
Response of continuous-time system given by its transfer function with
an input defined by linear segments, displayed as a solid blue line:

G = tf(1, [1, 2, 3, 4]);
t = [0, 10, 20, 30, 50];
u = [1, 1, 0, 1, 1];
lsim(G, u, t, Color = ’blue’);

See also
lti::impulse, lti::step, ss::initial, plotset, lsim

lti::nichols

Nichols plot.

Syntax
use lti
nichols(a, ...)
(mag, phase, w) = nichols(a, ...)

Description
nichols(a) plots the Nichols diagram of system a, which can be any
lti object with a single input (size(a,2) must be 1), continuous-time
or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, nichols gives the magnitude, the phase

and the corresponding frequency as column vectors. No display is
produced.

See also
lti::nyquist, lti::bodemag, lti::bodephase, plotset, nichols

lti::nyquist

Nyquist plot.

Syntax
use lti
nyquist(a, ...)
(re, im, w) = nyquist(a, ...)

Libraries — lti (graphics) 799

Description
nyquist(a) plots the Nyquist diagram of system a, which can be any
lti object with a single input (size(a,2) must be 1), continuous-time
or discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, nyquist gives the real part, the imaginary

part and the corresponding frequency as column vectors. No display
is produced.

See also
lti::nichols, lti::bodemag, lti::bodephase, plotset, nyquist

lti::pzmap

Pole/zero map.

Syntax
use lti
pzmap(a)
pzmap(a, style)

Description
pzmap(a) plots the poles and the zeros of system a in the complex
plane. Poles are represented with crosses and zeros with circles. The
system must be SISO (single-input, single-output).

With a second input argument, pzmap(a,style) uses the specified
style for the poles and zeros. Typically, style is a structure array of
two elements: the first element contains style options for the poles,
and the second element, for the zeros. An empty structure (0 element)
stands for the default style, and a simple structure uses the same style
for the poles and the zeros.

Examples
Pole/zero map of a transfer function:

use lti
G = tf([2, 3, 4], [1, 2, 3, 4]);
pzmap(G);

Pole/zero map with the same scale along x and y axes, a grid showing
relative damping and natural frequencies, and explicit style:

800 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

use lti
G = tf([2, 3, 4], [1, 2, 3, 4]);
scale equal;
sgrid;
plotoption fullgrid;
style = {
Marker=’x’, MarkerEdgeColor=’red’;
Marker=’o’, MarkerEdgeColor=’navy’, MarkerFaceColor=’yellow’

}
pzmap(G, style);

See also
lti::rlocus, plotset, plotroots

lti::rlocus

Root locus.

Syntax
use lti
rlocus(a)
rlocus(a, style, id)

Description
rlocus(a) plots the root locus of system a, i.e. the locus of the poles
of the system obtained by adding a feedback loop with a positive real
gain. Only the root locus itself is displayed, as a solid line by default.
Open-loop poles and zeros (the extremities of the root locus), which
are typically displayed with special markers, can be added with pzmap.

The optional arguments style and id have their usual meaning.

Example
Root locus of a transfer function with open-loop poles and zeros dis-
played with pzmap. The scale is the same along x and y axes thanks
to a call to scale, and a grid shows relative damping and natural fre-
quencies.

use lti
G = tf([2, 3, 1], [1, 2, 3, 4]);
scale equal;
sgrid;
plotoption fullgrid;
rlocus(G);
pzmap(G);

Libraries — sigenc 801

See also
lti::pzmap, plotset, rlocus

lti::step

Step response.

Syntax
use lti
step(a)
step(a, style, id)
(y, t) = step(a)

Description
step(a) plots the step response of system a, which can be any lti
object with a single input (size(a,2) must be 1), continuous-time or
discrete-time.

The optional arguments style and id have their usual meaning.
With output arguments, step gives the output and the time as col-

umn vectors. No display is produced.

See also
lti::impulse, lti::lsim, ss::initial, plotset, step

11.10 sigenc

sigenc is a library which adds to LME functions for encoding and de-
coding scalar signals. It implements quantization, DPCM (differential
pulse code modulation), and companders used in telephony.

The following statement makes available functions defined in
sigenc:

use sigenc

Functions

alawcompress

A-law compressor.

802 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
use sigenc
output = alawcompress(input)
output = alawcompress(input, a)

Description
alawcompress(input,a) compresses signal input with A-law method
using parameter a. The signal is assumed to be in [-1,1]; values out-
side this range are clipped. input can be a real array of any size and
dimension. The default value of a is 87.6.

The compressor and its inverse, the expander, are static, nonlin-
ear filters used to improve the signal-noise ratio of quantized signals.
The compressor should be used before quantization (or on a signal
represented with a higher precision).

See also
alawexpand, ulawcompress

alawexpand

A-law expander.

Syntax
use sigenc
output = alawexpand(input)
output = alawexpand(input, a)

Description
alawexpand(input,a) expands signal input with A-law method using
parameter a. input can be a real array of any size and dimension.
The default value of a is 87.6.

See also
alawcompress, ulawexpand

dpcmdeco

Differential pulse code modulation decoding.

Syntax
use sigenc
output = dpcmdeco(i, codebook, predictor)

Libraries — sigenc 803

Description
dpcmdeco(i,codebook,predictor) reconstructs a signal encoded
with differential pulse code modulation. It performs the opposite of
dpcmenco.

See also
dpcmenco, dpcmopt

dpcmenco

Differential pulse code modulation encoding.

Syntax
use sigenc
i = dpcmenco(input, codebook, partition, predictor)

Description
dpcmenco(input,codebook,partition,predictor) quantizes the
signal in vector input with differential pulse code modulation. It
predicts the future response with the finite-impulse response filter
given by polynomial predictor, and it quantizes the residual error
with codebook and partition like quantiz. The output i is an array
of codes with the same size and dimension as input.

The prediction y∗(k) for sample k s

y∗(k) =
degpredictor

∑

=1

predictor · yq(k − )

where yq(k) is the quantized (reconstructed) signal. The predictor
must be strictly causal: predictor(0) must be zero. To encode the
difference between in(k) and yq(k-1), predictor=[0,1]. Note that
there is no drift between the reconstructed signal and the input 1,
contrary to the case where the input is differentiated, quantized, and
integrated.

Example
use sigenc
t = 0:0.1:10;
x = sin(t);
codebook = -.1:.01:.1;
partition = -.0:.01:.09;
predictor = [0, 1];
i = dpcmenco(x, codebook, partition, predictor);
y = dpcmdeco(i, codebook, predictor);

1Actually, there may be a drift if the arithmetic units used for encoding and decoding
do not produce exactly the same results.

804 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also

quantiz, dpcmdeco, dpcmopt

dpcmopt

Differential pulse code modulation decoding.

Syntax
use sigenc
(predictor, codebook, partition) = dpcmopt(in, order, n)
(predictor, codebook, partition) = dpcmopt(in, order, codebook0)
(predictor, codebook, partition) = dpcmopt(in, predictor, ...)
(predictor, codebook, partition) = dpcmopt(..., tol)
predictor = dpcmopt(in, order)

Description

dpcmopt(in,order,n) gives the optimal predictor of order order,
codebook of size n and partition to encode the signal in vector in
with differential pulse code modulation. The result can be used with
dpcmenco to encode signals with similar properties. If the second
input argument is a vector, it is used as the predictor and not
optimized further; its first element must be zero. If the third input
argument is a vector, it is used as an initial guess for the codebook,
which has the same length. An optional fourth input argument
provides the tolerance (the default is 1e-7).

If only the predictor is required, only the input and the predictor
order must be supplied as input arguments.

See also

dpcmenco, dpcmdeco, lloyds

lloyds

Optimal quantization.

Syntax
use sigenc
(partition, codebook) = lloyds(input, n)
(partition, codebook) = lloyds(input, codebook0)
(partition, codebook) = lloyds(..., tol)

Libraries — sigenc 805

Description
lloyds(input,n) computes the optimal partition and codebook for
quantizing signal input with n codes, using the Lloyds algorithm.

If the second input argument is a vector,
lloyds(input,codebook0) uses codebook0 as an initial guess for
the codebook. The result has the same length.

A third argument can be used to specify the tolerance used as the
stopping criterion of the optimization loop. The default is 1e-7.

Example
We start from a suboptimal partition and compute the distortion:

use sigenc
partition = [-1, 0, 1];
codebook = [-2, -0.5, 0.5, 2];
in = -5:0.6:3;
(i, out, dist) = quantiz(in, partition, codebook);
dist
2.1421

The partition is optimized with lloyds, and the same signal is quan-
tized again. The distortion is reduced.

(partition_opt, codebook_opt) = lloyds(in, codebook)
partition_opt =

-2.9 -0.5 1.3
codebook_opt =
-4.1 -1.7 0.4 2.2

(i, out, dist) = quantiz(in, partition_opt, codebook_opt);
dist
1.0543

See also
quantiz, dpcmopt

quantiz

Table-based signal quantization.

Syntax
use sigenc
i = quantiz(input, partition)
(i, output, distortion) = quantiz(input, partition, codebook)

806 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

quantiz(input,partition) quantizes signal input using partition
as boundaries between different ranges. Range from −∞ to
partition(1) corresponds to code 0, range from partition(1) to
partition(2) corresponds to code 1, and so on. input may be a real
array of any size and dimension; partition must be a sorted vector.
The output i is an array of codes with the same size and dimension
as input.

quantiz(input,partition,codebook) uses codebook as a look-
up table to convert back from codes to signal. It should be a vector
with one more element than partition. With a second output argu-
ment, quantiz gives codebook(i).

With a third output argument, quantiz computes the distortion be-
tween input and codebook(i), i.e. the mean of the squared error.

Example
use sigenc
partition = [-1, 0, 1];
codebook = [-2, -0.5, 0.5, 2];
in = randn(1, 5)
in =
0.1799 -9.7676e-2 -1.1431 -0.4986 1.0445

(i, out, dist) = quantiz(in, partition, codebook)
i =
2 1 0 1 2

out =
0.5 -0.5 -2 -0.5 0.5

dist =
0.259

See also

lloyds, dpcmenco

ulawcompress

mu-law compressor.

Syntax
use sigenc
output = ulawcompress(input)
output = ulawcompress(input, mu)

Libraries — wav 807

Description
ulawcompress(input,mu) compresses signal input with mu-law
method using parameter mu. input can be a real array of any size
and dimension. The default value of mu is 255.

The compressor and its inverse, the expander, are static, nonlin-
ear filters used to improve the signal-noise ratio of quantized signals.
The compressor should be used before quantization (or on a signal
represented with a higher precision).

See also
ulawexpand, alawcompress

ulawexpand

mu-law expander.

Syntax
use sigenc
output = ulawexpand(input)
output = ulawexpand(input, mu)

Description
ulawexpand(input,mu) expands signal input with mu-law method
using parameter a. input can be a real array of any size and dimen-
sion. The default value of mu is 255.

See also
ulawcompress, alawexpand

11.11 wav

wav is a library which adds to LME functions for encoding and decoding
WAV files. WAV files contain digital sound. The wav library supports un-
compressed, 8-bit and 16-bit, monophonic and polyphonic WAV files.
It can also encode and decode WAV data in memory without files.

The following statement makes available functions defined in wav:

use wav

Functions

wavread

WAV decoding.

808 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
use wav
(samples, samplerate, nbits) = wavread(filename)
(samples, samplerate, nbits) = wavread(filename, n)
(samples, samplerate, nbits) = wavread(filename, [n1,n2])
(samples, samplerate, nbits) = wavread(data, ...)

Description
wavread(filename) reads the WAV file filename. The result is a 2-d
array, where each row corresponds to a sample and each column to a
channel. Its class is the same as the native type of the WAV file, i.e.
int8 or int16.

wavread(filename,n), where n is a scalar integer, reads the first n
samples of the file. wavread(filename,[n1,n2]), where the second
input argument is a vector of two integers, reads samples from n1 to
n2 (the first sample corresponds to 1).

Instead of a file name string, the first input argument can be a
vector of bytes, of class int8 or uint8, which represents directly the
contents of the WAV file.

In addition to the samples, wavread can return the sample rate in
Hz (such as 8000 for phone-quality speech or 44100 for CD-quality
music), and the number of bits per sample and channel.

See also
wavwrite

wavwrite

WAV encoding.

Syntax
use wav
wavwrite(samples, samplerate, nbits, filename)
data = wavwrite(samples, samplerate, nbits)
data = wavwrite(samples, samplerate)

Description
wavwrite(samples,samplerate,nbits,filename) writes a WAV file
filename with samples in array samples, sample rate samplerate (in
Hz), and nbits bits per sample and channel. Rows of samples corre-
sponds to samples and columns to channels. nbits can be 8 or 16.

With 2 or 3 input arguments, wavwrite returns the contents of the
WAV file as a vector of class uint8. The default word size is 16 bits
per sample and channel.

Libraries — date 809

Example
use wav
sr = 44100;
t = (0:sr)’ / sr;
s = sin(2 * pi * 740 * t);
wavwrite(map2int(s, -1, 1, ’int16’), sr, 16, ’beep.wav’);

See also
wavread

11.12 date

date is a library which adds to LME functions to convert date and time
between numbers and strings.

The following statement makes available functions defined in date:

use date

Functions

datestr

Date to string conversion.

Syntax
use date
str = datestr(datetime)
str = datestr(date, format)

Description
datestr(datetime) converts the date and time to a string. The input
argument can be a vector of 3 to 6 elements for the year, month, day,
hour, minute, and second; a julian date as a scalar number; or a string,
which is converted by datevec. The result has the following format:

jj-mmm-yyyy HH:MM:SS

where jj is the two-digit day, mmm the beginning of the month name,
yyyy the four-digit year, HH the two-digit hour, MM the two-digit minute,
and SS the two-digit second.

The format can be specified with a second input argument. When
datestr scans the format string, it replaces the following sequences
of characters and keeps the other ones unchanged:

810 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Sequence Replaced with
dd day (2 digits)
ddd day of week (3 char)
HH hour (2 digits, 01-12 or 00-23)
MM minute (2 digits)
mm month (2 digits)
mmm month (3 char)
PM AM or PM
QQ quarter (Q1 to Q4)
SS second (2 digits)
sss fraction of second (1-12 digits)
yy year (2 digits)
yyyy year (4 digits)

If the sequence PM is found, the hour is between 1 and 12; other-
wise, between 0 and 23. Second fraction has as many digits as there
are ’s’ characters in the format string.

Examples
use date
datestr(clock)
18-Apr-2005 16:21:55

datestr(clock, ’ddd mm/dd/yyyy HH:MM PM’)
Mon 04/18/2005 04:23 PM

datestr(clock, ’yyyy-mm-ddTHH:MM:SS,sss’)
2008-08-23T02:41:37,515

See also
datevec, julian2cal, clock

datevec

String to date and time conversion.

Syntax
use date
datetime = datevec(str)

Description
datevec(str) converts the string str representing the date and/or
the time to a row vector of 6 elements for the year, month, day, hour,
minute, and second. The following formats are recognized:

Libraries — date 811

Example Value
20050418T162603 ISO 8601 date and time
2005-04-18 year, month and day
2005-Apr-18 year, month and day
18-Apr-2005 day, month and year
04/18/2005 month, day and year
04/18/00 month, day and year
18.04.2005 day, month and year
18.04.05 day, month and year
16:26:03 hour, minute and second
16:26 hour and minute
PM afternoon

Unrecognized characters are ignored. If the year is given as two
digits, it is assumed to be between 1951 and 2050.

Examples
use date
datevec(’Date and time: 20050418T162603’)
2005 4 18 16 26 3

datevec(’03:57 PM’)
0 0 0 15 57 0

datevec(’01-Aug-1291’)
1291 8 1 0 0 0

datevec(’At 16:30 on 11/04/07’)
2007 11 4 16 30 0

See also
datestr

weekday

Week day of a given date.

Syntax
use date
(num, str) = weekday(year, month, day)
(num, str) = weekday(datetime)
(num, str) = weekday(jd)

Description
weekday finds the week day of the date given as input. The date can
be given with three input arguments for the year, the month and the
day, or with one input argument for the date or date and time vector,
or julian date.

812 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

The first output argument is the number of the day, from 1 for
Sunday to 7 for Saturday; and the second output argument is its name
as a string of 3 characters, such as ’Mon’ for Monday.

Example

Day of week of today:

use date
(num, str) = weekday(clock)
num =
2

str =
Mon

See also

cal2julian

11.13 constants

constants is a library which defines physical constants in SI units (me-
ter, kilogram, second, ampere, kelvin, candela, mole).

The following statement makes available constants defined in
constants:

use constants;

The following constants are defined:

Libraries — colormaps 813

Name Value Unit
avogadro_number 6.0221367e23 1/mole
boltzmann_constant 1.380658e-23 J/K
earth_mass 5.97370e24 kg
earth_radius 6.378140e6 m
electron_charge 1.60217733e-19 C
electron_mass 9.1093897e-31 kg
faraday_constant 9.6485309e4 C/mole
gravitational_constant 6.672659e-11 N m 2̂/kĝ 2
gravity_acceleration 9.80655 m/ŝ 2
hubble_constant 3.2e-18 1/s
ice_point 273.15 K
induction_constant 1.256e-6 V s/A m
molar_gaz_constant 8.314510 J/K mole
molar_volume 22.41410e-3 m 3̂/mole
muon_mass 1.8835327e-28 kg
neutron_mass 1.6749286e-27 kg
plank_constant 6.6260755e-34 J s
plank_constant_reduced 1.0545727e-34 J s
plank_mass 2.17671e-8 kg
proton_mass 1.6726231e-27 kg
solar_radius 6.9599e8 m
speed_of_light 299792458 m/s
speed_of_sound 340.29205 m/s
stefan_boltzmann_constant 5.67051e-8 W/m 2̂ K̂ -4
vacuum_permittivity 8.854187817e-12 A s/V m

11.14 colormaps

colormaps is a library containing functions related to color maps.
Color maps are tables of colors which can be used with the colormap
function; they are used by functions such as image and surf to map
values to colors.

All functions accept at least the number of colors n as input ar-
gument, and produce an n-by-3 real double array which can be used
directly as the argument of colormap. The default value of n is 256.

colormaps defines the following functions:

814 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Function Description
black2orangecm color shades from black to orange
black2red2whitecm color shades from black to red and white
blue2greencm color shades from blue to green
blue2yellow2redcm color shades from blue to yellow and red
cyan2magentacm color shades from cyan to magenta
graycm gray shades from black to white
green2yellowcm color shades from green to yellow
huecm color shades from red to red through green and blue
interprgbcm colormap created with linear interpolation
magenta2yellowcm color shades from magenta to yellow
red2yellowcm color shades from red to yellow
sepiacm sepia shades
whitecm plain white

The following statement makes available functions defined in
colormaps:

use colormaps

Functions are typically used directly as the argument of colormap:

colormap(blue2yellow2red);

Functions

black2orangecm

Colormap with shades from black to orange.

Syntax
use colormaps
cm = black2orangecm
cm = black2orangecm(n)

Description
black2orangecm(n) creates a color map with n entries corresponding
to color shades from black to orange. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2red2whitecm, blue2greencm, blue2yellow2redcm,
cyan2magentacm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

Libraries — colormaps 815

black2red2whitecm

Colormap with shades from black to red and white.

Syntax
use colormaps
cm = black2red2whitecm
cm = black2red2whitecm(n)

Description
black2red2whitecm(n) creates a color map with n entries
corresponding to color shades from black to red and white. The color
map is an n-by-3 array with one color per row; columns correspond to
red, green, and blue components as real numbers between 0 to 1
(maximum intensity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, blue2greencm, blue2yellow2redcm,
cyan2magentacm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

blue2greencm

Colormap with shades from blue to green.

Syntax
use colormaps
cm = blue2greencm
cm = blue2greencm(n)

Description
blue2greencm(n) creates a color map with n entries corresponding
to color shades from blue to green. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm,
whitecm

816 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

blue2yellow2redcm

Colormap with shades from blue to yellow and red.

Syntax
use colormaps
cm = blue2yellow2redcm
cm = blue2yellow2redcm(n)

Description
blue2yellow2redcm(n) creates a color map with n entries
corresponding to color shades from blue to yellow and red. The color
map is an n-by-3 array with one color per row; columns correspond to
red, green, and blue components as real numbers between 0 to 1
(maximum intensity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
cyan2magentacm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

cyan2magentacm

Colormap with shades from cyan to magenta.

Syntax
use colormaps
cm = cyan2magentacm
cm = cyan2magentacm(n)

Description
cyan2magentacm(n) creates a color map with n entries corresponding
to color shades from cyan to magenta. The color map is an n-by-3
array with one color per row; columns correspond to red, green, and
blue components as real numbers between 0 to 1 (maximum inten-
sity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, graycm, green2yellowcm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

Libraries — colormaps 817

graycm

Colormap with shades of gray.

Syntax
use colormaps
cm = graycm
cm = graycm(n)

Description
graycm(n) creates a color map with n entries corresponding to gray
shades from black to white. The color map is an n-by-3 array with one
color per row; columns correspond to red, green, and blue components
as real numbers between 0 to 1 (maximum intensity). The default
value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, green2yellowcm, huecm,
interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm, whitecm

green2yellowcm

Colormap with shades from green to yellow.

Syntax
use colormaps
cm = green2yellowcm
cm = green2yellowcm(n)

Description
green2yellowcm(n) creates a color map with n entries corresponding
to color shades from green to yellow. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, huecm, interprgbcm,
magenta2yellowcm, red2yellowcm, sepiacm, whitecm

818 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

huecm

Colormap with hue from red to red through green and blue.

Syntax
use colormaps
cm = huecm
cm = huecm(n)

Description
huecm(n) creates a color map with n entries corresponding to color
shades with hue varying linearly from red back to red through green
and blue. In HSV (hue-saturation-value) space, saturation and value
are 1 (maximum). The color map is an n-by-3 array with one color per
row; columns correspond to red, green, and blue components as real
numbers between 0 to 1 (maximum intensity). The default value of n
is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm, whitecm

interprgbcm

Colormap with entries obtained by linear interpolation.

Syntax
use colormaps
cm = interprgbcm(i, r, g, b)
cm = interprgbcm(i, r, g, b, n)

Description
interprgbcm(i,r,b,g,n) creates a color map with n entries. Color
shades are interpolated between colors defined in RGB color space by
corresponding elements of r, g and b, defined for input in i. These
four arguments must be vectors of the same length larger or equal to
2 with elements between 0 and 1. Argument i must have monotonous
entries with i(1)=0 and i(end)=1. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

Libraries — colormaps 819

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, magenta2yellowcm, red2yellowcm, sepiacm, whitecm

magenta2yellowcm

Colormap with shades from magenta to yellow.

Syntax
use colormaps
cm = magenta2yellowcm
cm = magenta2yellowcm(n)

Description
magenta2yellowcm(n) creates a color map with n entries correspond-
ing to color shades from magenta to yellow. The color map is an n-by-3
array with one color per row; columns correspond to red, green, and
blue components as real numbers between 0 to 1 (maximum inten-
sity). The default value of n is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, red2yellowcm, sepiacm, whitecm

red2yellowcm

Colormap with shades from red to yellow.

Syntax
use colormaps
cm = red2yellowcm
cm = red2yellowcm(n)

Description
red2yellowcm(n) creates a color map with n entries corresponding
to color shades from red to yellow. The color map is an n-by-3 array
with one color per row; columns correspond to red, green, and blue
components as real numbers between 0 to 1 (maximum intensity).
The default value of n is 256.

The color map is suitable as the input argument of colormap.

820 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, sepiacm, whitecm

sepiacm

Colormap with shades of sepia.

Syntax
use colormaps
cm = sepiacm
cm = sepiacm(n)

Description
sepiacm(n) creates a color map with n entries corresponding to
shades of sepia. The color map is an n-by-3 array with one color per
row; columns correspond to red, green, and blue components as real
numbers between 0 to 1 (maximum intensity). The default value of n
is 256.

The color map is suitable as the input argument of colormap.

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, red2yellowcm, whitecm

whitecm

Colormap with plain white.

Syntax
use colormaps
cm = whitecm
cm = whitecm(n)

Description
whitecm(n) creates a color map with n identical entries corresponding
to plain white. The color map is an n-by-3 array with one color per
row; columns correspond to red, green, and blue components as real
numbers between 0 to 1 (maximum intensity). The default value of n
is 256.

The color map is suitable as the input argument of colormap.

Libraries — polyhedra 821

See also
colormap, black2orangecm, black2red2whitecm, blue2greencm,
blue2yellow2redcm, cyan2magentacm, graycm, green2yellowcm,
huecm, interprgbcm, magenta2yellowcm, red2yellowcm, sepiacm

11.15 polyhedra

Library polyhedra implements functions which create solid shapes
with polygonal facesin 3D. Solids are displayed with plotpoly. They
are defined by the coordinates of their vertices and by the list of vertex
indices for each face. Other solids, such as cylinder and sphere, are
generated with parametric equations and displayed with surf. Some
solids have parameters, e.g. for the number of discrete values used
for parameters. When called without output argument, with an op-
tional trailing string argument for the edge style, the solid is displayed
with the current scaling and color map. With output arguments, ar-
rays X, Y, Z expected by surf, mesh and plotpoly, and index array
expected by plotpoly, are produced. They can be modified to move,
scale or stretch the solids.

The following statement makes available functions defined in
polyhedra:

use polyhedra

Functions

cube

Create a cube.

Syntax
use polyhedra
cube;
cube(style);
(X, Y, Z, ind) = cube

Description
Without output argument, cube displays a cube, i.e. a convex solid
whose six faces are squares. By default, edges are not drawn. An
optional string input argument specifies the edge style.

With four output arguments, cube produces the X, Y, Z and ind
arrays expected by plotpoly, and it does not display anything.

822 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
tetrahedron, octahedron, dodecahedron, icosahedron, plotpoly

dodecahedron

Create a regular dodecahedron.

Syntax
use polyhedra
dodecahedron;
dodecahedron(style);
(X, Y, Z, ind) = dodecahedron

Description
Without output argument, dodecahedron displays a regular convex
dodecahedron, i.e. a convex solid whose twelve faces are regular pen-
tagons. By default, edges are not drawn. An optional string input
argument specifies the edge style.

With four output arguments, dodecahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

See also
tetrahedron, cube, octahedron, icosahedron, greatdodecahedron,
greatstellateddodecahedron, smallstellateddodecahedron,
plotpoly

greatdodecahedron

Create a great dodecahedron.

Syntax
use polyhedra
greatdodecahedron;
greatdodecahedron(style);
(X, Y, Z, ind) = greatdodecahedron

Description
Without output argument, greatdodecahedron displays a great do-
decahedron, i.e. a regular nonconvex solid whose twelve faces are
regular pentagons. By default, edges are not drawn. An optional string
input argument specifies the edge style.

With four output arguments, greatdodecahedron produces the X,
Y, Z and ind arrays expected by plotpoly, and it does not display
anything.

Libraries — polyhedra 823

See also
dodecahedron, greatstellateddodecahedron, greaticosahedron,
plotpoly

greaticosahedron

Create a great dodecahedron.

Syntax
use polyhedra
greaticosahedron;
greaticosahedron(style);
(X, Y, Z, ind) = greaticosahedron

Description
Without output argument, greaticosahedron displays a great icosa-
hedron, i.e. a regular nonconvex solid whose twenty faces are equi-
lateral triangles. By default, edges are not drawn. An optional string
input argument specifies the edge style.

With four output arguments, greaticosahedron produces the X,
Y, Z and ind arrays expected by plotpoly, and it does not display
anything.

See also
icosahedron, greatdodecahedron, plotpoly

greatstellateddodecahedron

Create a great stellated dodecahedron.

Syntax
use polyhedra
greatstellateddodecahedron;
greatstellateddodecahedron(style);
(X, Y, Z, ind) = greatstellateddodecahedron

Description
Without output argument, greatstellateddodecahedron displays a
great stellated dodecahedron, i.e. a regular nonconvex solid whose
twelve faces are regular star pentagons and where each vertex is com-
mon to three faces. By default, edges are not drawn. An optional
string input argument specifies the edge style.

With four output arguments, greatstellateddodecahedron pro-
duces the X, Y, Z and ind arrays expected by plotpoly, and it does
not display anything.

824 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
dodecahedron, greatdodecahedron, smallstellateddodecahedron,
plotpoly

icosahedron

Create a regular icosahedron.

Syntax
use polyhedra
icosahedron;
icosahedron(style);
(X, Y, Z, ind) = icosahedron

Description
Without output argument, icosahedron displays a regular convex
icosahedron, i.e. a convex solid whose twenty faces are equilateral
triangles. By default, edges are not drawn. An optional string input
argument specifies the edge style.

With four output arguments, icosahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

See also
tetrahedron, cube, octahedron, dodecahedron, plotpoly

octahedron

Create a regular octahedron.

Syntax
use polyhedra
octahedron;
octahedron(style);
(X, Y, Z, ind) = octahedron

Description
Without output argument, octahedron displays a regular octahedron,
i.e. a convex solid whose eight faces are equilateral triangles. By de-
fault, edges are not drawn. An optional string input argument specifies
the edge style.

With four output arguments, octahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

Libraries — polyhedra 825

See also
tetrahedron, cube, dodecahedron, icosahedron, plotpoly

smallstellateddodecahedron

Create a small stellated dodecahedron.

Syntax
use polyhedra
smallstellateddodecahedron;
smallstellateddodecahedron(style);
(X, Y, Z, ind) = smallstellateddodecahedron

Description
Without output argument, smallstellateddodecahedron displays a
small stellated dodecahedron, i.e. a regular nonconvex solid whose
twelve faces are regular star pentagons and where each vertex is com-
mon to five faces. By default, edges are not drawn. An optional string
input argument specifies the edge style.

With four output arguments, smallstellateddodecahedron pro-
duces the X, Y, Z and ind arrays expected by plotpoly, and it does
not display anything.

See also
dodecahedron, greatdodecahedron, greatstellateddodecahedron,
plotpoly

tetrahedron

Create a regular tetrahedron.

Syntax
use polyhedra
tetrahedron;
tetrahedron(style);
(X, Y, Z, ind) = tetrahedron

Description
Without output argument, tetrahedron displays a regular tetrahe-
dron, i.e. a solid whose four faces are equilateral triangles. By default,
edges are not drawn. An optional string input argument specifies the
edge style.

With four output arguments, tetrahedron produces the X, Y, Z and
ind arrays expected by plotpoly, and it does not display anything.

826 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
cube, octahedron, dodecahedron, icosahedron, plotpoly

11.16 solids

Library solids implements functions which create solid shapes in 3D.
Solids are generated with parametric equations and displayed with
surf. When called without output argument, with an optional trail-
ing string argument for the edge style, the solid is displayed with the
current scaling and color map. With output arguments, arrays X, Y,
Z expected by surf or mesh are produced. They can be modified to
move, scale or stretch the solids.

The following statement makes available functions defined in
solids:

use solids

Functions

cone

Cone.

Syntax
use solids
cone
cone(cap)
cone(cap, n)
cone(cap, n, style)
(X, Y, Z) = cone
(X, Y, Z) = cone(n)

Description
Without output argument, cone draws a cone approximated by a poly-
hedron. The optional first input argument, a logical value which is true
by default, specifies if the cap is included. The optional second input
argument, an integer, specifies the number of discrete values for the
parameter which describes its surface.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, cone produces the X, Y, and Z arrays
expected by surf or mesh, and it does not display anything.

Libraries — solids 827

See also
cylinder, sphere, cube, surf

crosscap

Cross-cap.

Syntax
use solids
crosscap
crosscap(n)
crosscap(n, style)
(X, Y, Z) = crosscap
(X, Y, Z) = crosscap(n)

Description
Without output argument, crosscap draws a cross-cap (a
self-intersecting surface) approximated by a polyhedron. With an
input argument, crosscap(n) draws a cross-cap where the two
parameters which describe its surface are sampled with n discrete
values.

By default, edges are not drawn. An optional second input argu-
ment, a string, specifies the edge style; it corresponds to the style
argument of surf.

With three output arguments, crosscap produces the X, Y, and Z
arrays expected by surf or mesh, and it does not display anything.

See also
klein, klein8, sphere, sphericon, surf

cylinder

Cylinder.

Syntax
use solids
cylinder
cylinder(cap)
cylinder(cap, n)
cylinder(cap, n, style)
(X, Y, Z) = cylinder
(X, Y, Z) = cylinder(n)

828 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
Without output argument, cylinder draws a cylinder approximated
by a polyhedron. The optional first input argument, a logical value
which is true by default, specifies if caps are included. The optional
second input argument, an integer, specifies the number of discrete
values for the parameter which describes its surface.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, cylinder produces the X, Y, and Z
arrays expected by surf or mesh, and it does not display anything.

See also
cone, sphere, torus, cube, surf

klein

Klein bottle.

Syntax
use solids
klein
klein(p)
klein(p, n)
klein(p, n, style)
(X, Y, Z) = ...

Description
Without output argument, klein draws a Klein bottle approximated
by a polyhedron. With an input argument, klein(p) uses parameters
stored in structure p. The following fields are used:

Field Description Default value
r0 average tube radius 0.7
d tube variation 0.5
h half height 3

With two input arguments, klein(p,n) draws a Klein bottle where
the two parameters which describe its surface are sampled with n dis-
crete values.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, klein produces the X, Y, and Z arrays
expected by surf or mesh, and it does not display anything.

Libraries — solids 829

See also
klein8, crosscap, surf

klein8

Figure 8 Klein bottle immersion.

Syntax
use solids
klein8
klein8(r)
klein8(r, n)
klein8(r, n, style)
(X, Y, Z) = ...

Description
Without output argument, klein8 draws a figure 8 Klein bottle immer-
sion (a closed, self-intersecting surface with one face) approximated
by a polyhedron. With an input argument, klein8(r) draws the sur-
face with a main radius of r (the default value is 1).

With two input arguments, klein8(r,n) samples the two parame-
ters which describe its surface with n discrete values.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, klein8 produces the X, Y, and Z ar-
rays expected by surf or mesh, and it does not display anything.

See also
klein, crosscap, surf

sphere

Sphere.

Syntax
use solids
sphere
sphere(n)
sphere(n, style)
(X, Y, Z) = sphere
(X, Y, Z) = sphere(n)

830 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
Without output argument, sphere draws a sphere approximated by
a polyhedron. With an input argument, sphere(n) draws a sphere
where the two parameters which describe its surface are sampled with
n discrete values.

By default, edges are not drawn. An optional second input argu-
ment, a string, specifies the edge style; it corresponds to the style
argument of surf.

With three output arguments, sphere produces the X, Y, and Z ar-
rays expected by surf or mesh, and it does not display anything.

See also
cylinder, cone, torus, cube, surf

sphericon

Sphericon.

Syntax
use solids
sphericon
sphericon(n)
sphericon(n, style)
(X, Y, Z) = sphericon
(X, Y, Z) = sphericon(n)

Description
Without output argument, sphericon draws a sphericon (a 3D shape
made from a bicone with a 90-degree apex, cut by a plane containing
both apices, where one half is rotated by 90 degrees) approximated by
a polyhedron. With an input argument, sphericon(n) draws a spheri-
con where the two parameters which describe its surface are sampled
with n discrete values.

By default, edges are not drawn. An optional second input argu-
ment, a string, specifies the edge style; it corresponds to the style
argument of surf.

With three output arguments, sphericon produces the X, Y, and Z
arrays expected by surf or mesh, and it does not display anything.

See also
sphere, crosscap, surf

Libraries — bench 831

torus

Torus.

Syntax
use solids
torus
torus(r)
torus(r, n)
torus(r, n, style)
(X, Y, Z) = ...

Description
Without output argument, torus draws a torus approximated by a
polyhedron with a main radius of 1 and a tube radius of 0.5. With
an input argument, torus(r) draws a torus with tube radius r. With
two input arguments, torus(r,n) draws a torus where the two param-
eters which describe its surface are sampled with n discrete values.

By default, edges are not drawn. An optional third input argument,
a string, specifies the edge style; it corresponds to the style argument
of surf.

With three output arguments, torus produces the X, Y, and Z arrays
expected by surf or mesh, and it does not display anything.

See also
sphere, cylinder, surf

11.17 bench

Library bench implements functions to evaluate the performance of
the LME implementation on the platform it is running on. It measures
the amount of time required to execute different kinds of operations
and gives numbers which can be seen as the equivalent frequency of
the reference computer.

We intend to keep bench the same as long as it makes sense to
make possible the comparison of successive generations of hardware.

The following statement makes available functions defined in
bench:

use bench

The library if written in such a way that it is compatible with a Mat-
lab M-file: the first function defined is the main entry point (all other
functions are subfunctions which should not be called directly); and

832 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

features specific to LME, such as C- or C++-style comments, paren-
thesis for output arguments, and keywords public and private are
avoided.

Function

bench

Run benchmark function.

Syntax
use bench
bench
bench(totaltime)
bench(totaltime, n)
(freq, names) = bench
(freq, names) = bench(totaltime)

Description
bench runs the benchmark, spending about 5 seconds for each
phase. It displays the result of each phase and the average value, as
the equivalent frequency of the reference platform in MHz, an Apple
PowerBook G4 17" 1.33 GHz running under Mac OS 10.3.5 (therefore
running bench gives about 1330). Finally, it displays in a table the
comparison with a few other platforms.

With an input argument, bench(totaltime) computes the number
of iterations of each phase so that the total time is about totaltime
seconds, divided in equal amounts for each phase. If totaltime is
negative, the number of iterations per second is displayed instead
of the equivalent frequency of the reference platform. With two in-
put arguments, bench(totaltime,n) performs the whole benchmark
n times and keeps the best value for each phase. Reference values
are obtained with bench(35,10).

With output arguments, (freq,names)=bench returns in freq a
vector of phase scores and in names a list of phase names.

Example
use bench
bench
Scores (PowerBook G4 at 1.33 GHz = 1330 MHz):

lu: 789.336 MHz
max: 774.279 MHz

fibonacci: 776.552 MHz
uint8: 777.402 MHz

Libraries — parbench 833

strfind: 772.787 MHz
list: 786.320 MHz

funcall: 785.705 MHz
Average: 780.340 MHz

AVERAGE
Dell Dimension 2400 P4 3.06 GHz: 2749.3

Apple PowerBook G4 1.33 GHz: 1330.0
** This computer: 780.3

Apple iBook G3 500 MHz: 497.4
Sun Blade 100 500 MHz: 367.5

Generic PC Pentium Win2K 300 MHz: 350.9
Apple PowerBook 3400 ppc603 200 MHz: 133.7

CerfBoard 255 XScale 400 MHz: 84.4
Kontron X-board<861> SC1200 266 MHz: 76.9
Palm Zire 71 OMAP 144 MHz, emu M68k: 1.2

See also
tic, toc

11.18 parbench

Library parbench implements functions to evaluate the performance
of the LME implementation on the platform it is running on, using
multiple parallel tasks. It measures the amount of time required to
execute different kinds of operations and gives numbers which can
be seen as the equivalent frequency of the reference computer. It is
based on the same operations as bench; the results it produces can
be compared directly to estimate the speedup parallel execution can
provide on similar computations.

The following statement makes available functions defined in
parbench:

use parbench

Function

parbench

Run parallel benchmark function.

Syntax
use parbench
parbench
parbench(totaltime)

834 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

parbench(totaltime, n)
(freq, names) = parbench
(freq, names) = parbench(totaltime)

Description
parbench runs the parallel benchmark, spending about 5 seconds for
each phase. It displays the result of each phase and the average
value, as the equivalent frequency of the reference platform in MHz,
an Apple PowerBook G4 17" 1.33 GHz running the single-thread bench
under Mac OS 10.3.5 (therefore running bench gives about 1330). Fi-
nally, it displays in a table the comparison with a few other platforms.

With an input argument, parbench(totaltime) computes the
number of iterations of each phase so that the total time is about
totaltime seconds, divided in equal amounts for each phase. If
totaltime is negative, the number of iterations per second is
displayed instead of the equivalent frequency of the reference
platform. With two input arguments, parbench(totaltime,n)
performs the whole parallel benchmark n times and keeps the
best value for each phase. Reference values are obtained with
parbench(35,10).

With output arguments, (freq,names)=parbench returns in freq a
vector of phase scores and in names a list of phase names.

Example
use parbench
parbench
Scores (PowerBook G4 at 1.33 GHz = 1330 MHz):

lu: 4788.540 MHz
max: 6418.464 MHz

fibonacci: 1601.957 MHz
uint8: 6233.715 MHz

strfind: 6020.619 MHz
list: 2393.057 MHz

funcall: 7546.563 MHz
Average: 5000.417 MHz

AVERAGE lu max fibo uint strf list func
i7-4790 3.6GHz win10 PAR: 42959 17k 35k 10k 101k 71k 12k 54k

** This computer: 12568 7k 19k 3k 17k 22k 4k 16k
MacBook Pro i7-620M 2.66GHz PAR: 10792 6k 15k 3k 16k 16k 4k 16k

i7-4790 3.6GHz win10: 9619 5k 8k 2k 24k 13k 3k 13k
MacPro Dual-Core Xeon 3 GHz: 5478 3829 7632 5311 5974 6469 3718 5411
MacBook Pro i7-620M 2.66GHz: 5149 3304 7359 1478 8201 6794 1847 7060

Apple Mac Mini Core Duo 1.66 GHz: 2516 2024 3185 2275 2465 3178 1852 2630
Apple PowerMac G5 Dual 2.5 GHz: 2411 2915 2633 2438 2239 2116 1835 2700

Apple PowerBook G4 1.33 GHz: 1330 1330 1330 1330 1330 1330 1330 1330
DEC Workstation 500au Alpha 500 MHz: 402 227 516 359 663 457 230 365
Sun Blade 100 UltraSparcIIe 500 MHz: 367 194 400 488 414 400 326 350

Libraries — parbench 835

See also
bench, tic, toc

Chapter 12

Extensions

Extensions are additional functions, usually developed in C or Fortran,
which extend the core functionality of LME, the programming language
of Sysquake. Extensions are grouped in so-called shared libraries or
dynamically-linked libraries (DLL) files. At startup, Sysquake loads all
extensions it finds in the folder LMEExt in the same location as the
Sysquake program file. Each extension initializes itself and usually
displays a line of information in the Command window. No further
action is needed in order to use the new functions.

You can also develop and add your own extensions, as explained in
the next chapter.

Here is the list of the extensions currently provided with Sysquake.

Mathematics

Lapack (Windows, Mac, Unix) LAPACK-based linear algebra
functions.

Long integers (Windows, Mac, Unix) Arithmetic on arbitrary-
length integer numbers.

File input/output and data compression

Memory mapping (macOS, Unix) Mapping of files in memory,
which can be read and written like regular arrays.

Data compression (Windows, Mac, Unix) Support for com-
pressing and uncompressing data using ZLib.

Image Input/Output (Windows, Mac, Unix) Support for reading
and writing arrays as PNG or JPEG image files.

MAT-file (Windows, Mac, Unix) Support for reading and writing
MAT-files (native MATLAB binary files).

838 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

JSON (Windows, Mac, Unix) JSON encoding and decoding.

Databases

SQLite (Windows, macOS, Unix) SQLite, an embedded rela-
tional database in single files also using SQL as its query language.

Operating system

Socket (Windows, Mac, Unix) TCP/IP communication with
servers or clients on the same computer, on a local network or on
the Internet.

Launch URL (Windows, Mac, Unix) Opening of documents in a
World Wide Web browser.

Download URL (Windows, Mac, Linux) Download of documents
from the World Wide Web.

Open Script Architecture (Mac) Communication with other ap-
plications.

Power Management (Windows, Mac) Functions related to
power management.

System Log (macOS, Unix) Output to system log.

Shell (Windows, macOS, Unix) Shell related functions.

Signal (macOS, Unix) Support for signals (POSIX functions kill
and signal).

Web Services (Windows, macOS, Unix) Web Services (standard
remote procedure calls using XML-RPC and SOAP).

Windows Registry (Windows) Windows registry query.

Hardware support

Serial port (Windows, Mac, Unix) Communication with the se-
rial port.

I2C bus (Linux) Communication with devices on an I2C bus.

Joystick (Windows, macOS, Linux) Support for reading the state
of a joystick or other similar device.

Audio playback (Windows, macOS, Linux) Audio output.

Audio recording (Windows, macOS, Linux) Audio input.

Extensions — Lapack 839

Speech (Windows, Mac) Speech output.

Image Capture (macOS) Support for getting images from digital
cameras.

OpenCL (macOS) Support for executing code on GPU with
OpenCL.

12.1 Lapack

LAPACK is a freely available package which provides high-quality func-
tions for solving linear algebra problems such as linear equations,
least-square problems and eigenvalues. It relies on the BLAS (Basic
Linear Algebra Subprograms) for low-level operations. For more infor-
mation, please refer to the "LAPACK Users’ Guide", 3rd ed., Anderson,
E. et al., Society for Industrial and Applied Mathematics, Philadelphia
(USA), 1999, ISBN 0-89871-447-8. You can download the source code
of LAPACK from http://www.netlib.org.

LAPACK functions are not integrated in LME, but rather provided as
replacements and additions to the LME core functions. While it does
not change the way you use the functions, this approach offers more
flexibility for future improvements and permits to keep LME light for
applications where memory is limited. Currently, depending on the
platform, the LME functions based on LAPACK weight between 700
and 800 kilobytes, more than the core of LME itself; if new functions
are implemented, or if better versions become available, it will be
possible to replace the LAPACK extension without changing LME itself
or the whole application.

Currently, only a subset of LAPACK is available for LME. The func-
tions have been chosen from the set of double-precision subroutines
and usually apply to general real or complex matrices.

Functions

Operator *

Matrix multiplication.

Syntax
x * y
M1 * M2
M * x

840 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
x*y multiplies the operands together. Operands can be scalars (plain
arithmetic product), matrices (matrix product), or mixed scalar and
matrix.

Example
2 * 3
6

[1,2;3,4] * [3;5]
13
29

[3 4] * 2
6 8

BLAS subroutines
dgemm, zgemm

See also
operator /, operator \, operator * (LME)

Operator \
Matrix left division.

Syntax
a \ b
a \ B
A \ B

Description
a\b, where a is a scalar, divides the second operand by the first
operand. If the second operand is a matrix, each element is divided
by a.

In the case where the left operand A is a matrix, A\B solves the set
of linear equations A*x=B. If B is an m-by-n matrix, the n columns are
handled separately and the solution x has also n columns. The solution
x is inv(A)*B if A is square; otherwise, it is a least-square solution.

Example
[1,2;3,4] \ [2;6]
2
0

[1;2] \ [1.1;2.1]

Extensions — Lapack 841

1.06
[1,2] \ 1
0.2
0.4

LAPACK subroutines
dgesv, zgesv (square matrices); dgelss, zgelss (non-square matri-
ces)

See also
operator /, inv, pinv, operator \ (LME)

Operator /

Matrix right division.

Syntax
a / b
A / b
A / B

Description
a/b, where b is a scalar, divides the first operand by the second
operand. If the first operand is a matrix, each element is divided by b.

In the case where the right operand B is a matrix, A/B solves the
set of linear equations A=x*B. If A is an m-by-n matrix, the m rows are
handled separately and the solution x has also m rows. The solution x
is A*inv(B) if B is square; otherwise, it is a least-square solution.

Example
[2,6] / [1,3;2,4]
2 0

[1.1,2.1] / [1,2]
1.06

1 / [1;2]
0.2 0.4

LAPACK subroutines
dgesv, zgesv (square matrices); dgelss, zgelss (non-square matri-
ces)

See also
operator \, inv, pinv, operator / (LME)

842 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

balance

Diagonal similarity transform for balancing a matrix.

Syntax
B = balance(X)
(T, B) = balance(X)

Description
balance(X) applies a diagonal similarity transform to the square ma-
trix X to make the rows and columns as close in norm as possible.
Balancing may reduce the 1-norm of the matrix, and improves the
accuracy of the computed eigenvalues and/or eigenvectors.

balance returns the balanced matrix B which has the same eigen-
values and singular values as X, and optionally the scaling matrix T
such that T\X*T=B.

Example
A = [1,2e6;3e-6,4];
(T,B) = balance(A)
T =
1e6 0
0 1

B =
1 2
3 4

eig(A)-eig(B)
0
0

LAPACK subroutines
dgebal, zgebal

See also
balance (LME)

chol

Cholesky decomposition.

Syntax
C = chol(X)

Extensions — Lapack 843

Description
If a square matrix X is symmetric (or hermitian) and positive definite,
it can be decomposed into the following product:

X = C′C
where C is an upper triangular matrix.
The part of X below the main diagonal is not used, because X is

assumed to be symmetric or hermitian. An error occurs if X is not
positive definite.

Example
C = chol([5,3;3,8])
C =
2.2361 1.3416
0 2.4900

C’*C
5 3
3 8

LAPACK subroutines
dpotrf, zpotrf

See also
sqrtm, chol (LME)

det

Determinant.

Syntax
d = det(X)

Description
det(X) is the determinant of the square matrix M, which is 0 (up to
the rounding errors) if M is singular. The function rank is a numerically
more robust test for singularity.

Examples
det([1,2;3,4])
-2

det([1,2;1,2])
0

844 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

LAPACK subroutines
dgetrf, zgetrf

See also
det (LME)

eig

Eigenvalues and eigenvectors.

Syntax
e = eig(A)
(V,D) = eig(A)
e = eig(A,B)
(V,D) = eig(A,B)

Description
eig(A) returns the vector of eigenvalues of the square matrix A.

(V,D) = eig(A) returns a diagonal matrix D of eigenvalues and a
matrix V whose columns are the corresponding eigenvectors. They are
such that A*V = V*D.

eig(A,B) returns the generalized eigenvalues and eigenvectors of
square matrices A and B, such that A*V = B*V*D.

Example
A = [1,2;3,4]; B = [2,1;3,3];
eig(A)
5.3723
-0.3723

(V,D) = eig(A,B)
V =
-0.5486 -1
-1 0.8229

D =
1.2153 0
0 -0.5486

A*V,B*V*D
ans =
-2.5486 0.6458
-5.6458 0.2915

ans =
-2.5486 0.6458
-5.6458 0.2915

Extensions — Lapack 845

LAPACK subroutines
dgeev, zgeev for eigenvalues and eigenvectors; dgegv, zgegv for gen-
eralized eigenvalues and eigenvectors

See also
eig (LME)

hess

Hessenberg reduction.

Syntax
(P,H) = hess(A)
H = hess(A)

Description
hess(A) reduces the square matrix A A to the upper Hessenberg form
H using an orthogonal similarity transformation P’*H*P=A. The result
H is zero below the first subdiagonal and has the same eigenvalues as
A.

Example
(P,H)=hess([1,2,3;4,5,6;7,8,9])
P =
1 0 0
0 -0.4961 -0.8682
0 -0.8682 0.4961

H =
1 -3.597 -0.2481
-8.0623 14.0462 2.8308
0 0.8308 -4.6154e-2

LAPACK subroutines
dgehrd, zgehrd; dorghr, zunghr for computing P

See also
lu, schur

inv

Matrix inverse.

846 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
R = inv(X)

Description
inv(X) returns the inverse of the square matrix X. X must not be sin-
gular; otherwise, its elements are infinite.

To solve a set of linear of equations, the operator \ is more efficient.

Example
inv([1,2;3,4])
-2 1
1.5 -0.5

LAPACK subroutines
dgesv, zgesv

See also
operator /, operator \, lu, pinv, inv (LME)

logm

Matrix logarithm.

Syntax
L = logm(X)

Description
logm(A) returns the square matrix logarithm of A, the inverse of the
matrix exponential. The matrix logarithm does not always exist.

Example
L = logm([1,2;3,4])
L =
-0.3504+2.3911j 0.9294-1.0938j
1.394-1.6406j 1.0436+0.7505j

expm(L)
1-4.4409e-16j 2-6.1062e-16j
3-9.4369e-16j 4

LAPACK subroutines
zgees

Extensions — Lapack 847

See also
sqrtm, schur, expm (LME)

lu

LU factorization.

Syntax
(L,U,P) = lu(X)
(L2,U) = lu(X)
M = lu(X)

Description
(L,U,P)=lu(X) factorizes the square matrix X such that P*X=L*U,
where L is a lower-triangular square matrix, U is an upper-triangular
square matrix, and P is a permutation square matrix (a real matrix
where each line and each column has a single 1 element and zeros
elsewhere).

(L2,U)=lu(X) factorizes the square matrix X such that X=L2*U,
where L2=P\L.

M=lu(X) yields a square matrix M whose upper triangular part is U
and whose lower triangular part (below the main diagonal) is L without
the diagonal.

Example
X = [1,2,3;4,5,6;7,8,8];
(L,U,P) = lu(X)
L =
1 0 0
0.143 1 0
0.571 0.5 1
U =
7 8 8
0 0.857 1.857
0 0 0.5
P =
0 0 1
1 0 0
0 1 0
P*X-L*U
ans =
0 0 0
0 0 0
0 0 0

848 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

LAPACK subroutines
dgetrf, zgetrf

See also
inv, hess, schur

null

Null space.

Syntax
Z = null(A)

Description
null(A) returns a matrix Z whose columns are an orthonormal basis
for the null space of m-by-n matrix A. Z has n-rank(A) columns, which
are the last right singular values of A (that is, those corresponding to
the negligible singular values).

Without input argument, null gives the null value (the unique
value of the special null type, not related to linear algebra).

Example
null([1,2,3;1,2,4;1,2,5])
-0.8944
0.4472
8.0581e-17

LAPACK subroutines
dgesvd, zgesvd

See also
svd, orth, null (null value)

orth

Orthogonalization.

Syntax
Q = orth(A)

Extensions — Lapack 849

Description
orth(A) returns a matrix Q whose columns are an orthonormal basis
for the range of those of matrix A. Q has rank(A) columns, which are
the first left singular vectors of A (that is, those corresponding to the
largest singular values).

Example
orth([1,2,3;1,2,4;1,2,5])
-0.4609 0.788
-0.5704 8.9369e-2
-0.6798 -0.6092

LAPACK subroutines
dgesvd, zgesvd

See also
svd, null

pinv

Matrix pseudo-inverse.

Syntax
R = pinv(A)
R = pinv(A,tol)

Description
pinv(A) returns the pseudo-inverse of matrix A, i.e. a matrix B such
that B*A*B=B and A*B*A=A. For a full-rank square matrix A, pinv(A) is
the same as inv(A).

pinv is based on the singular value decomposition; all values be-
low the tolerance times the largest singular value are neglected. The
default tolerance is the maximum dimension times eps; another value
may be supplied to pinv as a second parameter.

Example
pinv([1,2;3,4])

-2 1
1.5 -0.5

B = pinv([1;2])
B =
0.2 0.4

[1;2] * B * [1;2]

850 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

1
2

B * [1;2] * B
0.2 0.4

LAPACK subroutines
dgelss, zgelss

See also
inv, svd

qr

QR decomposition.

Syntax
(Q, R, E) = qr(A)
(Q, R) = qr(A)
(Qe, Re, e) = qr(A, false)
(Qe, Re) = qr(A, false)

Description
With three output arguments, qr(A) computes the QR decomposition
of matrix A with column pivoting, i.e. a square unitary matrix Q and
an upper triangular matrix R such that A*E=Q*R. With two output argu-
ments, qr(A) computes the QR decomposition without pivoting, such
that A=Q*R. With a single output argument, qr gives R.

With a second input argument with the value false, if A has m rows
and n columns with m>n, qr produces an m-by-n Q and an n-by-n R.
Bottom rows of zeros of R, and the corresponding columns of Q, are
discarded. With column pivoting, the third output argument e is a
permutation vector: A(:,e)=Q*R.

Examples
(Q,R) = qr([1,2;3,4;5,6])
Q =
-0.169 0.8971 0.4082
-0.5071 0.276 -0.8165
-0.8452 -0.345 0.4082

R =
-5.9161 -7.4374
0 0.8281
0 0

(Qe,Re) = qr([1,2;3,4;5,6],false)

Extensions — Lapack 851

Qe =
-0.169 0.8971
-0.5071 0.276
-0.8452 -0.345

Re =
-5.9161 -7.4374
0 0.8281

LAPACK subroutines
dgeqrf, zgeqrf for decomposition without pivoting; dgeqpf, zgeqpf
for decomposition with pivoting; dorgqr, zung2r for computing Q

See also
hess, schur

qz

Generalized Schur factorization.

Syntax
(S, T, Q, Z) = qz(A, B)

Description
qz(A,B) computes the generalized Schur factorization for square ma-
trices A and B, such that Q*S*Z=A and Q*B*Z=B. For real matrices, the
result is real with S block upper-diagonal with 1x1 and 2x2 blocks, and
T upper-diagonal. For complex matrices, the result is complex with
both S and T upper-diagonal.

Example
(S, T, Q, Z) = qz([1,2;3,4], [5,6;7,8])
S =
5.3043 0.5927

-1.2062 0.2423
T =

13.19 0
0 0.1516

Q =
-0.5921 -0.8059
-0.8059 0.5921

Z =
-0.6521 -0.7581
0.7581 -0.6521

Q*S*Z

852 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

1 2
3 4

Q*T*Z
5 6
7 8

LAPACK subroutines
dgges, zgges

See also
eig, schur

rank

Rank of a matrix.

Syntax
n = rank(X)
n = rank(X, tol)

Description
rank(X) returns the rank of matrix X, i.e. the number of lines or
columns linearly independent. To obtain it, the singular values are
computed and the number of values significantly larger than 0 is
counted. The value below which they are considered to be 0 can be
specified with the optional second argument.

Example
rank([1,1;0,0])
1

LAPACK subroutines
dgesvd, zgesvd

See also
svd, cond, orth, null, det, rank (LME)

rcond

Reciprocal condition number.

Extensions — Lapack 853

Syntax
r = rcond(A)

Description

rcond(A) computes the reciprocal condition number of matrix A, i.e. a
number r=1/(norm(A,1)*norm(inv(A),1)). The reciprocal condition
number is near 1 for well-conditioned matrices and near 0 for bad-
conditioned ones.

Example
rcond([1,1;0,1])
0.3

rcond([1,1e6;2,1e6])
5e-7

LAPACK subroutines

dlange, zlange for the 1-norm of X; dgecon, zgecon for the rcond of X
using its 1-norm

See also

lu, inv, cond (LME)

schur

Schur factorization.

Syntax
(U,T) = schur(A)
T = schur(A)

Description

schur(A) computes the Schur factorization of square matrix A, i.e. a
unitary matrix U and a square matrix T (the Schur matrix) such that
A=U*T*U’. If A is complex, the Schur matrix is upper triangular, and its
diagonal contains the eigenvalues of A; if A is real, the Schur matrix is
real upper triangular, except that there may be 2-by-2 blocks on the
main diagonal which correspond to the complex eigenvalues of A.

854 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
(U,T) = schur([1,2;3,4])
U =
0.416 -0.9094
0.9094 0.416

T =
5.3723 -1
0 -0.3723

eig([1,2;3,4])
5.3723
-0.3723

LAPACK subroutines
dgees, zgees

See also
lu, hess, qr, logm, sqrtm, eig

sqrtm

Matrix square root.

Syntax
S = sqrtm(X)

Description
sqrtm(A) returns the square root of the square matrix A, i.e. a matrix
S such that S*S=A.

Example
S = sqrtm([1,2;3,4])
S =
0.5537+0.4644j 0.807-0.2124j
1.2104-0.3186j 1.7641+0.1458j

S*S
1 2
3 4

LAPACK subroutines
zgees

See also
logm, schur, expm (LME)

Extensions — Lapack 855

svd

Singular value decomposition.

Syntax
s = svd(X)
(U,S,V) = svd(X)
(U,S,V) = svd(X,false)

Description
The singular value decomposition (U,S,V) = svd(X) decomposes the
m-by-n matrix X such that X = U*S*V’, where S is an m-by-n diagonal
matrix with decreasing positive diagonal elements (the singular values
of X), U is an m-by-m unitary matrix, and V is an n-by-n unitary matrix.
The number of non-zero diagonal elements of S (up to rounding errors)
gives the rank of X.

When m>n, (U,S,V) = svd(X,false) produces an n-by-n diagonal
matrix S and an m-by-n matrix U. The relationship X = U*S*V’ still
holds.

With one output argument, s = svd(X) returns the vector of sin-
gular values.

Example
(U,S,V)=svd([1,2,3;4,5,6])
U =
-0.3863 -0.9224
-0.9224 0.3863

S =
9.508 0 0
0 0.7729 0

V =
-0.4287 0.806 0.4082
-0.5663 0.1124 -0.8165
-0.7039 -0.5812 0.4082

U*S*V’
1 2 3
4 5 6

(U,S,V)=svd([1,2,3;4,5,6],false)
U =
-0.3863 -0.9224
-0.9224 0.3863

S =
9.508 0
0 0.7729

V =
-0.4287 0.806 -0.5663
0.1124 -0.7039 -0.5812

856 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

U*S*V
1.4944 -2.4586 2.4944
3.7929 -7.2784 4.7929

LAPACK subroutines

dgesvd, zgesvd

See also

rank, orth, null, pinv, svd (LME)

12.2 Long Integers

This section describes functions which support long integers (longint),
i.e. integer numbers with an arbitrary number of digits limited only by
the memory available. Some base functions have been overloaded:
new definitions have been added and are used when at least one of
their arguments is of type longint. These functions are listed in the
table below.

Function Operator Purpose
abs absolute value
char conversion to string
disp display
double conversion to floating-point
gcd greatest common divisor
lcm least common multiple
minus - subtraction
mldivide \ left division
mpower ˆ power
mrdivide / right division
mtimes * multiplication
plus + addition
rem remainder
uminus - negation
uplus + no operation

Functions

longint

Creation of a long integer.

Extensions — memory mapping 857

Syntax
li = longint(i)
li = longint(str)

Description
longint(i) creates a long integer from a native LME floating-point
number. longint(str) creates a long integer from a string of decimal
digits.

Examples
longint(’1234567890’)
1234567890

longint(2)̂ 100
1267650600228229401496703205376

13th Mersenne prime:

longint(2)̂ 521-1
6864797660130609714981900799081393217269
4353001433054093944634591855431833976560
5212255964066145455497729631139148085803
7121987999716643812574028291115057151

Number of decimal digits in the 27th Mersenne prime:

length(char(longint(2)̂ 44497-1))
13395

12.3 Memory Mapping

This section describes functions which offer support for file memory
mapping. Once a file is mapped in memory, its elements (bytes, 16-
bit words or 32-bit words) can be accessed like a normal array, thanks
to virtual memory.

These functions are available only on Unix (or Unix-like) systems,
such as macOS.

Functions

mmap

Map a file in memory.

858 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
m = mmap(filename, n)
m = mmap(filename, n, type)
m = mmap(filename, n, type, perm)
m = mmap(filename, n, type, perm, offset)

Description
mmap(filename,n) maps in memory the n first bytes of file whose
name is given by string filename. It returns an object which can be
used to read bytes with regular array indexing, with the first byte at
offset 0. The file is created if necessary.

mmap(filename,n,type) specifies the type of the elements. type
is one of the strings in the table below.

Type Range Description
’uint8’ 0 - 255 unsigned byte
’char’ char(0) - char(255) character
’uint16’ 0 - 65535 unsigned 16-bit word
’uint32’ 0 - 4294967295 unsigned 32-bit word
’int8’ -128 - 127 signed byte
’int16’ -32768 - 32767 signed 16-bit word
’int32’ -2147483648 - 2147483647 signed 32-bit word

By default, multibyte words are encoded with the least significant
byte first (little endian). The characters ’;b’ can be appended to spec-
ify that they are encoded with the most significant byte first (big en-
dian) (for symmetry, ’;l’ is accepted and ignored).

mmap(filename,n,type,perm) specifies permission with string
perm, which takes one of the values in the table below.

Perm Description
’r’ read-only
’w’ read/write

mmap(filename,n,type,perm,offset) specified the offset of the
part being memory-mapped in the file.

The following functions are overloaded to accept the type of ob-
jects returned by mmap: beginning, disp, end, length, subsasgn, and
subsref.

Example
Bytes 0-3999 of file ’test’ are mapped in memory as 32-bit signed
integers. They are multiplied by two.

m = mmap(’test’, 1000,’int32’,’w’);
m(0:999) = 2 * m(0:999);
unmap(m);

Extensions — data compression 859

See also

munmap, beginning, disp, end, length, subsasgn, subsref

munmap

Unmap a memory-mapped file.

Syntax
munmap(m)

Description

munmap(m) unmaps a file which has been mapped with mmap. Its argu-
ment is the object given by mmap.

See also

mmap

12.4 Data Compression

This section describes functions which compress and uncompress se-
quences of bytes, such as text. Often, these sequences present redun-
dancy which can be removed to produce a shorter sequence, while still
being able to revert to the initial one.

The ZLib extension is based on zlib by J.L. Gailly and M. Adler, whose
work is gratefully acknowledged. To preserve their terminology, com-
pression is performed with function deflate, and uncompression with
inflate. Compressed data use the zlib or gzip format.

Functions

deflate

Compress a sequence of bytes (zlib format).

Syntax
strc = deflate(str)

860 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description

deflate(str) produces a string strc which is usually shorter than it
argument str. String str can be reconstructed with inflate using
only strc. deflate and inflate process any sequence of bytes (8-bit
words); their input argument can be any array. However, their shape
and their type are lost (the result of deflate and inflate is always a
row vector of uint8 if the input is an integer array, or a string if the
input is a string) and their elements are restored modulo 256.

Depending on the data, compression rates of 2 or more are typi-
cal. Sequences without redundancy (such as random numbers or the
result of deflate) can produce a result slightly larger than the initial
sequence.

deflate uses the deflate algorithm and the zlib format.

Examples
str = repmat(’abcd ef ’, 1, 1000);
length(str)
8000

strc = deflate(str);
length(strc)
43

str = repmat(’abcd ef ’, 1, 1000);
strc = deflate(str);
str2 = inflate(strc);
str === str2
true

To compress objects which are not sequence of bytes, you can use
dumpvar and str2obj to convert them to and from a textual represen-
tation:

A = repmat(600, 2, 2)
A =
600 600
600 600

inflate(deflate(A))
1x4 uint8 array
88 88 88 88

str = dumpvar(A);
str2obj(deflate(inflate(str)))
600 600
600 600

See also

inflate, gzip, zwrite

Extensions — data compression 861

gzip

Compress a sequence of bytes (gzip format).

Syntax
strc = gzip(str)

Description
gzip(str) produces a string strc which is usually shorter than it ar-
gument str. String str can be reconstructed with inflate using only
strc. gzip and inflate process any sequence of bytes (8-bit words);
their input argument can be any array. However, their shape and their
type are lost (the result of gzip and inflate is always a row vector of
uint8 if the input is an integer array, or a string if the input is a string)
and their elements are restored modulo 256.

Depending on the data, compression rates of 2 or more are typical.
Sequences without redundancy (such as random numbers or the result
of gzip) can produce a result slightly larger than the initial sequence.

gzip uses the deflate algorithm and the gzip format.

Example
str = repmat(’abcd ef ’, 1, 1000);
length(str)
8000

strc = gzip(str);
length(strc)
55

str = repmat(’abcd ef ’, 1, 1000);
strc = gzip(str);
str2 = inflate(strc);
str === str2
true

See also
inflate, deflate, gzwrite

gzwrite

Compress a sequence of bytes and write the result with gzip format.

Syntax
nout = gzwrite(fd, data)

862 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
gzwrite(fd, data) compresses the array data, of type int8 or
uint8, and writes the result to the file descriptor fd with gzip format.

Note that you must write a whole segment of data with one call.
Deflation is restarted every time gzwrite is called.

See also
zread, gzip, zwrite

inflate

Uncompress the result of deflate or gzip.

Syntax
str = inflate(strc)

Description
inflate(strc) uncompresses strc to undo the effect of deflate or
gzip. If the input is a string, the output is a string whose characters
are coded on one byte; if the input is an integer array, the result is a
uint8 row vector.

See also
deflate, gzip, zread

zread

Read deflated or gzipped data and uncompress them.

Syntax
(data, nin) = zread(fd, n)
(data, nin) = zread(fd)

Description
zread(fd, n) reads up to n bytes from file descriptor fd, uncom-
presses them using the inflate algorithm, and returns the result as
a row vector of type uint8. An optional second output argument is set
to the number of bytes which have actually been read; it is less than
n if the end-of-file is reached.

With a single input argument, zread(fd) reads data until the end
of the file.

Note that you must read a whole segment of deflated data with one
call. Inflation is restarted every time zread is called. Compressed data
can have either the zlib or gzip format.

Extensions — image files 863

See also

zwrite, inflate

zwrite

Compress a sequence of bytes and write the result with zlib format.

Syntax
nout = zwrite(fd, data)

Description

zwrite(fd, data) compresses the array data, of type int8 or uint8,
and writes the result to the file descriptor fd with zlib format.

Note that you must write a whole segment of data with one call.
Deflation is restarted every time zwrite is called.

See also

zread, deflate, gzwrite

12.5 Image Files

This section describes functions which offer support for reading and
writing image files. Formats supported include PNG and JPEG.

Calerga gratefully acknowledges the following contributions: PNG
encoding and decoding are based on libpng; and JPEG encoding and
decoding are based on the work of the Independent JPEG Group.

Functions

imageread

Read an image file.

Syntax
A = imageread(fd)
A = imageread(fd, options)

864 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
imageread(fd) reads a PNG or JPEG file from file descriptor fd and
returns it as an array whose first dimension is the image height and
second dimension the image width. Grayscale images have a third
dimension equal to 1 (i.e. plain matrices). Color images have a third
dimension equal to 3; fist plane is the red component, second plane
the green component, and third plane the blue component. By default,
the result is a uint8 or uint16 array whose type matches the pixel
format in the image files. Value range from 0 for black to 255 or 65535
for maximum intensity.

The file descriptor is usually obtained by opening a file with fopen
in binary mode (text mode, with end-of-line translation, would produce
garbage or cause a decoding error).

A second argument can specify special options to modify the result.
Options are usually created with function imagereadset, or given di-
rectly as named arguments.

Example
fd = fopen(’image.png’, ’r’);
im = imageread(fd);
fclose(fd);

See also
imagereadset, imagewrite

imagereadset

Options for image input.

Syntax
options = imagereadset
options = imagereadset(name1=value1, ...)
options = imagereadset(name1, value1, ...)
options = imagereadset(options0, name1=value1, ...)
options = imagereadset(options0, name1, value1, ...)

Description
imagereadset(name1,value1,...) creates the option argument
used by imageread. Options are specified with name/value pairs,
where the name is a string which must match exactly the names
in the table below. Case is significant. Options which are not
specified have a default value. The result is a structure whose
fields correspond to each option. Without any input argument,
imagereadset creates a structure with all the default options. Note

Extensions — image files 865

that imageread also interpret the lack of an option argument, or the
empty array [], as a request to use the default values.

When its first input argument is a structure, imagereadset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options. Currently they are used only
when reading PNG files.

Name Default Meaning
Scale16 false convert 16-bit images to uint8
StripAlpha true ignore the alpha channel

Named arguments can be given directly to imageread without call-
ing explicitly imageset.

Examples

Default options:

imagereadset
Scale16: false
StripAlpha: true

Reading a PNG file with alpha channel (an RGB+alpha image is an
array of size [height, width, 4]):

fd = fopen(’image.png’);
im = imageread(fd, StripAlpha=false);
fclose(fd);

See also

imageread

imageset

Options for image output.

Syntax
options = imageset
options = imageset(name1=value1, ...)
options = imageset(name1, value1, ...)
options = imageset(options0, name1=value1, ...)
options = imageset(options0, name1, value1, ...)

866 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
imageset(name1,value1,...) creates the option argument used by
imagewrite. Options are specified with name/value pairs, where the
name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to each
option. Without any input argument, imageset creates a structure
with all the default options. Note that imagewrite also interpret the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, imageset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options:

Name Default Meaning
Type ’PNG’ ’PNG’ or ’JPG’/’JPEG’
Quality 80 JPEG quality (0=worst,100=best)
Progressive false true to permit progressive decoding

Named arguments can be given directly to imagewrite without
calling explicitly imageset.

Examples
Default options:

imageset
Type: ’png’
Quality: 80
Progressive: false

Writing the contents of array A into a small, low-quality JPEG file:

fd = fopen(’A.jpg’, ’w’);
imagewrite(fd, A, Type=’JPG’, Quality=20);
fclose(fd);

See also
imagewrite

imagewrite

Write an image file.

Syntax
imagewrite(fd, A)
imagewrite(fd, A, options)

Extensions — MAT-files 867

Description
imagewrite(fd,A) writes array A to a PNG file specified by file de-
scriptor fd. Image A is an array whose first dimension is the image
height and second dimension the image width. Grayscale images have
their third dimension equal to 1 (i.e. they are plain matrices). Color
images have a third dimension equal to 3; fist plane is the red com-
ponent, second plane the green component, and third plane the blue
component. In both cases, value range is 0 for black to 1 for maximum
intensity. Values outside this range are clipped.

imagewrite(fd,A,options) uses structure options to specify im-
age file options. Options are usually created with function imageset,
or given directly as named arguments; they include the file type.

The file descriptor is usually obtained by opening a file with fopen
in binary mode (text mode, with end-of-line translation, would produce
a corrupted image file).

Example
Write the image contained in the matrix im to a file "image.png", using
the default options.

fd = fopen(’image.png’, ’w’);
imagewrite(fd, im);
fclose(fd);

Write the same image as a JPEG file.

fd = fopen(’image.jpg’, ’w’);
imagewrite(fd, im, Type=’JPEG’);
fclose(fd);

See also
imageset, imageread

12.6 MAT-files

matfiledecode

Decode the contents of a MATLAB MAT-file.

Syntax
var = matfiledecode(fd)
var = matfiledecode(data)
var = matfiledecode(..., ignoreErr)

868 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
matfiledecode(fd) reads data from file descriptor fd until the end
of the file. The data must be the contents of a MATLAB-compatible
MAT-file. They are made of 8-bit bytes; no text conversion must take
place. The result is a structure whose fields have the name and the
contents of the variables saved in the MAT-file.

Instead of a file descriptor, the data can be provided directly as the
argument. In that case, the argument data must be an array, which
can be read from the actual file with fread or obtained from a network
connection.

Only arrays are supported (scalar, matrices, arrays of more than
two dimensions, real or complex, numeric, logical or char). A second
input argument can be used to specify how to handle data of unsup-
ported types: with false (default value), unsupported types cause an
error; with true, they are ignored.

Example
fd = fopen(’data.mat’);
s = matfiledecode(fd);
fclose(fd);
s
s =
x: real 1x1024
y: real 1x1024

See also
matfileencode

matfileencode

Encode the contents of a MATLAB MAT-file.

Syntax
matfileencode(fd, s)
matfileencode(s)

Description
matfileencode(fd,s) writes the contents of structure s to file de-
scriptor fd as a MATLAB-compatible MAT-file. Each field of s corre-
sponds to a separate variable in the MAT-file. With one argument,
matfileencode(s) writes to the standard output (which should be un-
common since MAT-files contain non-printable bytes).

Only arrays are supported (scalar, matrices, arrays of more than
two dimensions, real or complex, numeric, logical or char).

Extensions — JSON 869

Examples
s.a = 123;
s.b = ’abc’;
fd = fopen(’data.mat’, ’wb’);
matfileencode(fd, s);
fclose(fd);

Function variables can be used to save all variables:

v = variables;
fd = fopen(’var.mat’, ’wb’);
matfileencode(fd, v);
fclose(fd);

See also
matfiledecode, variables

12.7 JSON

This section describes functions which encode and decode JSON data.
JSON means JavaScript Object Notation; it is a text format based on
the syntax of JavaScript for storing literal values. It is described in RFC
8259.

json2obj

Convert JSON in a string to a structure or list.

Syntax
s = json2obj(str)

Description
json2obj(str) converts the data represented in string str with JSON
format into a structure or a list. Objects are converted to structures
and arrays to lists. Names must be compatible with LME field names.

Examples
json2obj(’{"a":true,"b":"abc","c":12.345e2}’)
a: true
b: ’abc’
c: 1234.5

json2obj(’[true,"abc",12.345]’)
{true,’abc’,12.345}

870 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
obj2json, str2obj

obj2json

Convert a structure or list to JSON.

Syntax
str = obj2json(s)

Description
obj2json(s) converts structure or array s (list, cell array, or array of
type double or logical) to JSON in a string. If s is of type double or
logical, it must be an array of at least two elements; if it is a list or
structure, it must not be empty. Nested empty structures or arrays
are converted to JSON null value.

Example
obj2json({’abc’, [], [2,3]})
’[\n"abc",\nnull,\n[\n2,\n3\n]\n]’

See also
json2obj

12.8 SQLite

This section describes functions which SQLite relational databases.
SQLite is a public-domain relational database stored locally in a single
file, which uses SQL as its query language. There are two main ad-
vantages of SQLite with respect to larger relational database systems:
there is no need to install any additional software or to have access
to a remote database, and the database file can be archived and re-
stored extremely easily. On the other hand, it lacks concurrent access,
stored procedures, etc. Its SQL compatibility permits the developer to
port easily applications to other databases, should it be necessary.

This documentation assumes you have a basic knowledge of SQL.
Even if you do not, the examples should help you to get started.
For more informations about SQLite, please visit the Web site
http://www.sqlite.org.

The creator of SQLite, D. Richard Hipp, is gratefully acknowledged.
The following functions are defined.

Extensions — SQLite 871

Function Purpose
sqlite_changes Number of affected rows in the last command
sqlite_close Close an SQLite database
sqlite_exec Execute an SQL query
sqlite_last_insert_rowid Index of tha last row inserted
sqlite_open Open an SQLite database
sqlite_set Options for sqlite_open
sqlite_shell Simple SQLite shell
sqlite_tables Get the table names
sqlite_version Get the version of SQLite

12.9 Compiling the extension

The extension is installed with Sysquake or LME and ready to use; but
it is also provided as source code. If you want, you can check on
the Web if there is a more recent version of SQLite and compile the
extension again with it. The steps below show the simplest way to do
it.

Check your development tools Make sure you have the devel-
opment tools required for compiling the extension. Typically, you
need a C compiler chain like gcc. You can get it as free software
from GNU.

Get SQLite distribution Download the latest distribution from the
site http://www.sqlite.org.

Locate the required files To compile the extension, you will need
the following files:

– LMESQLite.c, the main source code of the extension which
defines new functions for LME.

– LME_Ext.h, the header file for LME extensions, which is pro-
vided with all LME applications which support extensions; it is
typically stored in a directory named ExtDevel. Let extdevel
be its path.

– The source code of SQLite, typically in the directory src of the
SQLite distribution.

Compile the extension Create a new directory, cd to it, and run
the Make file of the SQLite extension. For example:

$ cd
$ mkdir sqlite-build
$ cd sqlite-buid
$ ext= extpath sqlite= sqlitepath

make -f extpath/Makefile.lme-sqlite

872 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Install the extension For most LME applications, just move or
copy the extension (sqlite.so if you have used the command
above) to the directory where LME looks for extensions (usually
LMEExt). For Sysquake Remote, you also have to add the follow-
ing line to the configuration file of Apache (please read Sysquake
Remote documentation for more information):

SQRLoadExtension extpath/sqlite.so

where extpath/sqlite.so is the absolute path of the extension.

Start or restart the LME application To check that LME has
loaded the extension successfully, check the information line start-
ing with SQLite. You can also try to evaluate sqlite_version,
which should display the version of SQLite.

Functions

sqlite_changes

Number of affected rows in the last command.

Syntax
n = sqlite_changes(c)

Description
sqlite_changes(c) gives the number of affected rows in the last
UPDATE, DELETE, or INSERT command.

SQLite call
sqlite3_changes

See also
sqlite_exec, sqlite_last_insert_rowid

sqlite_close

Close an SQLite database.

Syntax
sqlite_close(c)

Extensions — SQLite 873

Description
sqlite_close(c) closes the SQLite database identified by c.

SQLite call
sqlite3_close

See also
sqlite_open

sqlite_exec

Execute an SQL query against an SQLite database.

Syntax
sqlite_exec(c, query, ...)
table = sqlite_exec(c, query, ...)

Description
sqlite_exec(c,query) executes a query given in SQL in a string,
against the SQLite database identified by c. The number of modified
rows can be obtained with sqlite_changes.

Additional input arguments are bound to placeholders (question
mark character) in the query. With respect to building a query with
string concatenation or sprintf, this has the advantage of prevent-
ing any syntax error for characters which have a special meaning in
SQLite (with the security risk of code injection) and type conversion.
Supported types include strings, arrays of uint8 (stored as blobs), and
scalar floating-point and integer numbers (complex part is ignored).

With an output argument, sqlite_exec returns the resulting table
as a list of rows. Each row is given as a list of column values or as a
structure, as specified in the option argument of sqlite_open created
with sqlite_set.

SQLite calls
sqlite3_prepare16_v2, sqlite3_bind_text16,
sqlite3_bind_blob, sqlite3_bind_null, sqlite3_bind_int,
sqlite3_bind_int64, sqlite3_bind_double, sqlite3_finalize,
sqlite3_column_count, sqlite3_step, sqlite3_column_type,
sqlite3_column_int, sqlite3_column_double,
sqlite3_column_text16, sqlite3_column_blob,
sqlite3_column_bytes, sqlite3_column_name

874 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
name = ’Joe’;
age = 8;
sqlite_exec(c, ’insert into persons (name, age) values (?,?);’, name, age);
r = sqlite_exec(c, ’select age from persons where name = ?;’, name);

See also
sqlite_open, sqlite_set, sqlite_changes

sqlite_last_insert_rowid

Row ID of the last row inserted in a SQLite database.

Syntax
n = sqlite_last_insert_rowid(c)

Description
sqlite_last_insert_rowid(c) gives the last row inserted by the
INSERT command with sqlite_exec.

SQLite call
sqlite3_last_insert_rowid

See also
sqlite_exec, sqlite_changes

sqlite_open

Open an SQLite database.

Syntax
c = sqlite_open(filename)
c = sqlite_open(filename, options)

Description
sqlite_open(filename) opens the database in the specified file. If
the file does not exist, a new database is created. The result is an
identifier which should be used in all other SQLite calls. The database
is closed with sqlite_close.

sqlite_open(filename,options) specifies options in the second
input argument, which is usually the result of sqlite_set.

Extensions — SQLite 875

Example
c = sqlite_open(’test.sqlite’)
c =
0

rows = sqlite_exec(c, ’select * from person’);
sqlite_close(c);

SQLite calls
sqlite_open, sqlite3_progress_handler

See also
sqlite_close, sqlite_set

sqlite_set

Options for SQLite.

Syntax
options = sqlite_set
options = sqlite_set(name1, value1, ...)
options = sqlite_set(options0, name1, value1, ...)

Description
sqlite_set(name1,value1,...) creates the option argument used
by sqlite_open. Options are specified with name/value pairs, where
the name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to each
option. Without any input argument, sqlite_set creates a structure
with all the default options. Note that sqlite_open also interprets the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, sqlite_set adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
ExecResultClass ’list’ row type (’list’ or ’struct’)
ExecResultNumeric true conversion of numeric columns to double

SQLite is usually typeless. If ExecResultNumeric is true, columns
are converted to numbers of class double unless they contain a non-
numeric value, or the type name used during declaration contains
BLOB, CHAR, CLOB, or TEXT. This is the same convention as what SQLite
uses itself, for example when sorting rows. NULL values are always
represented as the (double) empty array [].

876 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Examples
Default options:

sqlite_set
ExecResultClass: ’list’
ExecResultNumeric: true

See also
sqlite_open

sqlite_shell

Simple SQLite shell.

Syntax
sqlite_shell(c)

Description
sqlite_shell(c) starts a simple shell where SQL statements can be
typed and executed. Each line corresponds to a separate statement;
the trailing semicolon can be omitted. In addition to SQL statements,
quit exits the read-execute-print loop and returns to LME.

SQLite call
sqlite3_exec

See also
sqlite_open, sqlite_exec

sqlite_tables

Get the names of tables in an SQLite database.

Syntax
tables = sqlite_tables(c)

Description
sqlite_tables(c) gives a list of table names defined in the SQLite
database identified by c. The names are sorted.

SQLite call
sqlite3_exec

Extensions — sockets 877

See also
sqlite_open, sqlite_exec

sqlite_version

Get the version of SQLite.

Syntax
str = sqlite_version

Description
sqlite_version gives the version of SQLite compiled in the exten-
sion, as a string. No database is required.

SQLite call
sqlite3_version

12.10 Sockets

Socket functions enable communication with a server over TCP/IP. Ser-
vices which can be accessed via TCP/IP include HTTP (most common
protocol for WWW documents and Web services), SMTP (for sending e-
mail), POP (for receiving mail), and telnet. Both TCP (where the client
and the server are connected and communicate with streams of bytes
in both directions) and UDP (connectionless exchange of packets with-
out guarantee of transfer and order) are supported.

Functions described in this section include only those required for
opening and configuring the connection. They correspond to fopen for
files. Input and output are done with the following generic functions:

Function Description
fclose close the file
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
fscanf read formatted data
fwrite write data
redirect redirect output

fread does not block if there is not enough data; it returns imme-
diately whatever is available in the input buffer.

878 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Functions

gethostbyname

Resolve host name.

Syntax
ip = gethostbyname(host)

Description
gethostbyname(host) gives the IP address of host in dot notation as
a string.

Example
gethostbyname(’localhost’)
127.0.0.1

See also
gethostname

gethostname

Get name of current host.

Syntax
str = gethostname

Description
gethostname gives the name of the current host as a string.

See also
gethostbyname

socketaccept

Accept a connection request.

Syntax
fd = socketaccept(fds)

Extensions — sockets 879

Description
socketaccept(fds) accepts a new connection requested by a client
to the server queue created with socketservernew. Its argument fds
is the file descriptor returned by socketservernew.

Once a connection has been opened, the file descriptor fd can be
used with functions such as fread, fwrite, fscanf, and fprintf. The
connection is closed with fclose.

See also
fclose, socketconnect, socketservernew, fread, fwrite, fscanf,
fgetl, fgets, fprintf

socketconnect

Change UDP connection.

Syntax
socketconnect(fd, hostname, port)

Description
socketconnect(fd,hostname,port) changes the remote host and
port of the UDP connection specified by fd. An attempt to use
socketconnect on a TCP connection throws an error.

See also
socketnew

socketnew

Create a new connection to a server.

Syntax
fd = socketnew(hostname, port, options)
fd = socketnew(hostname, port)

Description
socketnew(hostname,port) creates a new TCP connection to the
specified hostname and port and returns a file descriptor fd.

The third argument of socketnew(hostname,port,options) is a
structure which contains configuration settings. It is set with
socketset.

Once a connection has been opened, the file descriptor fd can be
used with functions such as fread, fwrite, fscanf, and fprintf. The
connection is closed with fclose.

880 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
fd = socketnew(’www.somewebserver.com’, 80, ...

socketset(’TextMode’,true));
fprintf(fd, ’GET %s HTTP/1.0\n\n’, ’/’);
reply = fgets(fd)
reply =
HTTP/1.1 200 OK

fclose(fd);

See also
fclose, socketset, socketconnect, socketservernew, fread,
fwrite, fscanf, fgetl, fgets, fprintf

socketservernew

Create a new server queue for accepting connections from clients.

Syntax
fds = socketservernew(port, options)
fds = socketservernew(port)

Description
socketservernew(hostname,port) creates a new TCP or UDP socket
for accepting incoming connections. Connections from clients are ac-
cepted with socketaccept, which must provide as input argument the
file descriptor returned by socketservernew. Using multiple threads,
multiple connections can be accepted on the same port, using multiple
socketaccept for one socketservernew.

The second argument of socketservernew(port,options) is a
structure which contains configuration settings. It is set with
socketset. Options are inherited by the connections established with
socketaccept. On platforms where administrator authorizations are
enforced, only an administrator account (root account) can listen to a
port below 1024. Only one server can listen to the same port.

To stop listening to new connections, the socket is closed with
fclose. The file descriptor returned by socketservernew can be
used only with socketaccept and fclose.

Example
fds = socketservernew(8080);
fd = socketaccept(fds);
request = fscanf(fd, ’GET %s’);
fprintf(fd, ’Your request is "%s"\n’, request);
fclose(fd);
fclose(fds);

Extensions — sockets 881

See also
fclose, socketset, socketaccept, socketnew

socketset

Configuration settings for sockets.

Syntax
options = socketset
options = socketset(name1=value1, ...)
options = socketset(name1, value1, ...)
options = socketset(options0, name1, value1, ...)

Description
socketset(name1,value1,...) creates the option argument
used by socketnew and socketservernew. Options are specified
with name/value pairs, where the name is a string which must
match exactly the names in the table below. Case is significant.
Alternatively, options can be given with named arguments. Options
which are not specified have a default value. The result is a structure
whose fields correspond to each option. Without any input argument,
socketset creates a structure with all the default settings. Note that
socketnew also interprets the lack of an option argument, or the
empty array [], as a request to use the default values.

When its first input argument is a structure, socketset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
ListenQueue 5 queue size for incoming connections
Proto ’tcp’ protocol (’tcp’ or ’udp’)
TextMode true text mode
Timeout 30 timeout in seconds

When TextMode is true, input CR and CR-LF sequences are con-
verted to LF, and output LF is converted to CR-LF, to follow the re-
quirements of many Internet protocols where lines are separated with
CR-LF. Note that TextMode is true by default.

Example
socketset
ListenQueue: 5
Proto: ’tcp’
TextMode: true
Timeout: 30

882 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
socketnew, socketservernew, socketsetopt

socketsetopt

Settings change for sockets.

Syntax
socketsetopt(fd, name1=value1, ...)
socketsetopt(fd, name1, value1, ...)
socketsetopt(fd, options)

Description
socketsetopt(fd,name1,value1,...) changes the options for the
socket identified by fd. Options are specified by pairs of name and
value. They are the same as those valid with socketset. However,
only TextMode and Timeout have an effect; other ones are ignored.

socketsetopt(fd,options) takes as second argument a structure
of options created with socketset.

See also
socketset, socketnew, socketservernew

12.11 System Log

System log function enables to log messages to the system-wide log-
ging facility. It is supported on unix systems, such as macOS and
Linux.

Function

syslog

File descriptor of syslog.

Syntax
fd = syslog
fd = syslog(priority)

Extensions — launch URL 883

Description
syslog gives the file descriptor corresponding to syslog. It can be used
with output functions like fprintf. Each output command causes a
message to be logged with priority ’info’. No linefeed should be out-
put. Empty messages and messages containing only line feeds and
carriage returns are not logged. Note that every low-level output func-
tion produces a separate log entry; high-level functions like dumpvar,
for instance, can produce a larger number of lines than expected.

syslog(priority) gives the file descriptor corresponding to mes-
sages to syslog with the specified priority. The input argument is one
of the following strings: ’emerg’, ’alert’, ’crit’, ’err’, ’warning’,
’notice’, ’info’, or ’debug’; case is ignored.

Examples
Simple information message:

fprintf(syslog, ’pi = %g’, pi);

Debugging message:

fprintf(syslog(’debug’), ’nargin = %d’, nargin);

Redirection of standard error (all error messages and warnings are
copied to syslog):

redirect(2, syslog, true);

To get the log, please see the man page of syslog or syslogd. On
macOS, you can use the Console application.

See also
fprintf, redirect

12.12 Launch URL

This section describes a function which requests the default WWW
browser to open a URL.

The intended use of launchurl is the display of local or Web-based
documentation. You can add menu entries to your SQ files to help your
users, point to updates, or send e-mail.

Functions

launchurl

Launch a URL in the default browser.

884 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
status = launchurl(url)

Description
launchurl asks the current browser to launch a URL given as a string.
Exactly what "launching a URL" means depends on the URL protocol,
i.e. the part before the colon, and on the program which processes it.
If the URL cannot be processed, the status is set to false; otherwise,
it is true, which does not mean that a connection has been correctly
established on the World Wide Web.

The current implementation uses the method openURL: of the App-
Kit framework on the Macintosh and ShellExecute on Windows. On
Windows, the URL must begin with http:, ftp:, gopher:, nntp:, news:,
mailto:, or file:. On Linux, the first application in the following list which
is found in the current path is executed: $X11BROWSER, $BROWSER
(environment variables), htmlview, firefox, mozilla, netscape, opera,
konqueror; launchurl always returns true.

Example
if l̃aunchurl(’https://calerga.com’)
dialog(’Cannot launch https://calerga.com’);

end

12.13 Download URL

This section describes a function which downloads data from the
WWW.

Functions

urldownload

Get the contents of a URL.

Syntax
contents = urldownload(url)

Description
urldownload(url) downloads data referenced by a URL. The result is
typically an HTML document, or a data file such as an image. Both
input and output arguments are strings.

Extensions — OSA 885

urldownload(url,query) submits a query with the GET method
and downloads the result. The URL should use the HTTP or HTTPS
protocol.

urldownload(url,query,method) query with the specified
method (’get’ or ’post’) and downloads the result.

Example
data = urldownload(’http://www.w3.org’);

12.14 Open Script Architecture

This section describes functions which support the Open Scripting Ar-
chitecture of Mac OS, i.e. a system-level mechanism which supports
different computer languages such as AppleScript.

Functions

doscript

Execution of a script by another Mac OS application.

Syntax
doscript(target, script)
reply = doscript(target, script)

Description
doscript(target,script) requests the application identified by the
four-character signature in string target to execute the script in string
script. If doscript has an output argument, a reply is returned in a
string.

Data exchange involved by doscript is performed with
AppleEvents, a process-to-process communication mechanism
specific to Mac OS. Not all applications accept the doscript
AppleEvent.

Example
Ask Matlab to perform a matrix inversion and inverse it back with LME.
Note how the precision argument of the Matlab function num2str is
used to retrieve all significant digits; in LME, dumpvar could be used
instead.

886 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

reply = doscript(’MATL’,’disp(num2str(inv([2,3;1,7]),16))’)
reply =
0.6363636363636364 -0.2727272727272727

-0.09090909090909091 0.1818181818181818
Mi = eval([’[’, reply, ’]’])
Mi =
0.6364 -0.2727

-9.0909e-2 0.1818
norm(inv(Mi) - [2,3;1,7])
ans =
1.5249e-15

osascript

Execution of a script.

Syntax
osascript(script)
osascript(script, osaName)
reply = osascript(...)

Description
osascript(script) requests the default OSA scripting language
(normally AppleScript) to execute script. A second input argument
can be used to specify the name of the scripting language (such
as ’AppleScript’ or ’JavaScript’, depending on which OSA
component is installed on the computer; see osascriptlist). An
output argument can be used to request a string reply.

Example
Display a dialog box and get the label of the button clicked by the
user:

dlg = [’display dialog "Which color?" ’,...
’buttons {"Blue", "Red"} ’,...
’default button "Blue"’];

s = osascript([’the button returned of (’, dlg, ’)’])
s =
Red

See also
osascriptlist

osascriptlist

List of available OSA scripting languages.

Extensions — Web Services 887

Syntax
list = osascriptlist

Description
osascriptlist gives the list of scripting languages which are installed
and can be used with osascript.

See also
osascript

12.15 Web Services

This section describes functions which implement the client side of the
XML-RPC and SOAP protocols, as well as low-level functions which can
also be used to implement the server side. XML-RPC and SOAP per-
mit web services, i.e. calling a function on a remote server over the
World Wide Web. XML-RPC is based on two standards: XML (eXtended
Mark-up Language), used to encode the request to the server and its
response to the client, and HTTP (HyperText Transfer Protocol), the
main communication protocol used by the World Wide Web. In XML-
RPC, RPC means Remote Procedure Call; it is a mechanism used for
decades to communicate between a client and a server on a network.
The advantages of XML-RPC are that it is based on the same technolo-
gies as the Web and it is very simple. Its drawbacks are that it is less
efficient than a binary encoding, and it is sometimes too simple and
requires encoding of binary data, which defeats its main advantage.
For instance strings are encoded in ASCII, and supported types are
much less rich than LME’s.

SOAP is also a standard used for exchanging data encoded with
XML. It is more complicated than XML-RPC and supports more types.
Function parameters are referenced by name while XML-RPC uses an
ordered list. SOAP requests can be sent with different communica-
tion protocols; the implementation described here uses only the most
common one, HTTP.

XML-RPC

In LME, XML-RPC makes calls to remote procedure similar to the use of
feval. The two main functions are xmlrpccall and xmlrpccallset.
Lower-level functions which encode and decode calls and responses,
while not necessary for standard calls, can be used to understand ex-
actly how data are converted, to implement the server, or for special
applications.

888 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Procedure calls can contain parameters (arguments) and always
return a single response. These data have different types. XML-RPC
converts them automatically, as follows.

XML-RPC LME
i4 int32 scalar
int int32 scalar
boolean logical scalar
string character 1-by-n array
double real double scalar
dateTime.iso8601 1-by-6 double array
base64 1-by-n uint8 array
struct structure
array list

There is no difference between i4 and int. In strings, only the least-
significant byte is transmitted (i.e. only ASCII characters between 0
and 127 are transmitted correctly). Double values do not support an
exponent (a sufficient number of zeros are used instead). The XML-
RPC standard does not support inf and NaN; XML-RPC functions do,
which should not do any harm. In LME, date and time are stored in
a row vector which contains the year, month, day, hour, minute, and
second (like the result of the function clock), without time zone infor-
mation.

SOAP

SOAP calls are very similar to XML-RPC. The main difference is that
they use a single structure to represent the parameters. The mem-
ber fields are used as parameter names. The table below shows the
mapping between SOAP types and LME types.

SOAP LME
xsd:int int32 scalar
xsd:boolean logical scalar
xsd:string character 1-by-n array
xsd:double real double scalar
xsd:timeInstant 1-by-6, 1-by-7, or 1-by-8 double array
SOAP-ENC:base64 1-by-n uint8 array
(structure) structure
SOAP-ENC:array list

In LME, time instants are stored as a row vector of 6, 7, or 8 el-
ements which contains the year, month, day, hour, minute, second,
time zone hour, and time zone minute; the time zone is optional. Ar-
rays which are declared with a single type xsd:int, xsd:boolean, or
xsd:double are mapped to LME row vectors of the corresponding class.

Extensions — Web Services 889

The two main functions for performing a SOAP call are soapcall
and soapcallset.

Functions

soapcall

Perform a SOAP remote procedure call.

Syntax
response = soapcall(url, method, ns, action, opt)
response = soapcall(url, method, ns, action, opt, param)

Description
soapcall(url,method,ns,action,opt,param) calls a remote proce-
dure using the SOAP protocol. url (a string) is either the complete
URL beginning with http://, or only the absolute path; in the second
case, the server address and port come from argument opt. method is
the SOAP method name as a string; ns is its XML name space; action
is the SOAP action. opt is a structure which contains the options; it
is typically created with soapcallset, or can be the empty array []
for the default options. param, if present, is a structure which contains
the parameters of the SOAP call.

Example
The following call requests a translation from english to french (it as-
sumes that the computer is connected to the Internet and that the
service is available).

url = ’http://services.xmethods.net/perl/soaplite.cgi’;
method = ’BabelFish’;
ns = ’urn:xmethodsBabelFish’;
action = ’urn:xmethodsBabelFish#BabelFish’;
param = struct;
param.translationmode = ’en_fr’;
param.sourcedata = ’Hello, Sysquake!’;
fr = soapcall(url, method, ns, action, [], param)
fr =
Bonjour, Sysquake!

Note that since the server address is given in the URL, the default op-
tions are sufficient. The variable param is reset to an empty structure
to make sure that no other parameter remains from a previous call.

890 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
soapcallset

soapcallset

Options for SOAP call.

Syntax
options = soapcallset
options = soapcallset(name1, value1, ...)
options = soapcallset(options0, name1, value1, ...)

Description
soapcallset(name1,value1,...) creates the option argument used
by soapcall, including the server and port. Options are specified
with name/value pairs, where the name is a string which must match
exactly the names in the table below. Case is significant. Options
which are not specified have a default value. The result is a structure
whose fields correspond to each option. Without any input argument,
soapcallset creates a structure with all the default options. Note that
soapcall also interpret the lack of an option argument, or the empty
array [], as a request to use the default values.

When its first input argument is a structure, soapcallset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
Server ’’ server name or IP address
Port 80 port number
Timeout 10 maximum time in seconds
Debug false true to display data

If the server is an empty string, it is replaced with ’localhost’.
The Debug field is not included in the default options; when set, it
causes the display of the request and responses.

Example
Default options:

soapcallset
Server: ’’
Port: 80
Timeout: 10

See also
soapcall

Extensions — Web Services 891

soapreadcall

Decode a SOAP call request.

Syntax
(method, namespace, pstruct, url) = soapreadcall(fd)
(method, namespace, pstruct, url) = soapreadcall(str)

Description

soapreadcall(fd), where fd is a file descriptor, reads a complete
SOAP call, decodes it, and returns the result in four output arguments:
the method name and namespace as strings, a structure which con-
tains the parameters, and the URL as a string.

soapreadcall(str) decodes its string argument which must be a
whole SOAP call.

Example
param = {x=pi,y=true};
str = soapwritecall(’’,’/’,’’,’fun’,’namespace’,param);
(method, ns, pstruct, url) = soapreadcall(str)
method =
fun

ns =
namespace

pstruct =
x: 3.1416
y: true

url =
/

See also

soapreadresponse, soapwritecall

soapreadresponse

Decode a SOAP call response.

Syntax
(fault, value) = soapreadresponse(fd)
(fault, value) = soapreadresponse(str)

892 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
soapreadresponse(fd), where fd is a file descriptor, reads a com-
plete SOAP response and decodes it. In case of success, it returns true
in the first output argument and the decoded response value in the
second output argument. In case of failure, it returns false and the
fault structure, which contains the fields faultcode (error code as a
string) and faultstring (error message as a string).

soapreadresponse(str) decodes its string argument which must
be a whole SOAP response.

Examples
str = soapwriteresponse(’fun’, ’namespace’, 123);
(fault, value) = soapreadresponse(str)
fault =
false

value =
123

strf = soapwritefault(12int32, ’No power’);
(fault, value) = soapreadresponse(strf)
fault =
true

value =
faultcode: ’12’
faultstring: ’No power’

See also
soapreadcall, soapwriteresponse, soapwritefault

soapwritecall

Encode a SOAP call request.

Syntax
soapwritecall(fd, server, url, action, method, ns, params)
soapwritecall(server, url, action, method, ns, params)
str = soapwritecall(server, url, action, method, ns, params)

Description
soapwritecall(fd,server,url,action,method,ns,params) writes
to file descriptor fd a complete SOAP call, including the HTTP header.
If fd is missing, the call is written to standard output (file descriptor
1); since the output contains carriage return characters, it may not be
displayed correctly on all platforms. The server argument is a string
which contains the server name, and, optionally, a colon and the

Extensions — Web Services 893

server port number. url is a string which contains the absolute path
(without the protocol, server, and port part). action is a string which
contains the SOAP action, or is empty if no action is required for the
service. method contains the method name sent to the server; ns is
its XML name space. param, if present, is a structure which contains
the parameters of the SOAP call.

With an output argument, soapwritecall returns the call as a
string, without any output.

Example
param = {x=pi,y=true};
soapwritecall(’server.com’,’/’,’action’,’fun’,’ns’,param)
POST / HTTP/1.1
User-Agent: LME 4.5
Host: server.com
Content-Type: text/xml; charset=utf-8
Content-Length: 495
SOAPAction: action

<?xml version="1.0"?>
<SOAP-ENV:Envelope
SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
<SOAP-ENV:Body>
<m:fun xmlns:m="ns">
<x xsi:type="xsd:double">3.1415926535898</x>
<y xsi:type="xsd:boolean">1</y>
</m:fun>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

See also
soapwriteresponse, soapreadcall, soapreadresponse

soapwritefault

Encode a SOAP call response fault.

Syntax
soapwritefault(fd, faultCode, faultString)
soapwritefault(faultCode, faultString)
str = soapwritefault(faultCode, faultString)

894 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
soapwritefault(fd,faultCode,faultString) writes to file descrip-
tor fd a complete SOAP response fault, including the HTTP header. If
fd is missing, the response is written to standard output (file descrip-
tor 1); since the output contains carriage return characters, it may not
be displayed correctly on all platforms. The faultCode argument is
the fault code as an integer or a string, and the faultString is the
fault message.

With an output argument, soapwritefault returns the response as
a string, without any output.

See also
soapwriteresponse, soapreadresponse

soapwriteresponse

Encode a SOAP call response.

Syntax
soapwriteresponse(fd, method, ns, value)
soapwriteresponse(method, ns, value)
str = soapwriteresponse(method, ns, value)

Description
soapwriteresponse(fd,method,ns,value) writes to file descriptor
fd a complete SOAP response, including the HTTP header. If fd is
missing, the response is written to standard output (file descriptor 1);
since the output contains carriage return characters, it may not be dis-
played correctly on all platforms. The method argument is the method
name as a string; ns is the XML name space; and value is the result
of the call.

With an output argument, soapwriteresponse returns the
response as a string, without any output.

Example
soapwriteresponse(’fun’, ’namespace’, 123)
HTTP/1.1 200 OK
Connection: close
Server: LME 4.5
Content-Length: 484
Content-Type: text/xml

<?xml version="1.0"?>
<SOAP-ENV:Envelope

Extensions — Web Services 895

SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding"
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:xsd="http://www.w3.org/1999/XMLSchema"
xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance">
<SOAP-ENV:Body>
<m:funResponse xmlns:m="namespace">
<Result xsi:type="xsd:double">123.</Result>
</m:funResponse>
</SOAP-ENV:Body>
</SOAP-ENV:Envelope>

See also
soapwritecall, soapreadresponse, soapreadcall

xmlrpccall

Perform an XML-RPC remote procedure call.

Syntax
response = xmlrpccall(url, method, opt, params...)

Description
xmlrpccall(url,method,opt,params) calls a remote procedure us-
ing the XML-RPC protocol. url (a string) is either the complete URL
beginning with http://, or only the absolute path; in the second case,
the server address and port come from argument opt. method is the
XML-RPC method name as a string; opt is a structure which contains
the options; it is typically created with xmlrpccallset, or can be the
empty array [] for the default options. The remaining input arguments
are sent to the server as parameters of the XML-RPC call.

Examples
The following call requests the current time and date with a complete
URL (it assumes that the computer is connected to the Internet and
that the service is available).

url = ’http://time.xmlrpc.com/RPC2’;
dateTime = xmlrpccall(url, ’currentTime.getCurrentTime’)
dateTime =
2005 1 20 17 32 47

The server address (and the server port if it was not the default value
of 80) can also be specified in the options; then the URL contains only
the absolute path.

896 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

server = xmlrpccallset(’Server’, ’time.xmlrpc.com’);
dateTime = xmlrpccall(’/RPC2’, ’currentTime.getCurrentTime’, server)
dateTime =
2005 1 20 17 32 47

See also
xmlrpccallset

xmlrpccallset

Options for XML-RPC call.

Syntax
options = xmlrpccallset
options = xmlrpccallset(name1, value1, ...)
options = xmlrpccallset(options0, name1, value1, ...)

Description
xmlrpccallset(name1,value1,...) creates the option argument
used by xmlrpccall, including the server and port. Options are
specified with name/value pairs, where the name is a string which
must match exactly the names in the table below. Case is significant.
Options which are not specified have a default value. The result is a
structure whose fields correspond to each option. Without any input
argument, xmlrpccallset creates a structure with all the default
options. Note that xmlrpccall also interpret the lack of an option
argument, or the empty array [], as a request to use the default
values.

When its first input argument is a structure, xmlrpccallset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
Server ’’ server name or IP address
Port 80 port number
Timeout 10 maximum time in seconds
Debug false true to display data

If the server is an empty string, it is replaced with ’localhost’.
The Debug field is not included in the default options; when set, it
causes the display of the request and responses.

Example
Default options:

Extensions — Web Services 897

xmlrpccallset
Server: ’’
Port: 80
Timeout: 10

See also
xmlrpccall

xmlrpcreadcall

Decode an XML-RPC call request.

Syntax
(method, arglist, url) = xmlrpcreadcall(fd)
(method, arglist, url) = xmlrpcreadcall(str)

Description
xmlrpcreadcall(fd), where fd is a file descriptor, reads a complete
XML-RPC call, decodes it, and returns the result in three output argu-
ments: the method name as a string, a list of arguments, and the URL
as a string.

xmlrpcreadcall(str) decodes its string argument which must be
a whole XML-RPC call.

Example
str = xmlrpcwritecall(’rpc.remote.com’, ’/rpc’, ’getPressure’);
(method, arglist, url) = xmlrpcreadcall(str)
method =
getPressure

arglist =
{}

url =
/rpc

See also
xmlrpcreadresponse, xmlrpcwritecall

xmlrpcreadresponse

Decode an XML-RPC call response.

Syntax
(fault, value) = xmlrpcreadresponse(fd)
(fault, value) = xmlrpcreadresponse(str)

898 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
xmlrpcreadresponse(fd), where fd is a file descriptor, reads a com-
plete XML-RPC response and decodes it. In case of success, it returns
true in the first output argument and the decoded response value in
the second output argument. In case of failure, it returns false and the
fault structure, which contains the fields faultCode (error code as an
int32) and faultString (error message as a string).

xmlrpcreadresponse(str) decodes its string argument which
must be a whole XML-RPC response.

Examples
str = xmlrpcwriteresponse(123);
(fault, value) = xmlrpcreadresponse(str)
fault =
false

value =
123

strf = xmlrpcwritefault(12int32, ’No power’);
(fault, value) = xmlrpcreadresponse(strf)
fault =
true

value =
faultCode: 12int32
faultString: ’No power’

See also
xmlrpcreadcall, xmlrpcwriteresponse, xmlrpcwritefault

xmlrpcwritecall

Encode an XML-RPC call request.

Syntax
xmlrpcwritecall(fd, server, url, method, params...)
xmlrpcwritecall(server, url, method, params...)
str = xmlrpcwritecall(server, url, method, params...)

Description
xmlrpcwritecall(fd,server,url,method,params...) writes to file
descriptor fd a complete XML-RPC call, including the HTTP header. If
fd is missing, the call is written to standard output (file descriptor
1); since the output contains carriage return characters, it may not
be displayed correctly on all platforms. The server argument is a
string which contains the server name, and, optionally, a colon and the

Extensions — Web Services 899

server port number. The url argument is a string which contains the
absolute path (without the protocol, server, and port part). The method
argument contains the method name sent to the server. Remaining
input arguments, if any, are sent as parameters.

With an output argument, xmlrpcwritecall returns the call as a
string, without any output.

Example

xmlrpcwritecall(’rpc.remote.com’, ’/rpc’, ’getPressure’, 1int32)
POST /rpc HTTP/1.0
User-Agent: LME 4.5
Host: rpc.remote.com
Content-Type: text/xml
Content-Length: 111

<?xml version="1.0"?>
<methodCall>
<methodName>getPressure</methodName>
<params>
<param>
<value>
<int>1</int>
</value>
</param>
</params>
</methodCall>

See also
xmlrpcwriteresponse, xmlrpcreadcall, xmlrpcreadresponse

xmlrpcwritedata

Encode an XML-RPC value.

Syntax
xmlrpcwritedata(fd, val)
xmlrpcwritedata(val)
str = xmlrpcwritedata(val)

Description
xmlrpcwritedata(fd,val) writes to file descriptor fd the value val
encoded for XML-RPC. If fd is missing, the value is written to standard
output (file descriptor 1); since the output contains carriage return
characters, it may not be displayed correctly on all platforms.

With an output argument, xmlrpcwritedata returns the encoded
value as a string, without any output.

900 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Example
xmlrpcwritedata(pi)
<double>3.141592653589</double>

See also

xmlrpcwritecall, xmlrpcwriteresponse

xmlrpcwritefault

Encode an XML-RPC call response fault.

Syntax
xmlrpcwritefault(fd, faultCode, faultString)
xmlrpcwritefault(faultCode, faultString)
str = xmlrpcwritefault(faultCode, faultString)

Description

xmlrpcwritefault(fd,faultCode,faultString) writes to file
descriptor fd a complete XML-RPC response fault, including the HTTP
header. If fd is missing, the response is written to standard
output (file descriptor 1); since the output contains carriage return
characters, it may not be displayed correctly on all platforms. The
faultCode argument is the numeric fault code, and the faultString
is the fault message.

With an output argument, xmlrpcwritefault returns the response
fault as a string, without any output.

See also

xmlrpcwriteresponse, xmlrpcreadresponse

xmlrpcwriteresponse

Encode an XML-RPC call response.

Syntax
xmlrpcwriteresponse(fd, value)
xmlrpcwriteresponse(value)
str = xmlrpcwriteresponse(value)

Extensions — power management 901

Description
xmlrpcwriteresponse(fd,value) writes to file descriptor fd a com-
plete XML-RPC response, including the HTTP header. If fd is missing,
the response is written to standard output (file descriptor 1); since the
output contains carriage return characters, it may not be displayed
correctly on all platforms. The value argument is the result of the call.

With an output argument, xmlrpcwriteresponse returns the re-
sponse as a string, without any output.

Example
xmlrpcwriteresponse(123)
HTTP/1.1 200 OK
Connection: close
Server: LME 4.5
Content-Length: 123
Content-Type: text/xml

<?xml version="1.0"?>
<methodResponse>
<params>
<param>
<double>123.</double>
</param>
</params>
</methodResponse>

See also
xmlrpcwritecall, xmlrpcreadresponse, xmlrpcreadcall

12.16 Power Management

This section describes a function related to power management. There
may also be platform-dependent unsupported functions.

Function

idletime

Time since the last user activity.

Syntax
t = idletime

902 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
idletime gives the number of seconds since the user hit a key or
moved the mouse.

12.17 Shell

This section describes functions related to the Unix or Windows shell.
They are available only on Windows and on Unix (or Unix-like) systems,
such as macOS.

The versions for Unix and Windows have significant differences:

– Most functions described here are defined on both Unix and Win-
dows, to avoid errors when loading functions which contain con-
ditional code for Unix and Windows. Functions with an empty im-
plementation return the error "Not supported". Table below gives
the status of all commands.

Command Unix Windows
cd supported supported
cputime supported undefined
dir supported supported
dos not supported supported
getenv supported supported
pwd supported supported
setenv supported not supported
sleep supported supported
unix supported not supported
unsetenv supported not supported

– On Windows, some of the functionality of unix is provided by dos.
The main difference is that dos does not give any output, except
for the status code of the command.

Functions

cd

Set or get the current directory.

Syntax
cd(str)
str = cd

Extensions — shell 903

Description
cd(str) changes the current directory. Without input argument, cd
gives the current directory, like pwd.

The current directory is the root directory where files specified by
relative paths are searched by functions like fopen and dir. LME li-
braries are specified by name, not by path; the places where they are
searched is specified by a list of search paths, typically specified with
a path command or a dialog box in a graphical user interface.

Example
cd(’/usr/include’);

See also
pwd, dir

cputime

Amount of processing time since the beginning of the process.

Syntax
t = cputime

Description
cputime gives the amount of processing time spent since the applica-
tion has been launched.

See also
posixtime, clock

dir

List of files and directories.

Syntax
dir
dir(path)
r = dir
r = dir(path)

904 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
dir displays the list of files and directories in the current path. A string
input argument can specify the path.

With an output argument, dir returns the list of files and directories
as a structure array with the following fields:

Name Value
name file name or directory name
isdir false for files, true for directories
altname alternate name (Windows only)

Field isdir may be missing on some patforms. On Windows,
altname contains the DOS-compatible name (a.k.a. "8.3") if it exists,
or an empty string otherwise.

See also
cd, pwd

dos

Execute a command under Windows.

Syntax
status = dos(str)

Description
dos(str) executes a command with the system Windows function. No
input can be provided, and output is discarded. dos returns the status
code of the command, which is normally 0 for successful execution.

Example
dos(’del C:/tmp/data.txt’);

See also
unix

getenv

Get the value of an environment variable.

Syntax
value = getenv(name)

Extensions — shell 905

Description
getenv(name) gives the value of the environment variable of the spec-
ified name. If no such environment variable exists, getenv returns an
empty string.

Example
user = getenv(’USER’);

See also
setenv, unsetenv

pwd

Get the current directory.

Syntax
str = pwd

Description
pwd ("print working directory") gives the current directory. It has the
same effect as cd without input argument.

See also
cd, dir

setenv

Set the value of an environment variable.

Syntax
setenv(name, value)
setenv(name)

Description
setenv(name,value) sets the value of the environment variable of
the specified name. Both arguments are strings. If no such environ-
ment variable exists, it is created.

With a single input argument, setenv creates an empty environ-
ment variable (or remove the value of an exisisting environment vari-
able).

906 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Environment variables are defined in the context of the application;
they can be accessed in the application or in processes it launches.
Environment variables of the calling process (command shell, for in-
stance) are not changed.

setenv is not defined for Windows.

Example
setenv(’CONTROLDEBUG’, ’1’);

See also
getenv, unsetenv

sleep

Suspend execution for a specified amount of time.

Syntax
sleep(t)

Description
sleep(t) suspend execution during t seconds with a resolution of a
microsecond.

Example
sleep(1e-3);

unix

Execute a Unix command.

Syntax
unix(str)

Description
unix(str) executes a command with the default shell. No input can
be provided, and output is directed to the standard output of LME.

Examples
unix ls
unix(’cc -o calc calc.c; ./calc’)

Extensions — signal 907

See also
dos

unsetenv

Remove an environment variable.

Syntax
unsetenv(name)

Description
unsetenv(name) removes the definition of the environment variable
of the specified name. Argument is a string. If no such environment
variable exists, unsetenv does nothing.

Environment variables are defined in the context of the application;
they can be accessed in the application or in processes it launches.
Environment variables of the calling process (command shell, for in-
stance) are not changed.

unsetenv is not defined for Windows.

Example
unsetenv(’CONTROLDEBUG’);

See also
getenv, setenv

12.18 Signal

This section describes functions which offer support for POSIX signals,
i.e. a way for LME to be interrupted asynchronously from another
process. They map directly to the kill and signal POSIX functions;
therefore, they can interoperate with programs which call them di-
rectly.

These functions are available only on Posix systems, such as ma-
cOS.

Functions

getpid

Get the current process ID.

908 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
pid = getpid

Description
getpid gives the ID of the current process.

See also
kill

kill

Send a signal to another process.

Syntax
kill(pid)
kill(pid, sig)

Description
kill(pid) sends signal 2 (SIGINT) to process pid. kill(pid,sig)
sends signal sig given as a number between 1 and 31 or as a name
in a string (see signal for a list).

See also
signal, getpid

signal

Install a signal action.

Syntax
signal(sig, fun)
signal(sig)

Description
signal(sig,fun) installs function fun as the action for signal sig.
fun can be a function name in a string, a function reference, or an in-
line function with neither input nor output argument; sig is the num-
ber of the signal between 1 and 31, or its name as a string. The follow-
ing names are recognized (standard POSIX names compatible with the
program or shell command kill and C header file signal.h); case is
not significant, and names can be prefixed with ’sig’.

Extensions — signal 909

Name Number Name Number
’hup’ 1 ’stop’ 17
’int’ 2 ’tstp’ 18
’quit’ 3 ’cont’ 19
’ill’ 4 ’chld’ 20
’trap’ 5 ’ttin’ 21
’abrt’ 6 ’ttou’ 22
’emt’ 7 ’io’ 23
’fpe’ 8 ’xcpu’ 24
’kill’ 9 ’xfsz’ 25
’bus’ 10 ’vtalrm’ 26
’segv’ 11 ’prof’ 27
’sys’ 12 ’winch’ 28
’pipe’ 13 ’info’ 29
’alrm’ 14 ’usr1’ 30
’term’ 15 ’usr2’ 31
’urg’ 16

Note that signals 9 and 17 cannot be caught. Once a signal action
has been installed, if the specified signal is sent to the LME applica-
tion (typically with the LME or POSIX function kill), the function fun
is executed as soon as possible, at a time when it does not corrupt the
LME execution data. It can exchange information with the normal exe-
cution of LME via global variables; but semaphores cannot be used to
guarantee exclusive access, because the signal action is not executed
in a separate thread and locked semaphores could not be unlocked by
the main thread.

Example
Install a signal action which is triggered by signal usr1:

fun = inline(’function f;fprintf(’’Got signal usr1\n’’);’);
signal(’usr1’, fun);

Get process ID (the number is likely to be different):

getpid
22716

From another shell, use the program or shell command kill to send a
signal to LME:

kill -SIGUSR1 22716

See also
kill, threadnew

910 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

12.19 Serial port

Serial port functions enable communication with devices connected to
the computer via an RS-232 interface. Such devices include modems,
printers, and many scientific instruments. The operating system can
also emulate RS-232 connections with other devices, such as built-in
modems or USB (Universal Serial Bus) devices.

Functions described in this section include only those required for
opening and configuring the connection. They correspond to fopen
for files. Input, output, and control are done with the following generic
functions:
Function Description
fclose close the file
fflush flush I/O buffers
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
fscanf read formatted data
fwrite write data
redirect redirect output

Functions opendevice, devicename, closedevice, and
flushdevice are obsolete and may be removed in the future. They
are replaced with serialdevopen and serialdevset to specify
configuration settings, serialdevname, fclose, and fflush.

Functions

serialdevname

Serial device name.

Syntax
name = serialdevname(n)
list = serialdevname

Description
serialdevname(n) returns the name of the n:th serial device which
can be opened by serialdevopen. Argument n must be 1 or higher;
with other values, such as those larger than the number of serial de-
vices available on your computer, serialdevname returns the empty
string.

Without input argument, serialdevname gives the list of serial de-
vice names.

Extensions — serial 911

Examples
On a Macintosh with internal modem:

serialdevname(1)
Internal Modem

Under Windows:

serialdevname(1)
COM1

See also
serialdevopen

serialdevopen

Open a serial port.

Syntax
fd = serialdevopen(portname, options)
fd = serialdevopen(portname)

Description
serialdevopen(portname) opens a connection to the serial
port whose name is portname and returns a file descriptor fd.
Names depend on the operating system and can be obtained with
serialdevname.

Some platforms do not provide a complete list of all ports;
serialdevopen may accept additional device names and pass them
directly to the corresponding function of the operating system.

The second argument of serialdevopen(portname,options) is a
structure which contains configuration settings. It is set with
serialdevset.

Once a connection has been opened, the file descriptor fd can be
used with functions such as fread, fwrite, fscanf, and fprintf. The
connection is closed with fclose.

Example
fd = serialdevopen(serialdevname(1), ...

serialdevset(’BPS’,19200,’TextMode’,true,’Timeout’,2));
fprintf(fd, ’L,%d,2\n’, 1);
reply = fgetl(fd)
fclose(fd);

912 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
fclose, serialdevname, serialdevset, fflush, fread, fwrite,
fscanf, fgetl, fgets, fprintf

serialdevset

Configuration settings for serial port.

Syntax
options = serialdevset
options = serialdevset(name1, value1, ...)
options = serialdevset(options0, name1, value1, ...)

Description
serialdevset(name1,value1,...) creates the option argument
used by serialdevopen. Options are specified with name/value
pairs, where the name is a string which must match exactly the
names in the table below. Case is significant. Options which are not
specified have a default value. The result is a structure whose
fields correspond to each option. Without any input argument,
serialdevset creates a structure with all the default settings. Note
that serialdevopen also interprets the lack of an option argument,
or the empty array [], as a request to use the default values.

When its first input argument is a structure, serialdevset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
BPS 19200 bit per seconds
Delay 0 delay after character output in seconds
Handshake false hardware handshake
StopBits 2 number of stop bits (1, 1.5, or 2)
TextMode false text mode
Timeout 1 timeout in seconds
Virtual false virtual serial port

Output operations wait for the specified delay after each character;
this can be useful with slow devices without handshake.

When text mode is set, input CR and CR/LF sequences are con-
verted to LF. Output CR and LF are not converted.

Depending on the platform, operations which use the timeout value
(such as input) can be interrupted with the platform-dependent abort
key(s) (typically Escape or Control-C) or are limited to 10 seconds.

If Virtual is true, the connection speed, handshake and number of
stop bits are not set. The intended use is for drivers which emulate a
serial port, such as USB serial drivers.

Extensions — i2c 913

Example
serialdevset
BPS: 19200
Handshake: false
StopBits: 2
TextMode: false
Timeout: 1
Virtual: false

See also
serialdevopen, serialdevname

12.20 I2C

This section describes functions which read and write to an I2C bus.
Currently, these functions are available only on Linux computers.

Functions

i2copen

Open an I2C bus.

Syntax
id = i2copen
id = i2copen(path)

Description
Without input argument, i2copen opens the first I2C bus (/dev/i2c/0
on Linux). It returns a number which must be used with all the other
I2C functions.

i2copen(path) opens the I2C bus associated with the specified
device path, such as /dev/i2c/1.

See also
i2cclose, i2cread, i2cwrite

i2cclose

Close an I2C bus.

914 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Syntax
i2cclose(id)

Description
i2cclose(id) closes the I2C bus which has been opened with
i2copen. Its argument must be the number returned by i2copen. I2C
busses left open are closed automatically when LME is terminated.

See also
i2copen

i2cread

Read a word from an I2C bus.

Syntax
value = i2cread(id, slaveaddr, regaddr)
value = i2cread(id, slaveaddr, regaddr, precision)

Description
i2cread(id,slaveaddr,regaddr) reads the 8-bit register regaddr of
device slaveaddr on the I2C bus identified by id. The result is of type
uint8.

i2cread(id,slaveaddr,regaddr,precision) reads a register
whose size, signedness and endianness is specified in string
precision. The following values are accepted:

Precision Meaning
int8 signed 8-bit integer (-128 ≤ x ≤ 127)
int16 signed 16-bit integer (-32768 ≤ x ≤ 32767)
int32 signed 32-bit integer (-2147483648 ≤ x ≤ 2147483647)
uint8 unsigned 8-bit integer (0 ≤ x ≤ 255)
uint16 unsigned 16-bit integer (0 ≤ x ≤ 65535)
uint32 unsigned 32-bit integer (0 ≤ x ≤ 4294967295)

By default, multibyte words are encoded with the least significant
byte first (little endian). The characters ’;b’ can be appended to spec-
ify that they are encoded with the most significant byte first (big en-
dian) (for symmetry, ’;l’ is accepted and ignored).

Example
id = i2copen;
version = i2cread(id, 0x62, 0x00);
position = i2cread(id, 0x62, 0x10, ’uint32’);
speed = i2cread(id, 0x62, 0x20, ’int16’);
i2cclose(id);

Extensions — joystick 915

See also

i2copen, i2cwrite

i2cwrite

Write a word to an I2C bus.

Syntax
i2cwrite(id, slaveaddr, regaddr, value)
i2cwrite(id, slaveaddr, regaddr, value, precision)

Description

i2cwrite(id,slaveaddr,regaddr,value) writes the 8-bit word
value to the register regaddr of device slaveaddr on the I2C bus
identified by id. value is converted to an 8-bit integer if necessary.

i2cwrite(id,slaveaddr,regaddr,value,precision) writes the
word value with size and endianness specified in string precision.
See i2cread for a list of supported values. Signedness is irrelevant
and ignored.

See also

i2copen, i2cread

12.21 Joystick

This section describes functions which read the state of a joystick.
Currently, these functions are available on Windows, Mac and Linux
computers.

Functions

joystickbuttons

Get the state of the joystick buttons.

Syntax
b = joystickbuttons(i)

916 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
joystickbuttons(i) gives the state of the buttons of the joystick i.
Each buttons corresponds to a bit of the result; for instance, if the
result of joystickbuttons(1) is 4, the 3rd button of the first joystick
is pressed (4 is 2̂ (3-1), while all other buttons are released.

See also
joystickpos, joysticklist

joysticklist

List of joysticks connected to the computer.

Syntax
l = joysticklist

Description
joysticklist gives the list of the joysticks connected to the com-
puter. Each element is a string which contains the name of the joy-
stick. Empty string represent joystick not connected. Joysticks are
listed in the same order as the index of the joystick used as input
argument of joystickbuttons and joystickpos.

See also
joystickbuttons, joystickpos

joystickpos

Get the state of the joystick buttons.

Syntax
pos = joystickpos(i)

Description
joystickpos(i) gives the position of the joystick i as a vector whose
elements are normalized between -1 and 1. For a standard joystick,
the first component is between -1 for left and 1 for right; the second
component, between -1 for forward (joystick pushed) and 1 for back-
ward (pulled); and additional components depend on the joystick and
the driver.

Extensions — audio output 917

See also
joystickbuttons, joysticklist

12.22 Audio output

This section describes functions which play sounds. Currently, these
functions are available on Windows and macOS.

Functions

audioplay

Play audio samples.

Syntax
audioplay(samples)
audioplay(samples, options)

Description
audioplay(samples) plays the audio samples in array samples at a
sample rate of 44.1 kHz. Each column of samples is a channel (i.e.
samples is a column vector for monophonic sound and a two-column
array for stereophonic sound), and each row is a sample. Samples are
stored as double or single numbers between -1 and 1, int8 numbers
between -128 and 127, or int16 numbers between -32768 and 32767.

audioplay(samples,options) uses the specified options, which
are typically built with audioset or provided directly as named argu-
ments.

Examples
A monophonic bell-like sound of two seconds with a frequency of 740
Hz and a damping time constant of 0.5 second:

t = (0:1/44100:2)’;
samples = sin(2*pi*740*t).*exp(-t/0.5);
audioplay(samples);

Some white noise which oscillates 5 times between left and right:

t = (0:1/44100:1)’;
noise = 0.1 * randn(length(t), 1);
left = cos(2 * pi * t) .* noise;
right = sin(2 * pi * t) .* noise;
audioplay([left, right], Repeat=5);

918 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

See also
audioset

audioset

Options for audio.

Syntax
options = audioset
options = audioset(name1=value1, ...)
options = audioset(name1, value1, ...)
options = audioset(options0, name1=value1, ...)
options = audioset(options0, name1, value1, ...)

Description
audioset(name1,value1,...) creates the option argument used by
audioplay. Options are specified with name/value pairs, where the
name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to each
option. Without any input argument, audioset creates a structure
with all the default options. Note that audioplay also interprets the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, audioset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options:

Name Default Meaning
Repeat 1 number of repetitions
SampleRate 44100 sample rate in Hz

Default values may be different on platforms with limited audio ca-
pabilities.

Example
Default options:

audioset
Repeat: 1
SampleRate: 44100

See also
audioplay

Extensions — audio input 919

12.23 Audio Input

This section describes functions which record sounds. Currently, these
functions are available on Windows and macOS.

Functions

audiorecord

Record audio samples.

Syntax
samples = audiorecord(t)
samples = audiorecord(t, options)

Description
audiorecord(t) records audio samples for t seconds and returns
them in an array of single numbers. On computers which support
them, the default sample rate is 44.1 kHz and the default number of
channels is 2 (stereo). The result has 2 columns (one per channel) and
as many rows as samples.

audiorecord(t,options) uses the specified options, which are
typically built with audiorecordset.

Example
samples = audiorecord(1);
audioplay(samples);

See also
audiorecordset, audioplay

audiorecordset

Options for audio.

Syntax
options = audiorecordset
options = audiorecordset(name1=value1, ...)
options = audiorecordset(name1, value1, ...)
options = audiorecordset(options0, name1=value1, ...)
options = audiorecordset(options0, name1, value1, ...)

920 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
audiorecordset(name1,value1,...) creates the option argument
used by audiorecord. Options are specified with name/value pairs,
where the name is a string which must match exactly the names in
the table below. Case is significant. Options which are not specified
have a default value. The result is a structure whose fields correspond
to each option. Without any input argument, audiorecordset creates
a structure with all the default options. Note that audiorecord also
interprets the lack of an option argument, or the empty array [], as a
request to use the default values.

When its first input argument is a structure, audiorecordset adds
or changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options:

Name Default Meaning
SampleRate 44100 sample rate in Hz
Stereo true true for stereo, false for mono

Default values may be different on platforms with limited audio ca-
pabilities.

Examples
Default options:

audiorecordset
SampleRate: 44100
Stereo: true

Record in mono:

samples = audiorecord(1, audiorecordset(Stereo=false));

See also
audiorecord

12.24 Speech

This section describes functions which support speech output on Win-
dows and Mac.

Functions

isspeaking

Check if last speech is still uttered.

Extensions — speech 921

Syntax
b = isspeaking

Description
Function isspeaking returns true if the last call to speak is still ut-
tered, or false otherwise.

See also
speak

speak

Speak a string.

Syntax
speak(str)
speak(str, opt)

Description
speak(str) speaks string str, using the default system settings.

speak(str,opt) uses the speech options in opt.
speak returns as soon as possible, without waiting until the text

has been uttered. Function isspeaking checks if the last speak call is
completed. If speak is called before the previous call is completed, it
waits, so that continuous speech is produced.

Speech options are set with speakset or with named arguments.

Example
speak(’Hello, L M E !’)

See also
speakset, isspeaking

speakset

Options for speech synthesis.

Syntax
options = speakset
options = speakset(name1, value1, ...)
options = speakset(options0, name1, value1, ...)

922 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Description
speakset(name1,value1,...) creates the option argument used by
speak. Options are specified with name/value pairs, where the name
is a string which must match exactly the names in the table below.
Case is significant. Options which are not specified have a default
value. The result is a structure whose fields correspond to each op-
tion. Without any input argument, speakset creates a structure with
all the default options. Note that speak also interprets the lack of
an option argument, or the empty array [], as a request to use the
default values.

When its first input argument is a structure, speakset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of options. Some of them are not available on all
platforms; type speakset without argument to verify. Experimenting
is the best way to find the values you prefer.

Name Meaning
Pitch voice pitch (frequency, only on Mac)
Rate rate (words per minute, only on Mac)
RateAdjustment rate adjustment between -10 and 10 (only on Windows)
Voice name of the voice (empty string=default)

The list of voices available on your computer can be obtained with
speakvoices.

Example
Default options on Mac:

speakset
Pitch: 5.8763
Rate: 201
Voice: ’’

See also
speak, speakvoices

speakvoices

List of voices for speech synthesis.

Syntax
list = speakvoices

Extensions — speech 923

Description
speakvoices gives the list of all voices installed on the computer
which can be used for speech synthesis. One of them can be used
with the option ’Voice’ of speackset.

Example
speakvoices
{’Agnes’,’Albert’,’Bad News’,’Bahh’,’Bells’,
(more voices here)}

See also
speak, speakset

Chapter 13

External Code

Calls to external code are useful in three situations:

– when LME, the language of Sysquake, is not fast enough for some
computation-intensive algorithms, or when you already have im-
plemented the algorithm in another language;

– when you want to use features of the operating system not sup-
ported by LME;

– when you want to communicate with other devices.

Among examples belonging to the third case, one can mention updat-
ing the parameters of a real-time controller running with a real pro-
cess, collecting experimental data to obtain a model, or changing the
coefficients of an audio filter to add a new dimension to what the user
perceives.

13.1 Implementation

Calls to external code are performed by calling functions in a shared
library, also known as dynamic link library. Several shared libraries
can be used simultaneously, and each of them can contain several
functions. Each function must have the following prototype, given
here in ISO (ANSI) C using the header file LME_Ext.h. Other languages
can also be used, provided that the same calling conventions are used.
In C++, for instance, prototypes must be preceded by extern "C" to
disable name mangling.

lme_err fn(lme_ref lme, lme_int nargin, lme_int nargout)

Its three arguments are:

926 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

lme_ref lme Pointer to a reference to the LME instance which calls
the function, to be used with callbacks, and to the callbacks them-
selves. Definitions in LME_Ext.h assume this argument is named
lme. It should be passed to all sub-functions which use callbacks.

lme_int nargin Number of input arguments.

lme_int nargout Number of output arguments. If the function
accepts 0 or more arguments and is called with nargout=0, it can
return one output argument anyway; this result is stored in the
variable ans and displayed if the function is at the top level of the
expression and is not followed by a semicolon.

The output of the function is 1 for success or 0 for failure.
Retrieving the value of the input arguments and setting the out-

put arguments are performed with the help of callback functions (i.e.
functions implemented in LME which are called back by the extension;
the header file LME_Ext.h hide the implementation details). Currently,
arguments can be real or complex matrices, arrays of any dimension
and type supported by LME, strings, lists, structures, structure arrays,
and binary objects. Callback functions which manipulate arguments
return 1 if the call is successful, or 0 otherwise. Failures are not fatal;
for example, if a string or numeric argument is expected, you may try
to retrieve a string, then try to get a number (or a numeric matrix) if
it fails.

Input arguments can be retrieved in any order. Output arguments
must be pushed in reverse order, beginning with the last one; or in
normal order from first to last if LMECB_ReverseOutputArguments is
called once all the arguments have been pushed. Exactly nargout
values must be pushed.

13.2 Callbacks

Here is a list of callback functions to get input arguments, set output
arguments, throw errors, and output information.

Get input arguments

lme_err LMECB_GetMatrix(lme_int i, lme_int *m, lme_int
*n, lme_float **re, lme_float **im) Retrieves the i:th
input argument as a double matrix (a 2-d array). The index i must
be between 1 and nargin inclusive. *m and *n are set to the
number of rows and the number of columns of the matrix,
respectively (1 and 1 mean a scalar number); *re is set to a
pointer to the real part, and *im to a pointer to the imaginary part
if it exists, or to a null pointer otherwise. im can be a null pointer

External Code 927

(NULL or 0) if the imaginary part is not needed. Values are
currently stored row-wise; i.e. the real part of the 5th element
of the 4th row is (*re)[(4-1)*n+(5-1)]. But this might
change in the future: values could be stored column-wise,
with the real part of the 5th element of the 4th row stored at
(*re)[(4-1)+(5-1)*m]. You can anticipate the change by
checking if k_lme_array_item_row_wise is defined.

lme_err LMECB_GetScalar(lme_int i, lme_float *re,
lme_float *im) Retrieves the i:th input argument as a scalar
number. The index i must be between 1 and nargin inclusive.
*re is set to the real part, and *im (in im is not null) to the
imaginary part if it exists, or to 0 otherwise. The argument can be
any numeric type (double, single, or any integer type).

lme_err LMECB_GetArray(lme_int i, lme_int *ndims, lme_int
*size, lme_int *nbytes, lme_int *type,void **data)
Retrieves the i:th input argument as an array. The index i
must be between 1 and nargin inclusive. *ndims is set to
the number of dimensions (2 or larger); *size (an array of
k_lme_max_ndims elements) is filled with the *ndims dimensions;
*nbytes is set to the number of bytes per element; *type
to k_lme_type_signed_int, k_lme_type_unsigned_int,
k_lme_type_realfloat, k_lme_type_complexfloat,
k_lme_type_char, k_lme_type_logical, or k_lme_type_null;
and *data, to a pointer to the data. For complex numbers,
imaginary part is stored as a separate array, after the real part.

lme_err LMECB_GetString(lme_int i, lme_string8 *str,
lme_int *length) Retrieves the i:th input argument as a
string. *str is set to a pointer to the beginning of the string,
and *length to the string length. Note that the string is not
null-terminated.

lme_err LMECB_GetBinaryObject(lme_int i, lme_int *size,
void **data) Retrieves the i:th input argument as a binary
object. *size, if size is not null, is set to its size in bytes, and
*data to its address. Each extension has its own, unique binary
object; an extension cannot retrieve a binary object created by
another extension.

lme_err LMECB_GetObject(lme_int i, lme_object *o)
Retrieves the i:th input argument as a generic object. *o is set to
a reference to the object. It is a structure whose first field,
o->objtype, is public and describes the type of the object:

928 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Enum Value Object type
k_lme_obj_unknown 0 Unknown (other)
k_lme_obj_array 1 Array of any type
k_lme_obj_list 2 List
k_lme_obj_struct 3 Structure
k_lme_obj_structarray 4 Structure array

Other fields are private. Functions below permit to extract the ob-
ject contents.

lme_err LMECB_ObjectToArray(lme_object const *o, lme_int
*ndims, lme_int *size, lme_int *nbytes, lme_int *type,
void **data) Gets an array of any type from a generic object.
No conversion is performed; the object must be an array.
Arguments have the same meaning as those of LMECB_GetArray.

lme_err LMECB_ObjectLength(lme_object const *o, lme_int
*length) Gives the length of a list or the number of fields of a
structure from a generic object.

lme_err LMECB_GetElementFromListObject(lme_object const
*o, lme_int i, lme_object *el) Gets an element of a list as
a generic object. *el is set to a reference to element i (first is
i=1) of the list object referenced by *o.

lme_err LMECB_GetFieldNameFromStructObject(lme_object
const *o, lme_int i, lme_char8 name[]) Gets the name of
field i (first is i=1) of the structure object or structure array object
referenced by *o. The name is stored in string name which must
contain at least k_lme_fieldname_maxlength (32) characters. It
is terminated by the null character.

lme_err LMECB_GetFieldFromStructObject(lme_object const
*o, lme_string8 name, lme_object *fld) Gets a field of
structure *o as a generic object. *fld is set to a reference to the
field whose name is the null-terminated string name.

lme_err LMECB_GetFieldFromStructArrayObject(lme_object
const *o, lme_int i, lme_string8 name, lme_object *fld)
Gets a field of structure object *o as a generic object. *fld is set
to a reference to the field whose name is the null-terminated
string name of element i (first is i=1).

Set output arguments

lme_err LMECB_PushMatrix(lme_int m, lme_int n, lme_float
**re, lme_float **im) Pushes a matrix output argument on
the stack. m and n are the number of rows and the number of

External Code 929

columns of the matrix, respectively; *re is set to a pointer to the
real part of the matrix, and *im to a pointer to its imaginary part.
To push a real matrix, set im to a null pointer (NULL or 0). After the
call, you should store the value of the matrix to the place pointed
by *re and *im.

lme_err LMECB_PushArray(lme_int ndims, lme_int *size,
lme_int nbytes, lme_int type, void **data) Pushes
an array output argument on the stack. ndims is the
number of dimensions; size, a vector of ndims dimensions;
nbytes, the number of bytes per element; type, the array
type (cf. LMECB_GetArray); and *data is set to a pointer to
the place where the array must be stored. nbytes must be
1 for k_lme_type_logical; 2 for k_lme_type_char; 8 for
k_lme_type_realfloat and k_lme_type_complexfloat; 1, 2, or
4 for k_lme_type_signed_int and k_lme_type_unsigned_int; or
0 for k_lme_type_null.

If one does not know the size of the array before filling it, one
can replace one (and only one) dimensions in size with -1;
LMECB_PushArray will replace it with the largest possible value,
which depends on the memory available. Then the array can be
filled (with the element layout determined by the final size), and a
second call to LMECB_PushArray with the final size must be
performed before pushing other output arguments (if any) and
returning.

lme_err LMECB_StartPushString(lme_int length, lme_string8
*str) Begins to push a string output argument on the stack,
containing 8-bit characters (LMECB_PushArray should be used to
push strings with characters whose code is larger that 255). The
string length is specified in length; *str is set to a pointer to the
buffer where you should store the string itself. The string must not
be null-terminated. Once the string is stored, and before pushing
anything else, call LMECB_EndPushString() to convert the string
to the LME internal format.

lme_err LMECB_EndPushString() Finishes the string pushing op-
eration.

lme_err LMECB_PushBinaryData(lme_int size, void **data)
Pushes an uninitialized binary object with room for size bytes on
the stack. *data is set to its address, so that it can be filled. In
addition to functions which create and use binary objects, you can
overload existing functions, operators such as plus or mtimes,
subscript and field access such as subsref and subsasgn, and
function disp to display the value.

lme_err LMECB_PushNull() Pushes a null object on the stack.

930 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

lme_err LMECB_PushEmptyList() Pushes an empty list on the
stack. Elements can be added by pushing them and appending
them to the list with LMECB_AddListElement.

lme_err LMECB_AddListElement() Adds the object at the top of
the stack to the end of the list below it.

lme_err LMECB_PushEmptyStructure() Pushes an empty struc-
ture on the stack. Fields can be added by pushing them and ap-
pending them to the structure with LMECB_AddStructureField.

lme_err LMECB_AddStructureField(lme_string8 fieldName)
Adds the object at the top of the stack to the end of the structure
below it as a field with name fieldName. fieldName is a
null-terminated string.

lme_err LMECB_ConvertStructListToStructArray(lme_int
ndims, lme_int const *size) Converts the list of structures
which has just been pushed to a structure array of the specified
size, or to a one-column structure array if ndims is zero or size is
NULL. This is the only way to create a structure array: first
build a list of (scalar) structures with LMECB_PushEmptyList,
LMECB_PushEmptyStructure, LMECB_AddStructureField and
LMECB_AddListElement, then convert it to a structure array with
LMECB_ConvertStructListToStructArray. No more fields or
elements can be added to the structure array afterwards.

lme_err LMECB_ReverseOutputArguments() Reverse the order of
output arguments which have been pushed thus far. Useful when it
is more convenient to push the output arguments from first to last.

Options

lme_err LMECB_SetOptions(lme_int nargin) To implement
functions which create an option structure like optimset
or odeset, the default option structure should be created
irrespective of input arguments, then LMECB_SetOptions is called.

Memory allocation

void *LMECB_AllocTemp(lme_int n) Allocates n bytes of tempo-
rary memory. Allocating memory must be done after all output
arguments have been pushed. Except for strings, this is not a prob-
lem, because matrices may be filled later. A null pointer is returned
if the allocation fails. The memory needs not be freed.

External Code 931

Output and error handling

void LMECB_Write(lme_int fd, lme_string8 ptr, lme_int
len, lme_int textMode) Writes the data of size len pointed
by ptr to the output channel identified by the file descriptor fd. If
len is negative, data must be null-terminated. The file descriptor
must have a value compatible with those used by LME functions
like fprintf and fwrite. If textMode is non-zero, characters ’\n’
(10) are converted to the end-of-line sequence valid for the file
descriptor.

lme_err LMECB_Error(lme_string8 identifier, lme_string8
message) Throws an error with the specified identifier and
message, both null-terminated strings. Null pointers are valid. The
function which throws an error should return with the value
returned by LMECB_Error (i.e. the usual code to throw an error is
return LMECB_Error(...);).

lme_err LMECB_CheckAbort() Checks if the user interrupts the
computation, typically by pressing Control-Break on Windows,
Command-. on Mac or Control-C on Linux. If the status code it
returns is non-zero, computation should be aborted. This function
can be called during lengthy computation to avoid blocking the
application.

void LMECB_DbgWriteStr(lme_string8 str) Writes the
null-terminated string str to the standard error, followed by a new
line. This is typically used during development for debugging
purposes.

Client data

lme_err LMECB_ClientData(lme_string8 name, lme_int size,
void **addr) Get the address of a named block of memory.
Any data can be stored there. Each LME instance has a unique
copy for a given name. The first time LMECB_ClientData is called
for a given name, the block is allocated with the specified size (in
bytes) and initialized to 0; then argument size is ignored.

13.3 Start up and shut down

Functions are added to the set of built-in functions when LME starts
up. They effectively extend LME. To permit LME to load them, you
must provide the following function, named InstallFn:

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{

932 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

/* initialize any resource necessary for the
functions */

*fnarray = [array of function descriptions];
return [number of elements in *fnarray];

}

The essential purpose of this function, which must be exported
with whatever mechanism is available on your platform
(__declspec(dllexport) for DLL on Windows or the PEF export
options on Mac OS 9), is to refer LME to an array of function
descriptions. This array, which is typically defined as static, has
elements of type lme_fn:

typedef struct
{

char name[32];
lme_extfn fn;
lme_int minnargin, maxnargin;
lme_int minnargout, maxnargout;

} lme_fn;

The field name is the name of the function (what you will use in your SQ
files), fn is a pointer to the function which implements the behavior of
the function, minnargin and maxnargin are the minimum and maxi-
mum number of input arguments your function is ready to accept, and
minnargout and maxnargout are the minimum and maximum number
of output arguments your function is ready to provide. Typically, if your
function can provide output argument(s), you should set minnargout
to 1; LME will display a result if you omit the semicolon at the end of a
call to your function.

You can implement new types of object (binary objects), at most
one per extension. Functions can overload existing functions in a sim-
ilar way as for objects defined with class. Overloaded functions must
begin with the prefix lme_k_binary_overload_str_prefix; for exam-
ple to define a function plus for the addition of your binary objects,
the entry in the array of functions would be

{lme_k_binary_overload_str_prefix "plus",
overloadedPlus, 2, 2, 1, 1}

This prefix must not be used for functions unless they take binary
objects as input arguments. See the example 3 below for a complete
example.

You can also allocate resources in InstallFn (such as opening
files); in that case, you want to define and export a function named
ShutdownFn to release these resources when LME terminates:

void ShutdownFn(lme_ref lme)
{

/* release all resources allocated by InstallFn */
}

External Code 933

13.4 Examples

The following extension adds two functions to LME: plus1 which ac-
cepts up to 50 double real or complex matrix arguments and return
them in the same order with 1 added, and hi which displays a mes-
sage if there is no output argument, or returns it as a string if there is
one.

#include "LME_Ext.h"
#include <string.h>

static lme_err plus1(lme_ref lme,
lme_int nargin, lme_int nargout)

/* same as (x+1), but with multiple arguments */
{
int i, j;
lme_float *re, *im, *re1, *im1;
lme_err status;
lme_int m, n;

for (i = nargout; i >= 1; i-) /* backward */
{
if (i <= nargin)
{
status = LMECB_GetMatrix(i, &m, &n, &re, &im);
if (!status)
return 0;

status = LMECB_PushMatrix(m, n, &re1, im ? &im1 : 0);
if (!status)
return 0;

for (j = 0; j < m * n; j++)
re1[j] = re[j] + 1;

if (im)
for (j = 0; j < m * n; j++)
im1[j] = im[j];

}
else
if (!LMECB_PushMatrix(0, 0, &re1, 0))

return 0;
}

return 1;
}

static lme_err hi(lme_ref lme,
lme_int nargin, lme_int nargout)

/* hello world */
{
char *msg = "Hello, World!";

934 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

if (nargout == 1)
{
lme_string8 str;
int i;

if (!LMECB_StartPushString(strlen(msg), &str))
return 0;

for (i = 0; i < strlen(msg); i++) /* without the ’\0’ */
str[i] = msg[i];

if (!LMECB_EndPushString())
return 0;

}
else

LMECB_DbgWriteStr(msg);

return 1;
}

static lme_fn fn[] =
{
{"plus1", plus1, 0, 50, 0, 50},
{"hi", hi, 0, 0, 0, 1}

};

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{
LMECB_DbgWriteStr("Installing test functions.");
*fnarray = fn;
return 2;

}

The extension below implements displayobject which displays the
skeleton of its input argument. It shows how to scan all elements of a
list or a structure.

#include "LME_Ext.h"
#include <stdio.h>

static lme_err displayRec(lme_ref lme, lme_object *o)
/* called recursively */

{
lme_int status = 1, ndims, *size, len, i;
lme_object el;
lme_char8 str[k_lme_fieldname_maxlength];

switch (o->objtype)
{
case k_lme_obj_unknown:
LMECB_Write(1, "unknown", -1, 1);
break;

case k_lme_obj_array:

External Code 935

LMECB_Write(1, "array(", -1, 1);
status = LMECB_ObjectToArray(o, &ndims, &size,

NULL, NULL, NULL);
if (!status)
return 0;

for (i = 0; i < ndims; i++)
{
sprintf(str, i > 0 ? "x%d" : "%d", size[i]);
LMECB_Write(1, str, -1, 1);

}
LMECB_Write(1, ")", -1, 1);
break;

case k_lme_obj_list:
LMECB_Write(1, "{", -1, 1);
status = LMECB_ObjectLength(o, &len);
for (i = 1; status && i <= len; i++)
{
if (i > 1)
LMECB_Write(1, ",", -1, 1);

status = LMECB_GetElementFromListObject(o, i, &el);
if (status)
status = displayRec(lme, &el);

}
LMECB_Write(1, "}", -1, 1);
break;

case k_lme_obj_struct:
LMECB_Write(1, "struct(", -1, 1);
status = LMECB_ObjectLength(o, &len);
for (i = 1; status && i <= len; i++)
{
if (i > 1)
LMECB_Write(1, ",", -1, 1);

status = LMECB_GetFieldNameFromStructObject(o, i, str);
if (!status)
break;

LMECB_Write(1, str, -1, 1);
LMECB_Write(1, "=", -1, 1);
status = LMECB_GetFieldFromStructObject(o, str, &el);
if (status)
status = displayRec(lme, &el);

}
LMECB_Write(1, ")", -1, 1);
break;

}
return status;

}

static lme_err displayobject(lme_ref lme,
lme_int nargin, lme_int nargout)

/* display argument */

936 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

{
lme_object o;
if (!LMECB_GetObject(1, &o) || !displayRec(lme, &o))

return 0;
LMECB_Write(1, "\n", -1, 1);
return 1;

}

static lme_fn fn[] =
{
{"displayobject", displayobject, 1, 1, 0, 0}

};

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{
LMECB_DbgWriteStr("Installing displayobject.");
*fnarray = fn;
return 1;

}

The extension below implements a new type for integer arithmetic
modulo n. The function modint(i,n) creates a new object of this
type. Operators +, - (binary and unary), and * are overloaded to sup-
port expressions like modint(2,7)*3+5, whose result would be 4 (mod
7). The function disp is also overloaded; it can be called explicitly, but
also implicitly to display the result of an expression which is not fol-
lowed by a semicolon.

#include "LME_Ext.h"
#include <stdio.h>

typedef struct
{
long i, n;

} Data;

static lme_err modint(lme_ref lme,
lme_int nargin, lme_int nargout)

// modint(i, n) -> create a binary object
// for arithmetic modulo n

{
lme_float x, y;
Data *result;

if (!LMECB_GetScalar(1, &x, NULL)
|| !LMECB_GetScalar(2, &y, NULL))

return 0;
if (!LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

External Code 937

result->n = (long)y;
result->i = (long)x;
return 1;

}

static lme_err getTwoArgs(lme_ref lme,
Data *data1, Data *data2)

// get two numbers with at least one binary object
{
Data *d;
lme_float x;

if (LMECB_GetBinaryData(1, NULL, (void **)&d))
{
*data1 = *data2 = *d;
if (LMECB_GetBinaryData(2, NULL, (void **)&d))
{
// binary, binary
*data2 = *d;
return 1;

}
else if (LMECB_GetScalar(2, &x, NULL))
{
// binary, scalar
data2->i = (long)x;
return 1;

}
else
return 0;

}
else
{
// 1st arg is not binary, hence 2nd should be
if (LMECB_GetBinaryData(2, NULL, (void **)&d))
*data1 = *data2 = *d;

else
return 0;

if (!LMECB_GetScalar(1, &x, NULL))
return 0;

data1->i = (long)x;
return 1;

}
}

static lme_err plus(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded operator + for arithmetic modulo n
{
Data data1, data2, *result;

938 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

if (!getTwoArgs(lme, &data1, &data2)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

result->n = data1.n;
result->i = (data1.i + data2.i) % data1.n;
return 1;

}

static lme_err minus(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded operator - for arithmetic modulo n
{
Data data1, data2, *result;

if (!getTwoArgs(lme, &data1, &data2)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

result->n = data1.n;
result->i = (data1.n + data1.i - data2.i) % data1.n;
return 1;

}

static lme_err mtimes(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded operator * for arithmetic modulo n
{
Data data1, data2, *result;

if (!getTwoArgs(lme, &data1, &data2)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

result->n = data1.n;
result->i = (data1.i * data2.i) % data1.n;
return 1;

}

static lme_err uminus(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded unary operator - for arithmetic modulo n
{
Data *data, *result;

if (!LMECB_GetBinaryData(1, NULL, (void **)&data)
|| !LMECB_PushBinaryData(sizeof(Data), (void **)&result))

return 0;

External Code 939

result->n = data->n;
result->i = (data->n - data->i) % data->n;
return 1;

}

static lme_err disp(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded "disp" function to display binary object
{
Data *data;
char str[64];

if (!LMECB_GetBinaryData(1, NULL, (void **)&data))
return 0;

sprintf(str, "%ld (mod %ld)\n", data->i, data->n);
LMECB_Write(1, str, -1, 1);
return 1;

}

static lme_err subsref(lme_ref lme,
lme_int nargin, lme_int nargout)

// overloaded subsref (field access) to get
// the contents of binary object
// b.i === subsref(b, {type=’.’,subs=’i’}) -> value
// b.n === subsref(b, {type=’.’,subs=’n’}) -> modulo

{
Data *data;
lme_object o, fld;
unsigned short *str;
lme_int ndims, *size, nbytes, type;
lme_float *res;

if (!LMECB_GetBinaryData(1, NULL, (void **)&data)
|| !LMECB_GetObject(2, &o))

return 0;

// extract field name from 2nd arg
if (!LMECB_GetFieldFromStructObject(&o, "type", &fld)

|| !LMECB_ObjectToArray(&fld, &ndims, &size,
&nbytes, &type, (void **)&str)

|| ndims != 2 || size[0] * size[1] != 1
|| type != k_lme_type_char
|| (char)str[0] != ’.’
|| !LMECB_GetFieldFromStructObject(&o, "subs", &fld)
|| !LMECB_ObjectToArray(&fld, &ndims, &size,

&nbytes, &type, (void **)&str)
|| ndims != 2 || type != k_lme_type_char)

return LMECB_Error("LME:wrongType", NULL);
if (size[0] * size[1] != 1

940 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

|| (char)str[0] != ’i’ && (char)str[0] != ’n’)
return LMECB_Error("LME:undefField", NULL);

// push result
if (!LMECB_PushMatrix(1, 1, &res, NULL))

return 0;
*res = (char)str[0] == ’i’ ? data->i : data->n;

return 1;
}

static lme_fn fn[] =
{
{"modint", modint, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "plus", plus, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "minus", minus, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "mtimes", mtimes, 2, 2, 1, 1},
{lme_k_binary_overload_str_prefix "uminus", uminus, 1, 1, 1, 1},
{lme_k_binary_overload_str_prefix "disp", disp, 1, 1, 0, 0},
{lme_k_binary_overload_str_prefix "subsref", subsref, 2, 2, 1, 1}

};

lme_int InstallFn(lme_ref lme, lme_fn **fnarray)
{
LMECB_DbgWriteStr("modint: modint, disp, minus, mtimes, plus, "

"subsref, uminus");
*fnarray = fn;
return 7;

}

13.5 Remarks

We have three suggestions to make the development of your external
functions easier:

– Check whether your functions are loaded correctly by typing info
b in the command-line window. Your new functions should appear
in the list.

– Use a source-level debugger and break into your code to check
how LME calls your functions.

– During development, add LMECB_DbgWriteStr calls to your code,
including in InstallFn (and ShutdownFn if it exists), especially
if your development environment does not support source-level
debugging.

Chapter 14

Remote Procedure Calls

Sysquake’s ability to solve problems can be extended with the help
of external applications. This requires the capability of exchanging
data and triggering actions across applications. There are basically
two possible situations: Sysquake initiates the communication, or it
receives requests from the other application. In the first case, LME
functions executed by the different handlers defined in SQ files are
usually sufficient. In case the communication mechanism is not sup-
ported directly by Sysquake, it can be implemented by libraries which
add communication protocol layers on top of those existing in LME
(for instance an SMTP layer on top of TCP/IP for sending email), or by
extensions. This chapter describes means for Sysquake to act as the
target of remote requests.

The generic name for sending a command which lets another pro-
cess, possibly running on another computer, execute code, is Remote
Procedure Call. It typically involves the identification of the remote ap-
plication, sending a procedure (or function) identifier and arguments,
and receiving results.

Sysquake uses two different mechanisms: OLE Automation on Win-
dows, and XML-RPC on Mac OS X and Linux. The servers are disabled
by default; an option to enable them is located in the Preference panel
"Extensions". For security reasons, the XML-RPC server accepts local
connections only.

User applications can use directly these low-level mechanisms. In
addition, SysquakeLink, a Java package, gives a higher-level interface,
common to all platforms. It is obviously especially suited to Java appli-
cations, but can also be used from other applications using Java Native
Access (JNI); please see the Sun documentation for more informations.

942 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

14.1 General Description

The main goal of RPC is to let a separate application (the client) in-
teract with an SQ file loaded in Sysquake by reading and changing
variable. Multiple variable values can be read or changed in a single
command. After each change, Sysquake redraws all figures so that
they show the new state.

Other RPC commands let the client application load an SQ or SQD
file, execute a command as it it were typed in the command window,
get the list of variables of an SQ file or defined in the context of the
command window, and ge the value of variables defined in that con-
text.

When an SQ or SQD file is loaded in Sysquake, a new SQ file in-
stance is created, associated with a unique instance ID represented
by a positive integer number. The instance ID is returned to the caller
when the file is loaded; it is used to identify the instance in later calls.

All versions of Sysquake support at least the following types: real
double (with support for inf and nan), int32 and logical, scalar or 2-d
arrays; and character strings.

Variable change notification

Remote Procedure Calls are always initiated by the client. An addi-
tional mechanism is provided so that Sysquake can notify the client
about user actions in Sysquake. The client can provide some code
which is executed whenever a variable is changed in a specified SQ
file instance, i.e. when the user manipulates a figure or selects a
menu entry. This code can contact back the client so that it request
the new values of the variables it is interested in.

In the Java package SysquakeLink, notifications are implemented
with local UDP connections. The following code is executed by
Sysquake; port number port is chosen by the operating system to
avoid conflicts with other services.

_fd_varChangedSQLinkNot = ...
socketnew(’localhost’,port,socketset(’Proto’,’udp’));

_fd_varChangedSQLinkNot,’var changed’);
fclose(_fd_varChangedSQLinkNot);

14.2 OLE Automation on Windows

The list below enumerates all OLE Automation functions implemented
by Sysquake. Their IDs are not specified, because they are subject to
change in future versions.

Version(Get Sysquake version as a string.

RPC 943

Execute(Execute code in the context of the Command window.

GetVariableNames(Get the list of variables declared in the SQ file
of an instance.

GetVariableValueByName(Get the current value of the variable of
an instance, specified by its name.

GetVariableValueByIndex(Get the current value of the variable
of an instance, specified by its index. The variable index must
correspond to the variable order defined by GetVariableNames;
first variable has index 0.

GetVariableValues(Get the value of multiple variables of an in-
stance, specified by their indices or names. Variable indices must
correspond to the variable order defined by GetVariableNames;
first variable has index 0.

Open(Open an SQ file and return its instance ID.

MaximizeMainWindow(void); Make Sysquake main window full
screen.

MinimizeMainWindow(void); Minimize (hide) the Sysquake main
window.

Quit(void); Quit Sysquake.

Reload(Reload an instance (same as menu File>Reload).

RestoreMainWindow(void); Restore the size of Sysquake main
window after MaximizeMainWindow or MinimizeMainWindow.

SetVariableValueByName(Change the value of a variable speci-
fied by name and let Sysquake update the figures.

SetVariableValueByIndex(Change the value of a variable speci-
fied by index and let Sysquake update the figures.

SetVariableValues(Change the value of multiple variables spec-
ified by indices or names and let Sysquake update the figures. Ar-
rays variableList and values must have the same size.

Show(void); Show Sysquake.

SetVarChangeNotification(Install code which is called every-
time the user changes the contents of variables by dragging an
element in a figure or selects a menu.

GetLMEVariableNames(Get the list of variables in the context of
the Command window.

944 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

GetLMEVariableValueByName(Get the value of a variable speci-
fied by name in the context of the Command window.

GetLMEVariableValueByIndex(Get the value of a variable speci-
fied by index in the context of the Command window.

GetLMEVariableValues(Get the value of multiple variables spec-
ified by indices or names in the context of the Command window.

Note: to change a variable in the context of the Command window,
Execute should be called.

14.3 XML-RPC on Unix

XML-RPC is a simple Remote Procedure Call protocol based on
XML, a markup language similar to HTML but more flexible and
with a more regular structure, and HTTP, the most common
communication protocol used on the Web. XML-RPC implementations
are widely available for different platforms and programming
languages, including Sysquake itself. Sysquake’s implementation
adds support for the floating-point numbers inf and nan, represented
as <double>inf</double> and <double>nan</double>,
respectively.

This section describes the implementation used for controlling
Sysquake from other clients, and especially to interact with SQ
instances. This does not prevent other XML-RPC servers from running
in the same instance of Sysquake, provided that different TCP/IP ports
are selected. If Sysquake runs multiple times simultaneously on the
same computer with the XML-RPC server, they must use different
TCP/IP ports. A typical choice is 8900. Only priviledged users
(typically user "root") can launch a server with a port below 1024.

The URL sent to the XML-RPC server (the part after the hostname
and the port number) is ignored.

The following methods are implemented:
Method name: close
Method name: execute
Method name: getLMEVariableNames
Method name: getLMEVariableValue
Method name: getVariableNames
Method name: getVariableValue
Method name: load
Method name: reload
Method name: setVarChangeNotification
Method name: setVariableValue
Method name: version

RPC 945

AppleScript

macOS can send XML-RPC calls directly from AppleScript. For instance,
running the script below in the Script Editor requests Sysquake version
and displays it in a dialog box.

tell application "http://localhost:8888/"
set v to call xmlrpc {method name:"version"}

end tell
display dialog v

Parameters are provided in a parameters property, which is itself an
ordered list. The script below executes LME code.

tell application "http://localhost:8888/"
set code to "plot(rand(10), rand(10), ’rgby’);"
call xmlrpc {method name:"execute",parameters:{code}}

end tell

Please see Apple documentation on AppleScript for more informations.

14.4 SysquakeLink Java Package

SysquakeLink is a cross-platform Java package which can be used to
communicate easily with Sysquake. It supports native Java types and
classes, such as double and String. To exchange informations with
Sysquake, it relies on native functions (JNI) which implement OLE Au-
tomation on Windows or XML-RPC on other platforms.

SQLinkTool

SQLinkTool is a simple Java command-line utility for testing all the fea-
tures of SysquakeLink. It is provided as a compiled class and as source
code, so that it serves as an example of how SysquakeLink can be used
in a real application.

To run SQLinkTool, open a shell window. With XML-RPC,
SysquakeLink sets the TCP/IP port number of the value stored in the
environment variable SQLINKPORT; depending on your shell, type
export SQLINKPORT=8888 with sh or bash, or setenv SQLINKPORT
8888 with csh or tcsh (change the port number so that it matches
the value set in Sysquake). Then type the following command:

java -classpath path com.calerga.sysquake.SQLinkTool args

where path is the path of SysquakeLink classes and args is one or
more arguments from the following list:

946 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

-c var Display a variable value everytime any variable changes in
the SQ instance specified with a preceding argument -i.

-d duration Duration for -c in milliseconds (default is 5000).

-e command Execute a command in the context of the command
window.

-g var Display the value of variable var, given by index or by name.
The variable context must be specified with argument -i placed
before -g; otherwise, the command window is assumed.

-G var-list Display the value of variables given by arguments var
list, given by index or by name (not both). The list variables ends
with the last argument or with a hyphen -. The variable context
must be specified with argument -i placed before -g; otherwise,
the command window is assumed.

-h Display all possible arguments.

-i context Specify the context of variables for -g, -G, -s and -S.
The context is either the SQ instance ID or the word lme for the
command window.

-l path Load a new SQ file and display its instance ID. The path
must be absolute or relative to the current working directory of
Sysquake.

-n Display the list of variables. The variable context must be spec-
ified with argument -i placed before -g; otherwise, the command
window is assumed.

-r id Reload an SQ file instance specified by its ID.

-s var value Set variable var, given by index or by name, to value.
The variable context must be specified with argument -i placed
before -g; otherwise, the command window is assumed.

-S var/value-list Set the value of multiple variables. The follow-
ing arguments are pairs of variable names or index (not both) and
values, ending with the last argument or with a hyphen -. The vari-
able context must be specified with argument -i placed before -g;
otherwise, the command window is assumed.

-v Display Sysquake version.

Values can be double or boolean, scalar or 2-d arrays; or strings. Nu-
meric and boolean values have the same syntax as in LME, with brack-
ets, semicolons and commas for arrays; any value whose syntax is not
recognized is considered to be a string.

RPC 947

Examples
In the following examples, the shell prompt is displayed as %. The path
which follows -classpath should be replaced with the actual class
pass, i.e. the directory which contains com. Here, for the sake of sim-
plicity, we assume the most common case where Sysquake is installed
in the default application directory for the platform and we change di-
rectory so that the class path is the current directory, denoted by a
single dot. On non-Windows computers, we should also set the envi-
ronment variable SQLINKPORT so that it matches the value specified
for Sysquake (see above).

On Windows:

% cd "C:\Program Files\Sysquake\Java\JavaClasses"

On macOS (the actual class path is displayed in Sysquake’s Prefer-
ences dialog, in tab Extensions>File paths):

% cd "/Applications/Sysquake/Sysquake.app/Contents/Resources/Java"
% export SQLINKPORT=8889

On Linux (type "export SQLINKPORT=8889" instead of "setenv
SQLINKPORT 8889" if your shell is csh or tcsh):

% cd /usr/local/sysquake/Java/JavaClasses
% export SQLINKPORT=8889

Once this is done, commands are the same on all platforms. Sysquake
should be launched. Then to check that everything is set up correctly,
display the version of Sysquake:

% java -classpath . com.calerga.sysquake.SQLinkTool -v
Sysquake 3.5

In Sysquake, define two variables in the Command window:

M = magic(3);
b = true;

In the terminal window, display the list of variables defined in the con-
text of Sysquake command window:

% java -classpath . com.calerga.sysquake.SQLinkTool -n
ans
M
b

Display the value of variable M:

% java -classpath . com.calerga.sysquake.SQLinkTool -g M
[8.0,1.0,6.0;3.0,5.0,7.0;4.0,9.0,2.0]

948 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

Display the value of variables M and b (the end marker - is superfluous
here, because there are no additional arguments):

% java -classpath . com.calerga.sysquake.SQLinkTool -G M b
[8.0,1.0,6.0;3.0,5.0,7.0;4.0,9.0,2.0]
true

Load SQ file approx.sq (you should specify its absolute path or a rela-
tive path with respect to the current working directory of Sysquake).
The result is the ID of the new instance.

% java -classpath . com.calerga.sysquake.SQLinkTool -l approx.sq
1

Display the list of variables of SQ file instance 1:

% java -classpath . com.calerga.sysquake.SQLinkTool -i 1 -n
fn
x0
dx
n
method

Set the value of x0 to 2:

% java -classpath . com.calerga.sysquake.SQLinkTool -i 1 -s x0 2

SysqualeLink package

The SysquakeLink Java package is installed with Sysquake, in the Java
directory on Windows and Linux and inside the Sysquake package
on Macintosh. The complete SysquakeLink package name is
com.calerga.sysquake.SysquakeLink.

Here are the main design decisions of SysquakeLink:

– SysquakeLink is a class where each RPC action (code execution,
variable setting and retrievial, etc.) is performed by a static
method.

– Communication with Sysquake is implemented by native meth-
ods. The SysquakeLink class directory contains the native imple-
mentation for all supported platforms. Loading native methods
is performed in a static initialization block, which chooses auto-
matically the implementation corresponding to the platforms it is
running on. This means that installing SysquakeLink is reduced
to copying its directory to a single location which can be chosen
for convenience, and that Java applications with restricted rights,
such as applets, may not use SysquakeLink.

RPC 949

– Methods for setting or getting variable values are overloaded, so
that they accept the following variable specifications:

– single variable by name (Java type String);

– single variable by index starting at 0 (Java type int);

– multiple variables by name (Java type String []);

– multiple variables by index starting at 0 (Java type int []).

– Errors are reported by exceptions of class SQLinkException or
child classes.

The reference documentation of SysquakeLink has been generated
from source code with the Java utility javadoc. The source code of
SQLinkTool and the example below illustrate how to use it.

Here is the list of methods:

connect() Connect to Sysquake, which must already be running.

disconnect() Disconnect from Sysquake.

execute(cmd) Execute a command as if it was typed in the com-
mand window.

isConnected() Check if the connection with Sysquake has been
successfully established.

lmeVariableNames() Get the name of all variables defined in the
context of the Command window.

lmeVariableValue(varSpec) Get the value of variable(s) in the
context of the command window.

maximize() Maximize Sysquake main window (no effect on all plat-
forms).

minimize() Minimize Sysquake main window (no effect on all plat-
forms).

open(path) Open an SQ or SQD file.

reload(instanceId) Reload an SQ or SQD file.

resetVariableChangeNotification(instanceId) Reset the vari-
able change notification.

restoreSize() Restore size of Sysquake main window (no effect
on all platforms).

setVariableChangeNotification(instanceId,cmd) Set a
variable change notification for executing LME code.

950 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

setVariableChangeNotification(instanceId,listener)
Set a variable change notification (listener’s
variableChange(instanceID) method is called whenever a
variable is changed in Sysquake’s spefified instance).

setVariableValue(instanceId,varSpec,val) Change the value
of variable(s) and force a redraw.

show() Show Sysquake (no effect on all platforms).

variableNames(instanceId) Get the name of all variables of a
given instance.

variableValue(instanceId,varSpec) Get the value of
variable(s) for a given instance.

version() Get the version of Sysquake.

Example

To illustrate how SysquakeLink can be used to exchange information
in both directions between Sysquake and a Java application, here is
an example where a Java slider is synchronized with the x0 position
of the SQ file approx.sq. The application is kept as simple as possi-
ble; approx.sq should be opened in Sysquake by the user as the first
instance.

Here is the complete source code of the application:

// SysquakeLink packages
import com.calerga.sysquake.*;

// Java and Swing packages
import javax.swing.*;
import javax.swing.event.*;
import java.awt.*;
import java.awt.event.*;
import java.io.*;

// a single class is defined for the whole application
public class SQLinkApproxSample
extends WindowAdapter // class used as window listener and...
implements ChangeListener, // ...slider listener and...
SQLinkVariableListener // ...Sysquake notifications listener

{
JSlider slider; // java slider
static final int sqID = 1; // fixed SQ instance ID

public SQLinkApproxSample()
{
// application setup

RPC 951

slider = new JSlider(JSlider.HORIZONTAL, -5000, 5000, 0);
// JSlider has integer values, x0 = 0.001 * (java value)

slider.addChangeListener(this); // using this.stateChanged()

JPanel panel = new JPanel(new GridLayout(0, 1));
panel.add(slider);

JFrame frame = new JFrame("Sync. with approx.sq");
frame.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);
frame.addWindowListener(this); // using this.windowClosing()
frame.setContentPane(panel);
frame.pack();
frame.setVisible(true);

try
{
SysquakeLink.connect();
SysquakeLink.setVariableChangeNotification(sqID, this);
// using this.variableChange()

SysquakeLink.show();
// bring Sysquake to front on platforms which support it

}
catch (SQLinkException e)
{
System.err.println(e);
System.exit(1); // abort

}
}

public void windowClosing(WindowEvent e)
{
// called when the window is closed
SysquakeLink.disconnect();
System.exit(0);

}

public void stateChanged(ChangeEvent event)
{
// called when the Java slider is changed
// -> update Sysquake’s x0
try
{
if (event.getSource() == slider)
{
double x0 = slider.getValue() * 0.001;
SysquakeLink.setVariableValue(sqID, "x0", x0);

}
}
catch (SQLinkException e)
{

952 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

System.err.println(e);
}

}

public void variableChange(int instanceId)
{
// called when the Sysquake’s x0 is changed
// -> update Java slider
try
{
Object obj = SysquakeLink.variableValue(sqID, "x0");
double x0 = ((Double) obj).doubleValue();
slider.setValue((int)(1000 * x0));

}
catch (Exception e)
{
// catch communication and conversion to double errors
System.err.println(e);

}
}

public static void main(String[] args)
{
// application entry point: create instance
new SQLinkApproxSample();

}
}

Chapter 15

Sysquake Application
Builder

Sysquake Application Builder is an application which can convert SQ
files to stand-alone applications. Resulting applications can be dis-
tributed freely, without requiring any additional license from Calerga.
The original contents of the SQ file and libraries it uses are included
in an intermediate byte-code difficult to reverse-engineer. This makes
these applications suitable in the following situations:

– when you want to distribute a stand-alone application to col-
leagues, students, or on the World Wide Web without requiring
that your users buy Sysquake licenses or install anything else;

– when you want to let other people execute SQ files and still pro-
tect the intellectual property they contain;

– when you want to create exams or contests by letting users un-
derstand the problem from the graphical manipulation and not
from looking at the code.

The drawback of applications created by Sysquake Application Builder
is their size, which is not much less than Sysquake itself.

Sysquake Application Builder currently runs on Macintosh, Windows
and Linux, and can create native applications (i.e. it is not possible to
create applications on one platform for the other one). It supports
roughly all the features implemented in Sysquake core application.

Sysquake Application Builder is a separate application. To use it,
you typically launch it, then open an SQ or SQD file, test it, and save
its state to an application file. Then you can launch this file and test it.
The resulting application uses the title and the version strings defined
in the SQ file in its About box; you should make sure that they are
defined. Since Sysquake Application Builder does not include a com-
mand window, you would rather develop your SQ files with Sysquake,

954 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

then use Sysquake Application Builder to check that everything works
correctly (standard output and errors are displayed in a read-only win-
dow) before building the application. The result does not have an
output window; all output should be displayed in the figure window.

To help you check that the application performs as intended,
Sysquake Application Builder has a menu "File/Check Undefined
Functions". Functions or variables which are referenced, but not
defined, are listed in the output window. These functions include
those available in Sysquake and not in Sysquake Application Builder,
such as those implemented in extensions, and function or variable
spelling errors. To perform the same check in Sysquake, you can type
info f in the command window; see the description of info for more
informations.

15.1 Extensions

Extensions required by an SQ file must be specified explicitly with
extension declarations. On Windows and Linux, extensions are
copied to a directory named SQRuntimeExt which must be located
at the same place as applications and distributed with them
(SQRuntimeExt can contain more extensions than what is listed in the
original SQ file, and hence be shared by multiple applications created
by Sysquake Application Builder). On Mac OS X, extensions are
copied inside the application package.

15.2 Debugging

You should first make sure that your SQ file runs as intended in
Sysquake or Sysquake Pro, where the editor and the command
window offer more debugging facilities: you can display values by
removing semicolons at the end of expressions, call functions from
the command window, debug them from there with breakpoints and
the profiler.

Then in Sysquake Application Builder, check if there are errors or
warnings in the output window. Errors can come from missing func-
tions or extensions.

Finally, if the applications created by Sysquake Application Builder
does work differently, you can check the text output and error mes-
sages. Usually, this information is not visible because there is no com-
mand or output window. Seeing it depends on the operating system:

Windows Open a Command Prompt window (type cmd.exe (re-
turn) in the Start menu)

Sysquake App Builder 955

Drag and drop the icon of the exe application created by Sysquake
Application Builder to the Command Prompt window

Add /console (following a space) to enable output to the console
window

Type return

OS X Open a Terminal window (the Terminal application can be
found by typing command-U in the Finder)

Drag and drop the icon of the application created by Sysquake Ap-
plication Builder to the Terminal window

Type return

Linux Open a terminal window (typing control+alt+t should do it)

Execute the application created by Sysquake Application Builder

15.3 Batch conversion

To make the conversion of multiple SQ files easier, it is possible to exe-
cute Sysquake Application Builder as a command, typically in a batch
file on Windows or in a script or makefile on Macintosh and Linux.
Sysquake Application Builder loads an SQ or SQD file as usual, and
then immediately saves it as an application and terminates. This can
be repeated for each file without manual action.

Windows

Sysquake Application Builder should be called with command-line op-
tion /o:file.exe, where file.exe is the name of the application to
create:

"C:\Program Files (x86)\SysquakePro\Sysquake_App_Builder.exe"
/o:file.exe file.sq

The path of Sysquake Application Builder should reflect its actual loca-
tion.

OS X

Sysquake Application Builder should be called with command-line op-
tion -o file.app, where file.app is the name of the application to
create:

"/Applications/Sysquake Pro/Sysquake App Builder.app/Contents/MacOS/Sysquake App Builder"
-o file.app file.sq

956 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

The path of Sysquake Application Builder should reflect its actual lo-
cation. What follows Sysquake App Builder.app is the path of the
executable code inside the package, as is common for Mac applica-
tions.

Linux

Sysquake Application Builder should be called with command-line op-
tion -o file, where file is the name of the application to create:

sqappbuilder -o file file.sq

Index

abs, 282
acos, 283
acosd, 283
acosh, 284
acot, 284
acotd, 283
acoth, 285
acsc, 285
acscd, 283
acsch, 285
activeregion, 591
addpol, 339
alawcompress, 801
alawexpand, 802
all, 512
altscale, 591
and, 253
angle, 286
any, 512
apply, 496
area, 592
arrayfun, 386
asec, 286
asecd, 283
asech, 286
asin, 287
asind, 283
asinh, 287
assert, 219
atan, 288
atan2, 288
atan2d, 283
atand, 283
atanh, 289
audioplay, 917
audiorecord, 919
audiorecordset, 919

audioset, 918

balance, 340
bar, 593
barh, 594
base32decode, 458
base32encode, 459
base64decode, 460
base64encode, 460
batch, 576
beginlanguage, 136
beginning, 185
bench, 832
besselap, 753
besself, 754
beta, 289
betainc, 290
betaln, 290
bilinear, 755
bitall, 513
bitand, 513
bitany, 514
bitcmp, 515
bitget, 515
bitor, 516
bitset, 516
bitshift, 517
bitxor, 518
black2orangecm, 814
black2red2whitecm, 815
blkdiag, 709
blue2greencm, 815
blue2yellow2redcm, 816
bodemag, 641
bodephase, 642
bootstrp, 719
break, 193

958 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

builtin, 219
buttap, 755
butter, 756
button, 675
bwrite, 531

c2dm, 522
cal2julian, 565
camdolly, 628
camorbit, 629
campan, 629
campos, 630
camproj, 630
camroll, 631
camtarget, 631
camup, 631
camva, 632
camzoom, 632
cancel, 576
care, 341
cart2pol, 291
cart2sph, 291
case, 193
cast, 292
cat, 387
catch, 193
cd, 902
cdf, 292
ceil, 293
cell, 387
cell array, 154
cell2struct, 500
cellfun, 388
char, 461
charset, 165
cheb1ap, 756
cheb2ap, 757
cheby1, 757
cheby2, 758
chol, 342
circle, 595
circshift, 709
class, 507
class bitfield

int16, 750
int32, 750

int8, 750
uint16, 752
uint32, 752
uint8, 752

class bitfield
beginning, 747
bitfield, 747
disp, 748
double, 749
end, 749
find, 750
length, 751
sign, 752

class distribution
cdf, 729
icdf, 730
mean, 731
median, 732
pdf, 732
random, 733
std, 733
var, 734

class frd
fcat, 779
frd, 765
frdata, 780
fselect, 780
interp, 781

class lti
append, 773
beginning, 774
bodemag, 795
bodephase, 795
c2d, 775
connect, 775
ctranspose, 776
d2c, 776
dcgain, 777
end, 777
evalfr, 778
feedback, 779
impulse, 796
inv, 781
isct, 782
isdt, 782
isempty, 782

Index 959

isproper, 783
issiso, 783
lsim, 797
minreal, 784
minus, 785
mldivide, 785
mrdivide, 785
mtimes, 786
nichols, 798
norm, 786
nyquist, 798
parallel, 787
piddata, 787
pidstddata, 788
plus, 788
pzmap, 799
repmat, 789
rlocus, 800
series, 789
size, 790
ssdata, 790
step, 801
subsasgn, 790
subsref, 791
tfdata, 792
transpose, 793
uminus, 793
uplus, 793
zpkdata, 794

class pid
mathml, 783

class pid
pid, 766

class pidstd
mathml, 783

class pidstd
pidstd, 768

class polynom
mathml, 739

class polynom
diff, 737
disp, 736
double, 736
feval, 739
inline, 738
int, 738

polynom, 735
subst, 737

class ratfun
mathml, 743

class ratfun
den, 742
diff, 742
disp, 741
feval, 743
inline, 742
num, 741
ratfun, 740

class ratio
char, 745
disp, 746
double, 746
ratio, 744

class ss
augstate, 774
ctrb, 776
initial, 797
obsv, 786
ss, 770

class tf
mathml, 783

class tf
tf, 771

class zpk
mathml, 783

class zpk
zpk, 773

clc, 532
clear, 220
clf, 677
clock, 562
colon, 253
color, 587
colormap, 595
compan, 710
complex, 294
cond, 343
cone, 826
conj, 294
constant definition, 109
continue, 193
contour, 596

960 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

contour3, 633
conv, 343
conv2, 344
corrcoef, 710
cos, 295
cosd, 295
cosh, 296
cot, 296
coth, 296
cov, 345
cputime, 903
createJob, 577
createTask, 578
cross, 346
crosscap, 827
csc, 297
csch, 297
ctranspose, 253
cube, 821
cummax, 347
cummin, 347
cumprod, 348
cumsum, 349
cumtrapz, 711
currentfigure, 678
cyan2magentacm, 816
cylinder, 827

d2cm, 524
dare, 349
dash pattern, 587
daspect, 633
datestr, 809
datevec, 810
dbclear, 209
dbcont, 209
dbhalt, 209
dbodemag, 644
dbodephase, 645
dbquit, 210
dbstack, 210
dbstatus, 211
dbstep, 211
dbstop, 213
dbtype, 214
deal, 221

deblank, 461
deconv, 350
defaultstyle, 678
define, 194
deflate, 859
delaunay, 425
delaunayn, 426
delete, 579
det, 351
diag, 389
dialog, 696
dialogset, 698
diff, 352
diln, 297
dimpulse, 646
dinitial, 647
dir, 903
disp, 532
dlsim, 648
dlyap, 352
dmargin, 525
dnichols, 649
dnyquist, 650
dodecahedron, 822
dos, 904
doscript, 885
dot, 353
double, 298
dpcmdeco, 802
dpcmenco, 803
dpcmopt, 804
drawnow, 677
dsigma, 651
dstep, 653
dumpvar, 222

echo, 214
eig, 353
ellip, 759
ellipam, 298
ellipap, 760
ellipe, 299
ellipf, 300
ellipj, 300
ellipke, 301
else, 200

Index 961

elseif, 200
embeddedfile, 127
end, 186
endfunction, 196
environment variables, 36
eps, 302
eq, 253
erf, 302
erfc, 303
erfcinv, 303
erfcx, 304
erfinv, 304
erlocus, 654
error, 223
eval, 224
exist, 225
exp, 305
expm, 354
expm1, 305
extension declaration, 144
extensions, 35
external code

LMECB_GetArray, 927
LMECB_GetBinaryObject,

927
LMECB_GetMatrix, 926
LMECB_GetObject, 927
LMECB_GetScalar, 927
LMECB_GetString, 927
LMECB_ObjectToArray,

928
eye, 390

factor, 306
factorial, 306
false, 518
fclose, 533
feof, 533
fetchOutputs, 580
feval, 225
fevalx, 391
fflush, 534
fft, 355
fft2, 356
fftn, 356
fftshift, 712

fgetl, 534
fgets, 535
fieldnames, 501
figure, 678
figure declaration, 112
figurestyle, 598
figuretitle, 679
fileparts, 550
filesep, 551
filled shape, 588
filter, 357
filter2, 712
find, 391
findTask, 580
fionread, 535
fix, 307
flintmax, 307
flipdim, 393
fliplr, 393
flipud, 394
floor, 308
fminbnd, 435
fminsearch, 436
fontset, 600
fopen, 549
for, 194
format, 535
fplot, 601
fprintf, 537
fread, 538
frewind, 539
fscanf, 540
fseek, 540
fsolve, 438
ftell, 541
fullfile, 552
fun2str, 226
function

inline, 157
reference, 157

function, 196
funm, 358
fwrite, 541
fzero, 439

gamma, 308

962 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

gammainc, 309
gammaln, 310
gcd, 310
ge, 253
geomean, 720
getElementById, 555
getElementsByTagName, 555
getenv, 904
getfield, 501
getfile, 699
gethostbyname, 878
gethostname, 878
getpid, 907
global, 187
goldenratio, 311
Graphic ID, 589
graycm, 817
graycode, 519
greatdodecahedron, 822
greaticosahedron, 823
greatstellateddodecahedron,

823
green2yellowcm, 817
grid, 590
griddata, 427
griddatan, 428
gt, 253
gzip, 861
gzwrite, 861

handler
dragin, 134
dragout, 134
draw, 113
export, 139
fighandler, 120
function definition, 126
idle, 138
import, 139
init, 109, 111
input, 129
keydown, 122
library, 126
make, 123
menu, 121
mousedoubleclick, 113

mousedown, 113
mousedrag, 113
mousedragcont, 113
mouseout, 113
mouseover, 113
mousescroll, 113
mouseup, 113
output, 129
publichandler, 143
terminate, 109
watch, 144

hankel, 712
harmmean, 721
help, 127
help, 249
hess, 362
hgrid, 655
hideimplementation, 199
hist, 713
hmac, 462
horzcat, 253
householder, 359
householderapply, 360
hstep, 656
huecm, 818
hypot, 311

i, 311
i2cclose, 913
i2copen, 913
i2cread, 914
i2cwrite, 915
icdf, 312
icosahedron, 824
idletime, 901
if, 200
ifft, 360
ifft2, 361
ifftn, 361
ifftshift, 714
igraycode, 519
imag, 313
image, 602
imageread, 863
imagereadset, 864
imageset, 865

Index 963

imagewrite, 866
impulse, 658
include, 201
includeifexists, 201
ind2sub, 394
inf, 314
inferiorto, 508
inflate, 862
info, 227
initial, 659
inline, 231
inline data, 153
inmem, 233
int16, 432
int32, 432
int64, 432
int8, 432
integral, 441
interp1, 395
interpn, 396
interprgbcm, 818
intersect, 398
inthist, 399
intmax, 433
intmin, 433
inv, 363
ipermute, 399
iqr, 721
isa, 509
iscell, 401
ischar, 464
iscolumn, 314
isdefined, 234
isdigit, 464
isempty, 400
isequal, 230
isfield, 501
isfinite, 315
isfloat, 315
isfun, 235
isglobal, 235
isinf, 316
isinteger, 316
iskeyword, 236
isletter, 465
islist, 497

islogical, 520
ismac, 236
ismatrix, 317
ismember, 401
isnan, 318
isnull, 509
isnumeric, 318
isobject, 510
ispc, 237
isprime, 319
isquaternion, 489
isreal, 714
isrow, 319
isscalar, 320
isspace, 465
isspeaking, 920
isstruct, 502
isunix, 237
isvector, 320

j, 311
Java, 945

SQLinkTool, 945
SysquakeLink, 945

join, 497
joystickbuttons, 915
joysticklist, 916
joystickpos, 916
json2obj, 869
julian2cal, 566

kill, 908
klein, 828
klein8, 829
kron, 363
kurtosis, 364

label, 604
LAPACK

balance, 842
chol, 842
det, 843
eig, 844
hess, 845
inv, 845
logm, 846
lu, 847

964 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

null, 848
operator /, 841
operator \, 840
operator *, 839
orth, 848
pinv, 849
qr, 850
qz, 851
rank, 852
rcond, 852
schur, 853
sqrtm, 854
svd, 855

lasterr, 237
lasterror, 238
latex2mathml, 466
launchurl, 883
lcm, 321
ldivide, 253
le, 253
legend, 605
length, 402
library

lti, 763, 794
probdist, 729
ratio, 744
stat, 719
stdlib, 708
wav, 807

lightangle, 634
line, 606
line3, 634
linprog, 364
linspace, 402
list, 154
list2num, 498
lloyds, 804
LME, 145

command syntax, 148
comments, 146
error messages, 160
file descriptor, 159
function call, 147
input/output, 159
libraries, 148
named arguments, 147

program format, 145
statements, 145
types, 149
variable assignment, 185

log, 321
log10, 322
log1p, 322
log2, 323
logical, 520
logm, 365
logspace, 403
LongInt

longint, 856
lookfor, 251
lower, 468
lp2bp, 760
lp2bs, 761
lp2hp, 762
lp2lp, 762
lsim, 660
lsqcurvefit, 441
lsqnonlin, 443
lt, 253
lu, 366
lyap, 367

mad, 722
magenta2yellowcm, 819
magic, 403
makedist, 730
map, 498
map2int, 434
margin, 526
markup

output channel, 166
reference, 167

material, 635
matfiledecode, 867
matfileencode, 868
math, 607
mathml, 469
mathmlpoly, 470
matrixcol, 188
matrixrow, 189
max, 368
md5, 471

Index 965

mean, 369
median, 369
memory, 34
mesh, 636
meshgrid, 404
methods, 510
min, 370
minus, 253
mldivide, 253
mmap, 857
mod, 323
moment, 371
movezero, 527
mpower, 253
mrdivide, 253
mtimes, 253
munmap, 859

namedargin, 238
nan, 324
nancorrcoef, 722
nancov, 723
nanmean, 723
nanmedian, 724
nanstd, 724
nansum, 725
nargin, 239
nargout, 241
nchoosek, 325
ndgrid, 405
ndims, 405
ne, 253
ngrid, 661
nichols, 663
nnz, 406
norm, 371
not, 253
nthroot, 325
null, 372
null (value), 510
num2cell, 406
num2list, 499
number, 151
numel, 407
nyquist, 665

obj2json, 870

object, 157, 158
octahedron, 824
ode23, 444
ode23s, 444
ode45, 444
odeset, 447
OLE Automation, 942
ones, 408
operator

&, 275
&&, 275
@, 281
{}, 258
[], 257
:, 279
,, 277
’, 268
.’, 268
/, 264
./, 264
\, 265
.\, 266
., 260
==, 269
>=, 274
>, 272
<=, 273
<, 272
-, 261
=̃, 270
,̃ 274
|, 276
||, 276
(), 253
+, 261
,̂ 266
.̂, 267
?, 277
===, 270
;, 278
*, 262
.*, 263
=̃=, 271

optimset, 456
or, 253
orderfields, 502

966 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

orth, 373
osascript, 886
osascriptlist, 886
otherwise, 201

parbench, 833
parcluster, 581
pardefaultcluster, 582
path, 561
pcolor, 608
pdf, 326
pdist, 726
perms, 715
permute, 408
persistent, 187
pi, 326
pinv, 373
plot, 609
plot3, 636
plotoption, 611
plotpoly, 637
plotroots, 666
plotset, 613
plus, 253
pol2cart, 326
polar, 616
poly, 374
polyder, 375
polyfit, 715
polyint, 376
polyval, 377
polyvalm, 716
popupmenu, 680
posixtime, 562
power, 253
prctile, 727
predefined variable

_auto, 109
_cursor, 117
_dx, 116
_dy, 116
_dz, 116
_fd, 131
_height, 111
_id, 116
_idleamount, 139

_idlerate, 139
_ix, 116
_key, 123
_kx, 116
_ky, 116
_kz, 116
_m, 116
_msg, 117
_nb, 116
_p0, 116
_param, 116
_q, 116
_rho, 116
_rho0, 116
_rho1, 116
_str1, 116
_theta, 116
_theta0, 116
_theta1, 116
_width, 111
_x, 116
_x0, 116
_x1, 116
_xdata, 140
_xdatatype, 140
_y, 116
_y0, 116
_y1, 116
_z, 116
_z0, 116
_p1, 116
_z1, 116

preference files, 35
primes, 716
private, 202
prod, 377
profile, 216
public, 202
pushbutton, 681
putfile, 700
pwd, 905

q2mat, 489
q2rpy, 490
q2str, 491
qimag, 491

Index 967

qinv, 491
qnorm, 492
qr, 378
qslerp, 492
quad, 458
quantiz, 805
quaternion, 493
quiver, 617

rand, 409
randi, 410
randn, 411
random, 327
range, 727
rank, 379
rat, 328
rdivide, 253
real, 329
reallog, 330
realmax, 330
realmin, 330
realpow, 331
realsqrt, 331
red2yellowcm, 819
redirect, 542
redraw, 682
regexp, 472
regexpi, 472
rem, 332
repeat, 203
replist, 500
repmat, 411
reshape, 412
responseset, 667
rethrow, 241
return, 204
rlocus, 668
rmfield, 504
rng, 413
roots, 379
rot90, 415
round, 332
roundn, 333
rpy2q, 494

sandbox, 247

sandboxtrust, 249
saxcurrentline, 556
saxcurrentpos, 556
saxnew, 556
saxnext, 558
saxrelease, 558
scale, 618
scale of figures, 589
scalefactor, 621
scaleoverview, 622
scalesync, 682
schur, 380
sec, 334
sech, 334
semaphoredelete, 567
semaphorelock, 567
semaphorenew, 567
semaphoreunlock, 569
sensor3, 639
sepiacm, 820
serialdevname, 910
serialdevopen, 911
serialdevset, 912
set, 157
setdiff, 415
setenv, 905
setfield, 504
setstr, 477
settabs, 683
setxor, 416
sgrid, 671
sha1, 477
sha2, 477
sigma, 672
sign, 333
signal, 908
sin, 335
sinc, 335
sind, 295
single, 335
sinh, 336
size, 417
skewness, 381
sleep, 906
slider, 684

968 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

smallstellateddodecahedron,
825

soapcall, 889
soapcallset, 890
soapreadcall, 891
soapreadresponse, 891
soapwritecall, 892
soapwritefault, 893
soapwriteresponse, 894
socketaccept, 878
socketconnect, 879
socketnew, 879
socketservernew, 880
socketset, 881
socketsetopt, 882
sort, 418
sortrows, 717
speak, 921
speakset, 921
speakvoices, 922
sph2cart, 336
sphere, 829
sphericon, 830
split, 478
sprintf, 543
SQ file, 105
SQD file, 129
sqlite_changes, 872
sqlite_close, 872
sqlite_exec, 873
sqlite_last_insert_rowid,

874
sqlite_open, 874
sqlite_set, 875
sqlite_shell, 876
sqlite_tables, 876
sqlite_version, 877
sqrt, 337
sqrtm, 382
squareform, 728
squeeze, 419
sread, 545
ss2tf, 529
sscanf, 546
stairs, 588
std, 382

stems, 588
step, 673
str2fun, 242
str2obj, 243
strcmp, 479
strcmpi, 479
strfind, 480
string, 152
strmatch, 480
strrep, 481
strtok, 481
strtrim, 482
struct, 504
struct2cell, 505
structarray, 506
structmerge, 506
structure, 155
structure array, 156
style, 586
style parameter, 586
sub2ind, 420
submit, 582
subplot, 686
subplotparam, 687
subplotpos, 688
subplotprops, 689
subplots, 689
subplotsize, 690
subplotspring, 691
subplotstyle, 622
subplotsync, 692
subsasgn, 190
subspace, 717
subsref, 191
sum, 383
superclasses, 511
surf, 640
svd, 384
swapbytes, 337
switch, 204
swrite, 548
symbol shape, 587
syslog, 882

tan, 338
tanh, 338

Index 969

tetrahedron, 825
text, 623, 693
textfield, 694
tf2ss, 530
thick line, 587
thin line, 587
threadkill, 570
threadnew, 570
threadset, 571
threadsleep, 571
tic, 563
tickformat, 624
ticks, 625
times, 253
title, 127
title, 626
toc, 563
toeplitz, 718
torus, 831
trace, 385
transpose, 253
trapz, 718
tril, 420
trimmean, 728
triu, 421
true, 521
try, 205
tsearch, 429
tsearchn, 429
typecast, 339

uint16, 432
uint32, 432
uint64, 432
uint8, 432
ulawcompress, 806
ulawexpand, 807
uminus, 253
unicodeclass, 483
union, 422
unique, 423
unix, 906
unsetenv, 907
until, 207
unwrap, 424
uplus, 253

upper, 483
urldownload, 884
use, 207
useifexists, 207
User interface options, 136
userinterface, 128
utf32decode, 484
utf32encode, 484
utf8decode, 485
utf8encode, 485

value sequences, 156
var, 385
varargin, 244
varargout, 245
variable declaration, 107

implicit, 108
variables, 245
version, 127
vertcat, 253
voronoi, 430
voronoin, 431

wait, 583
warning, 246
wavread, 807
wavwrite, 808
weekday, 811
which, 246
while, 208
whitecm, 820

XML-RPC, 944
xmlread, 559
xmlreadstring, 559
xmlrelease, 560
xmlrpccall, 895
xmlrpccallset, 896
xmlrpcreadcall, 897
xmlrpcreadresponse, 897
xmlrpcwritecall, 898
xmlrpcwritedata, 899
xmlrpcwritefault, 900
xmlrpcwriteresponse, 900
xor, 522

zeros, 424

970 Sysquake Pro User Manual ©1999-2019, Calerga Sàrl

zgrid, 673
zp2ss, 531
zread, 862
zscore, 728
zwrite, 863

	Introduction
	Introduction
	How Sysquake can be used

	Registration
	Where SQ_Reg.key is located
	Remark
	What's in the Serial Number

	Getting Started with Sysquake
	First steps
	Files
	Manipulation modes
	Menus
	Command-Line Interface
	Interruption Key
	Memory
	Extensions
	Preference Files
	Environment Variables

	SQ Files
	PID_ct.sq
	PID_dt.sq
	RST_ct.sq
	RST_dt.sq
	LQR_ct.sq
	filter.sq
	id_par.sq
	id_npar.sq

	Introduction to LME
	Simple operations
	Complex Numbers
	Vectors and Matrices
	Polynomials
	Strings
	Variables
	Loops and Conditional Execution
	Functions
	Local and Global Variables

	SQ Script Tutorial
	Displaying a Plot
	Adding Interactivity

	SQ Script Reference
	SQ File Tutorial
	Displaying a Plot
	Adding Interactivity
	Menu Entries
	More about graphic ID
	Saving Data

	SQ File Reference
	SQ Files
	SQ Data Files and Input/Output Handlers
	Error Messages
	Advanced Features of SQ Files

	LME Reference
	Program format
	Function Call
	Named input arguments
	Command syntax
	Libraries
	Types
	Input and Output
	Error Messages
	Character Set
	Formatted text
	List of Commands, Functions, and Operators
	Variable Assignment and Subscripting
	Programming Constructs
	Debugging Commands
	Profiler
	Miscellaneous Functions
	Sandbox Function
	Help Function
	Operators
	Mathematical Functions
	Linear Algebra
	Array Functions
	Triangulation Functions
	Integer Functions
	Non-Linear Numerical Functions
	String Functions
	Quaternions
	List Functions
	Structure Functions
	Object Functions
	Logical Functions
	Dynamical System Functions
	Input/Output Functions
	File System Functions
	Path Manipulation Functions
	XML Functions
	Search Path Function
	Time Functions
	Date Functions
	Threads
	Parallel
	Sysquake Graphics
	Remarks on graphics
	Base Graphical Functions
	3D Graphics
	Graphics for Dynamical Systems
	Sysquake Graphical Functions
	Dialog Functions
	Sysquake Miscellaneous Functions

	Libraries
	stdlib
	stat
	probdist
	polynom
	ratio
	bitfield
	filter
	lti
	lti (graphics)
	sigenc
	wav
	date
	constants
	colormaps
	polyhedra
	solids
	bench
	parbench

	Extensions
	Lapack
	Long Integers
	Memory Mapping
	Data Compression
	Image Files
	MAT-files
	JSON
	SQLite
	Compiling the extension
	Sockets
	System Log
	Launch URL
	Download URL
	Open Script Architecture
	Web Services
	Power Management
	Shell
	Signal
	Serial port
	I2C
	Joystick
	Audio output
	Audio Input
	Speech

	External Code
	Implementation
	Callbacks
	Start up and shut down
	Examples
	Remarks

	Remote Procedure Calls
	General Description
	OLE Automation on Windows
	XML-RPC on Unix
	SysquakeLink Java Package

	Sysquake Application Builder
	Extensions
	Debugging
	Batch conversion

	Index

