
Calerga

LyME 3.1
User Manual

2 LyME User Manual ©1999-2008, Calerga Sàrl

Copyright 1999-2008, Calerga Sàrl.

No part of this publication may be reproduced, transmitted or stored in
any form or by any means including electronic, mechanical, recording or oth-
erwise, without the express written permission of Calerga Sàrl.

The information provided in this manual is for reference and information
use only, and Calerga assumes no responsibility or liability for any inaccura-
cies or errors that may appear in this documentation.

LyME, Sysquake, LME, Calerga, the Calerga logo, and icons are copyrighted
and are protected under the Swiss and international laws. Copying this soft-
ware for any reason beyond archival purposes is a violation of copyright, and
violators may be subject to civil and criminal penalties.

LyME, Sysquake, LME, and Calerga are trademarks of Calerga Sàrl. All other
trademarks are the property of their respective owners.

LyME User Manual, August 2008.
Yves Piguet, Calerga Sàrl, Lausanne, Switzerland.

Most of the material in LyME User Manual has first been written as a set of
XHTML files, with lots of cross-reference links. Since (X)HTML is not very well
suited for printing, it has been converted to LATEX with the help of a home-made
conversion utility. Additional XML tags have been used to benefit from LATEX
features: e.g. raster images have been replaced with EPS images, equations
have been converted from text to real mathematic notation, and a table of
contents and an index have been added. The same method has been used
to create the material for the help command. Thanks to the make utility, the
whole process is completely automatic. This system has proved to be very
flexible to maintain three useful formats in parallel: two for on-line help, and
one for high-quality printing.

World Wide Web: http://www.calerga.com
E-mail: sysquake@calerga.com
Mail: Calerga Sàrl

Av. de la Chablière 35
1004 Lausanne
Switzerland

Typesetting: 2008-8-2

http://www.calerga.com
mailto:sysquake@calerga.com

Contents

1 Using LyME 5
1.1 LyME Installation . 5
1.2 Using LyME . 5
1.3 User input . 12
1.4 Data exchange . 13
1.5 License . 13
1.6 What’s more in Sysquake . 14
1.7 MathLib . 14

2 LME Tutorial 15
2.1 Simple operations . 15
2.2 Complex Numbers . 16
2.3 Vectors and Matrices . 18
2.4 Polynomials . 21
2.5 Strings . 22
2.6 Variables . 22
2.7 Loops and Conditional Execution 23
2.8 Functions . 23
2.9 Local and Global Variables . 26

3 LME Reference 29
3.1 Program format . 29
3.2 Function Call . 30
3.3 Libraries . 32
3.4 Types . 32
3.5 Input and Output . 40
3.6 Error Messages . 41
3.7 Variable Assignment and Subscripting 46
3.8 Programming Constructs . 53
3.9 Debugging Commands . 69
3.10 Miscellaneous Functions . 76
3.11 Sandbox Function . 101
3.12 Operators . 103
3.13 Mathematical Functions . 135

4 LyME User Manual ©1999-2008, Calerga Sàrl

3.14 Linear Algebra . 188
3.15 Array Functions . 233
3.16 Triangulation Functions . 267
3.17 Integer Functions . 274
3.18 Non-Linear Numerical Functions 277
3.19 String Functions . 294
3.20 List Functions . 308
3.21 Structure Functions . 312
3.22 Object Functions . 319
3.23 Logical Functions . 321
3.24 Dynamical System Functions 333
3.25 Input/Output Functions . 340
3.26 Palm Database Functions . 356
3.27 Palm File Streaming Functions 362
3.28 Palm VFS Functions . 364
3.29 Time Functions . 368
3.30 Date Conversion Functions . 370
3.31 Quaternions . 372
3.32 Serial Port Functions . 382
3.33 Long Integers . 385
3.34 LyME Functions . 387
3.35 Dialog Functions . 397
3.36 Audio output . 399
3.37 Machine Code Functions . 401
3.38 Introduction . 401
3.39 Functions . 402

4 Libraries 409
4.1 stdlib . 410
4.2 stat . 426
4.3 classes . 437
4.4 ratio . 446
4.5 bitfield . 449
4.6 filter . 455
4.7 lti . 465
4.8 sigenc . 490
4.9 wav . 496
4.10 date . 498
4.11 constants . 501

Index 502

Chapter 1

Using LyME

LyME is a port of LME ("Lightweight Math Engine", the heart of
Sysquake) to Palm OS handheld devices. It implements about 320
native commands, functions and operators, mostly compatible with
Matlab. It requires Palm OS 3.1 or higher and at least 1 MBytes of
memory free.

1.1 LyME Installation

Install at least MathLib.prc (unless it has already been installed for
another application or it is included in the device ROM) and LyME.prc.
You can also install library files (the files which end with .pdb) which
add more functions to LyME.

1.2 Using LyME

Launch LyME by tapping its icon.

Figure 1.1

6 LyME User Manual ©1999-2008, Calerga Sàrl

Figure 1.2

Figure 1.3

Simple expressions

Write expressions in the top field, tap the Eval button or write return
(topright-to-bottomleft Graffiti stroke), and read the result in the bot-
tom field.

To enter parenthesis or operators, you can also tap one of the sym-
bols at the botton of the screen.

To enter a function or to check its arguments, tap fn and the bottom
right of the screen, scroll the list, and tap the function you want. You
can also tap outside the list to discard it.

Previous commands can be retrieved with the arrows at the top left
of the screen. The command field can be cleared completely with a
tap on the C near the arrows. An Edit menu is also available for the
usual Cut/Copy/Paste/Undo commands; tap the window title "LyME" or
the menu button below the screen.

To stop execution, press the Page Down key until the Eval button
label is displayed.

Graphics

Some commands produce graphical output. Graphics replace the text
output below the command field.

Graphics and text output may be toggled with the T and G buttons
at the top of the screen.

Graphics are usually scaled to fill the graphics area. No axis is
drawn, because of the constrained screen size. To check the scale, tap
anywhere in the graphics area and read the coordinates of the point
below the pen.

Most graphical functions support an additional argument to specify
the color.

Using LyME 7

Figure 1.4

Figure 1.5

Figure 1.6

8 LyME User Manual ©1999-2008, Calerga Sàrl

Figure 1.7

Programs

There are two kinds of programs in LyME: scripts and functions. Scripts
are simply collections of statements, variable assignments and ex-
pressions which are evaluated exactly as if they were written in the
command field. Functions (collected in libraries) have input and output
arguments, and local variables. They cannot modify the workspace
variables you define from the command field or from scripts. Both
scripts and functions are entered in an editor window, and are saved
in a persistant database. Standard Edit menu commands are available
to Cut, Copy and Paste text in LyME or between LyME and other Palm
applications such as Memo Pad.

Scripts

To program a script in LyME, tap the Edit button and (new). Replace
"untitled" with a script name (such as "test"). Write your statements,
typically one per line, below.

When you’re ready, tap OK or Load. OK just stores your new script
in the LyME database, while Load also executes it.

Functions

To program functions in LyME, tap the Edit button and (new). Replace
"untitled" with a library name (such as "stat" or "control"). Write all
your functions below.

When you’re satisfied, tap OK or Load. OK stores your new library
in the LyME database, while Load also issues a "use" command to LME

Using LyME 9

Figure 1.8

Figure 1.9

Figure 1.10

10 LyME User Manual ©1999-2008, Calerga Sàrl

Figure 1.11

Figure 1.12

to make your functions available from the command line. You can then
test your library.

To edit again your script or your library, tap the Edit button, then
pick its name from the list. The "Load" button will remove the previous
definitions and replace them with the new ones.

Error correction

When you execute a function and an error occurs, the library name,
the function name and the line number are displayed. If you tap some-
where on the library or function name, then tap the Edit button, LyME
displays directly the offending line to help you correct the bug.

Here is an example of a problematic function.
Tap Load, then write bugfn. LyME stops when it tries to write to the

10th element of the 3-by-3 matrix.

Using LyME 11

Figure 1.13

Figure 1.14

Tap the function name in the error message ("bugfn"), then tap the
Edit button to jump to the line where the error occurred.

Using libraries

To use a library when you restart LyME, tap the Ld (load) button and
the name of the library. The command to do the same is "use library-
name".

You can also use this command in another library; note however
that functions in nested libraries are hidden, unless their library is
explicitly used where they are called.

If you use frequently the same libraries, you may want to use them

Figure 1.15

12 LyME User Manual ©1999-2008, Calerga Sàrl

Figure 1.16

automatically at startup. Select Startup Commands in the File menu,
then type any command you want to be executed every time you
launch LyME or Clear All.

Another useful command is info: info l lists the currently loaded
libraries; info f lists all referenced functions, with parenthesis for
those not compiled yet; info b lists the builtin functions; and info
v lists the variables with their type and size.

1.3 User input

The best way to develop reusable code is to write functions with in-
put and output arguments. Variables can be created in the context
of the command line to pass values between different functions, and
new values are entered directly in the command line, with access to
the history of past commands, the list of functions, and buttons for
common operators and symbols.

It may also be useful to prompt the user for more input in the middle
of a computation. One mechanism can be used.

Standard input General input functions such as fgets or fscanf
can be used with the predefined file descripor 0. The user can enter
data and click button "OK" to resume execution, or button "Cancel"
to cancel it completely. In the example below, a single integer is
requested (note that the default file descriptor for fscanf is 0).

n = fscanf(’%d’);

Using LyME 13

1.4 Data exchange

Libraries are synchronized during backup, but those deleted on the
Palm device are currently preserved on the desktop computer.

To transfer a library to another Palm device, you can send it via
infrared or Bluetooth. Select Send in the File menu, align your device
to the destination device if you use infrared, and tap the library to be
sent in the list, and select the transfer type if your device offers the
choice. The receiving device will display a dialog box asking if the
library should be accepted; if OK, the library will be stored in the LyME
database.

Another way to exchange libraries with the outside is to convert it
to or from a Memo Pad note. To export a library, edit it (Edit button),
then select Export in the File menu; a new Memo Pad note is created.
To import a library, create a new library (Edit button, then (New)), then
select Import in the File menu and choose the first line of one of the
Memo Pad notes; its entire contents will be inserted in the library.

At a lower level, serialdevopen, in addition to the physical serial
ports whose list can be obtained with serialdevname, accepts the
four-character codes of virtual serial drivers recognized by the Palm
OS function SrmOpen. Two codes are documented: ’ircm’ for infrared,
and ’rfcm’ for Bluetooth in client mode. To open a Bluetooth connec-
tion, for instance, you can use the code below. serialdevopen will let
the user pick a Bluetooth device from a list.

try
fd = serialdevopen(’rfcm’);
// functions like fread/fwrite/fprintf/fscanf/fgets
fclose(fd);

catch
// Bluetooth not supported or user cancel

1.5 License

LyME and its documentation: Copyright 1997-2008, Calerga. All rights
reserved. LyME may not be redistributed without the prior written
permission of Calerga.

The user assumes all the risks caused by the use of LyME and the
results obtained with LyME. Under no circumstance will Calerga, its
emplyees or resellers be responsible for any loss of money, time, data,
goods, or lives.

14 LyME User Manual ©1999-2008, Calerga Sàrl

1.6 What’s more in Sysquake

While it is based on the same computation engine and language,
Sysquake has a completely different graphical system, whose goal is
nearly-instantaneous interactivity with the mouse. This interactivity
opens a new dimension (effect of parametric variations, relationships
between different figures, etc.) and permits the user to get an intuitive
understanding of his/her problems and to solve them more efficiently.
Sysquake also has file support, extensions, large high-quality numeri-
cal libraries, a user interface which supports many more options, print
support, and a lot of other features.

LyME runs on much slower hardware (typically 1000 times slower);
it is useful for small-to-medium-size problems and is located some-
where between high-end scientific calculators and desktop numeric
software such as Matlab, with which it is largely compatible.

For more information about Sysquake and LyME, please visit
http://www.calerga.com.

1.7 MathLib

MathLib is a free shared library that can be used by any OS 2.0+ Pilot
program that needs IEEE 754 double precision math functions. It is
distributed under the terms of the GNU Library General Public License,
and is freely available with full source code and documentation at the
MathLib Information web page. It is not a part of the LyME program,
and you’re not paying anything for its use; a copy is simply included
in this archive for your convenience. Thanks, Rick!

Chapter 2

LME Tutorial

The remainder of this chapter introduces LME(TM) (Lightweight Math
Engine), the interpreter for numerical computing used by Sysquake,
and shows you how to perform basic computations. It supposes you
can type commands to a command-line interface. You are invited to
type the examples as you read this tutorial and to experiment on your
own. For a more systematic description of LME, please consult the LME
Reference chapter.

In the examples below, we assume that LME displays a prompt >.
This is not the case for all applications. You should never type it your-
self. Enter what follows the prompt on the same line, hit the Return
key (or tap the Eval or Execute button), and observe the result.

2.1 Simple operations

LME interprets what you type at the command prompt and displays
the result unless you end the command with a semicolon. Simple ex-
pressions follow the syntactic rules of many programming languages.

> 2+3*4
ans =
14
> 2+3/4
ans =
2.75

As you can see, the evaluation order follows the usual rules which
state that the multiplication (denoted with a star) and division (slash)
have a higher priority than the addition and subtraction. You can
change this order with parenthesis:

> (2+3)*4
ans =
20

16 LyME User Manual ©1999-2008, Calerga Sàrl

The result of expressions is automatically assigned to variable ans
(more about variables later), which you can reuse in the next expres-
sion:

> 3*ans
ans =
60

Power is represented by the ˆ symbol:

> 2̂ 5
ans =
32

LME has many mathematical functions. Trigonometric functions as-
sume that angles are expressed in radians, and sqrt denotes the
square root.

> sin(pi/4) * sqrt(2)
ans =
1

2.2 Complex Numbers

In many computer languages, the square root is defined only for non-
negative arguments. However, it is extremely useful to extend the set
of numbers to remove this limitation. One defines  such that 2 = −1,
and applies all the usual algebraic rules. For instance,

p
−1 =

p

2 = ,
and

p
−4 =

p
4
p
−1 = 2. Complex numbers of the form + b are the

sum of a real part  and an imaginary part b. It should be mentioned
that , the symbol used by mathematicians, is called j by engineers.
LME accepts both symbols as input, but it always writes it j. You can
use it like any function, or stick an i or j after a number:

> 2+3*j
ans =
2+3j
> 3j+2
ans =
2+3j

Many functions accept complex numbers as argument, and return a
complex result when the input requires it even if it is real:

> sqrt(-2)
ans =
0+1.4142i
> exp(3+2j)

Tutorial 17

ans =
-8.3585+18.2637j
> log(-8.3585+18.2637j)
ans =
3+2j

To get the real or imaginary part of a complex number, use the func-
tions real or imag, respectively:

> real(2+3j)
ans =
2
> imag(2+3j)
ans =
3

Complex numbers can be seen as vectors in a plane. Then addition
and subtraction of complex numbers correspond to the same opera-
tions applied to the vectors. The absolute value of a complex number,
also called its magnitude, is the length of the vector:

> abs(3+4j)
ans =
5
> sqrt(3̂ 2+4̂ 2)
ans =
5

The argument of a complex number is the angle between the x axis
("real axis") and the vector, counterclockwise. It is calculated by the
angle function.

> angle(2+3j)
ans =
0.9828

The last function specific to complex numbers we will mention here is
conj, which calculates the conjugate of a complex number. The con-
jugate is simply the original number where the sign of the imaginary
part is changed.

> conj(2+3j)
ans =
2-3j

Real numbers are also complex numbers, with a null imaginary part;
hence

> abs(3)
ans =

18 LyME User Manual ©1999-2008, Calerga Sàrl

3
> conj(3)
ans =
3
> angle(3)
ans =
0
> angle(-3)
ans =
3.1416

2.3 Vectors and Matrices

LME manipulates vectors and matrices as easily as scalars. To define
a matrix, enclose its contents in square brackets and use commas to
separate elements on the same row and semicolons to separate the
rows themselves:

> [1,2;5,3]
ans =
1 2
5 3

Column vectors are matrices with one column, and row vectors are
matrices with one row. You can also use the colon operator to build a
row vector by specifying the start and end values, and optionally the
step value. Note that the end value is included only if the range is a
multiple of the step. Negative steps are allowed.

> 1:5
ans =
1 2 3 4 5
> 0:0.2:1
ans =
0 0.2 0.4 0.6 0.8 1
> 0:-0.3:1
ans =
0 -0.3 -0.6 -0.9

There are functions to create special matrices. The zeros, ones, rand,
and randn functions create matrices full of zeros, ones, random num-
bers uniformly distributed between 0 and 1, and random numbers nor-
mally distributed with a mean of 0 and a standard deviation of 1, re-
spectively. The eye function creates an identity matrix, i.e. a matrix
with ones on the main diagonal and zeros elsewhere. All of these func-
tions can take one scalar argument n to create a square n-by-n matrix,
or two arguments m and n to create an m-by-n matrix.

Tutorial 19

> zeros(3)
ans =
0 0 0
0 0 0
0 0 0
> ones(2,3)
ans =
1 1 1
1 1 1
> rand(2)
ans =
0.1386 0.9274
0.3912 0.8219
> randn(2)
ans =
0.2931 1.2931
-2.3011 0.9841
> eye(3)
ans =
1 0 0
0 1 0
0 0 1
> eye(2,3)
ans =
1 0 0
0 1 0

You can use most scalar functions with matrices; functions are applied
to each element.

> sin([1;2])
ans =
0.8415
0.9093

There are also functions which are specific to matrices. For example,
det calculates the determinant of a square matrix:

> det([1,2;5,3])
ans =
-7

Arithmetic operations can also be applied to matrices, with their usual
mathematical behavior. Additions and subtractions are performed on
each element. The multiplication symbol * is used for the product of
two matrices or a scalar and a matrix.

> [1,2;3,4] * [2;7]
ans =
16
34

20 LyME User Manual ©1999-2008, Calerga Sàrl

The division symbol / denotes the multiplication by the inverse of the
right argument (which must be a square matrix). To multiply by the
inverse of the left argument, use the symbol \. This is handy to solve
a set of linear equations. For example, to find the values of  and y
such that + 2y = 2 and 3+ 4y = 7, type

> [1,2;3,4] \ [2;7]
ans =
3
-0.5

Hence  = 3 and y = −0.5. Another way to solve this problem is
to use the inv function, which return the inverse of its argument. It is
sometimes useful to multiply or divide matrices element-wise. The .*,
./ and .\ operators do exactly that. Note that the + and - operators
do not need special dot versions, because they perform element-wise
anyway.

> [1,2;3,4] * [2,1;5,3]
ans =
12 7
26 15
> [1,2;3,4] .* [2,1;5,3]
ans =
2 2
15 12

Some functions change the order of elements. The transpose operator
(tick) reverses the columns and the rows:

> [1,2;3,4;5,6]’
ans =
1 3 5
2 4 6

When applied to complex matrices, the complex conjugate transpose
is obtained. Use dot-tick if you just want to reverse the rows and
columns. The flipud function flips a matrix upside-down, and fliplr
flips a matrix left-right.

> flipud([1,2;3,4])
ans =
3 4
1 2
> fliplr([1,2;3,4])
ans =
2 1
4 3

To sort the elements of each column of a matrix, or the elements of a
row vector, use the sort function:

Tutorial 21

> sort([2,4,8,7,1,3])
ans =
1 2 3 4 7 8

To get the size of a matrix, you can use the size function, which gives
you both the number of rows and the number of columns unless you
specify which of them you want in the optional second argument:

> size(rand(13,17))
ans =
13 17
> size(rand(13,17), 1)
ans =
13
> size(rand(13,17), 2)
ans =
17

2.4 Polynomials

LME handles only numerical values. Therefore, it cannot differenti-
ate functions like ƒ () = sn(e). However, a class of functions has a
paramount importance in numerical computing, the polynomials. Poly-
nomials are weighted sums of powers of a variable, such as 22+3−
5. LME, which handles only matrices, stores the coefficients of poly-
nomials in row vectors; i.e. 22 + 3 − 5 is represented as [2,3,-5],
and 25 + 3 as [2,0,0,0,3,0].

Adding two polynomials would be like adding the coefficient vectors
if they had the same size; in the general case, however, you had better
use the function addpol, which can also be used for subtraction:

> addpol([1,2],[3,7])
ans =
4 9
> addpol([1,2],[2,4,5])
ans =
2 5 7
> addpol([1,2],-[2,4,5])
ans =
-2 -3 -3

Multiplication of polynomials corresponds to convolution (no need to
understand what it means here) of the coefficient vectors.

> conv([1,2],[2,4,5])
ans =
2 8 13 10

Hence (+ 2)(22) + 4+ 5 = 23 + 82 + 13+ 10.

22 LyME User Manual ©1999-2008, Calerga Sàrl

2.5 Strings

You type strings by bracketing them with single quotes:

> ’Hello, World!’
ans =
Hello, World!

If you want single quotes in a string, double them:

> ’Easy, isn’’t it?’
ans =
Easy, isn’t it?

Some control characters have a special representation. For example,
the line feed, used in LME as an end-of-line character, is \n:

> ’Hello,\nWorld!’
ans =
Hello,
World!

Strings are actually matrices of characters. You can use commas and
semicolons to build larger strings:

> [’a’,’bc’;’de’,’f’]
ans =
abc
def

2.6 Variables

You can store the result of an expression into what is called a variable.
You can have as many variables as you want and the memory permits.
Each variable has a name to retrieve the value it contains. You can
change the value of a variable as often as you want.

> a = 3;
> a + 5
ans =
8
> a = 4;
> a + 5
ans =
9

Note that a command terminated by a semicolon does not display its
result. To see the result, remove the semicolon, or use a comma if
you have several commands on the same line. Implicit assignment to
variable ans is not performed when you assign to another variable or
when you just display the contents of a variable.

Tutorial 23

> a = 3
a =
3

> a = 7, b = 3 + 2 * a
a =
7

b =
17

2.7 Loops and Conditional Execution

To repeat the execution of some commands, you can use either a
for/end block or a while/end block. With for, you use a variable
as a counter:

> for i=1:3;i,end
i =
1

i =
2

i =
3

With while, the commands are repeated as long as some expression
is true:

> i = 1; while i < 10; i = 2 * i, end
i =
2

i =
4

i =
8

You can choose to execute some commands only if a condition holds
true :

> if 2 < 3;’ok’,else;’amazing...’,end
ans =
ok

2.8 Functions

LME permits you to extend its set of functions with your own. This is
convenient not only when you want to perform the same computation
on different values, but also to make you code clearer by dividing the
whole task in smaller blocks and giving names to them. To define a

24 LyME User Manual ©1999-2008, Calerga Sàrl

new function, you have to write its code in a file; you cannot do it from
the command line. In Sysquake, put them in a function block.

Functions begin with a header which specifies its name, its input
arguments (parameters which are provided by the calling expression)
and its output arguments (result of the function). The input and out-
put arguments are optional. The function header is followed by the
code which is executed when the function is called. This code can use
arguments like any other variables.

We will first define a function without any argument, which just
displays a magic square, the sum of each line, and the sum of each
column:

function magicsum3
magic_3 = magic(3)
sum_of_each_line = sum(magic_3, 2)
sum_of_each_column = sum(magic_3, 1)

You can call the function just by typing its name in the command line:

> magicsum3
magic_3 =

8 1 6
3 5 7
4 9 2

sum_of_each_line =
15
15
15

sum_of_each_column =
15 15 15

This function is limited to a single size. For more generality, let us add
an input argument:

function magicsum(n)
magc = magic(n)
sum_of_each_line = sum(magc, 2)
sum_of_each_column = sum(magc, 1)

When you call this function, add an argument:

> magicsum(2)
magc =
1 3
4 2

sum_of_each_line =
4
6

sum_of_each_column =
5 5

Tutorial 25

Note that since there is no 2-by-2 magic square, magic(2) gives some-
thing else... Finally, let us define a function which returns the sum of
each line and the sum of each column:

function (sum_of_each_line, sum_of_each_column) = magicSum(n)
magc = magic(n);
sum_of_each_line = sum(magc, 2);
sum_of_each_column = sum(magc, 1);

Since we can obtain the result by other means, we have added semi-
colons after each statement to suppress any output. Note the upper-
case S in the function name: for LME, this function is different from
the previous one. To retrieve the results, use the same syntax:

> (sl, sc) = magicSum(3)
sl =
15
15
15

sc =
15 15 15

You do not have to retrieve all the output arguments. To get only the
first one, just type

> sl = magicSum(3)
sl =
15
15
15

When you retrieve only one output argument, you can use it directly
in an expression:

> magicSum(3) + 3
ans =

18
18
18

One of the important benefits of defining function is that the variables
have a limited scope. Using a variable inside the function does not
make it available from the outside; thus, you can use common names
(such as x and y) without worrying about whether they are used in
some other part of your whole program. For instance, let us use one
of the variables of magicSum:

> magc = 77
magc =
77

26 LyME User Manual ©1999-2008, Calerga Sàrl

> magicSum(3) + magc
ans =

92
92
92

> magc
magc =

77

2.9 Local and Global Variables

When a value is assigned to a variable which has never been refer-
enced, a new variable is created. It is visible only in the current con-
text: the base workspace for assignments made from the command-
line interface, or the current function invocation for functions. The
variable is discarded when the function returns to its caller.

Variables can also be declared to be global, i.e. to survive the end of
the function and to support sharing among several functions and the
base workspace. Global variables are declared with keyword global:

global x
global y z

A global variable is unique if its name is unique, even if it is declared
in several functions.

In the following example, we define functions which implement a
queue which contains scalar numbers. The queue is stored in a global
variable named QUEUE. Elements are added at the front of the vector
with function queueput, and retrieved from the end of the vector with
function queueget.

function queueput(x)
global QUEUE;
QUEUE = [x, QUEUE];

function x = queueget
global QUEUE;
x = QUEUE(end);
QUEUE(end) = [];

Both functions must declare QUEUE as global; otherwise, the variable
would be local, even if there exists also a global variable defined else-
where. The first time a global variable is defined, its value is set to
the empty matrix []. In our case, there is no need to initialized it to
another value.

Here is how these functions can be used.

Tutorial 27

> queueput(1);
> queueget
ans =

1
> queueput(123);
> queueput(2+3j);
> queueget
ans =

123
> queueget
ans =

2 + 3j

To observe the value of QUEUE from the command-line interface, QUEUE
must be declared global there. If a local variable already exists, it is
discarded.

> global QUEUE
> QUEUE
QUEUE =

[]
> queueput(25);
> queueput(17);
> QUEUE
QUEUE =

17 25

Chapter 3

LME Reference

This chapter describes LME (Lightweight Math Engine), the interpreter
for numerical computing used by Sysquake.

3.1 Program format

Statements

An LME program, or a code fragment typed at a command line, is com-
posed of statements. A statement can be either a simple expression,
a variable assignment, or a programming construct. Statements are
separated by commas, semicolons, or end of lines. The end of line has
the same meaning as a comma, unless the line ends with a semicolon.
When simple expressions and assignments are followed by a comma
(or an end of line), the result is displayed to the standard output; when
they are followed by a semicolon, no output is produced. What follows
programming constructs does not matter.

When typed at the command line, the result of simple expressions
is assigned to the variable ans; this makes easy reusing intermediate
results in successive expressions.

Continuation characters

A statement can span over several lines, provided all the lines but the
last one end with three dots. For example,

1 + ...
2

is equivalent to 1 + 2. After the three dots, the remaining of the line,
as well as empty lines and lines which contain only spaces, are ig-
nored.

30 LyME User Manual ©1999-2008, Calerga Sàrl

Inside parenthesis or braces, line breaks are permitted even if they
are not escaped by three dots. Inside brackets, line breaks are matrix
row separators, like semicolons.

Comments

Unless when it is part of a string enclosed between single ticks, a
single percent character or two slash characters mark the beginning
of a comment, which continues until the end of the line and is ignored
by LME. Comments must follow continuation characters, if any.

a = 2; % comment at the end of a line
x = 5; // another comment
% comment spanning the whole line
b = ... % comment after the continuation characters

a;
a = 3% no need to put spaces before the percent sign
s = ’%’; % percent characters in a string

Comments may also be enclosed between /* and */; in that case,
they can span several lines.

Pragmas

Pragmas are directives for LME compiler. They can be placed at the
same location as LME statements, i.e. in separate lines or between
semicolons or commas. They have the following syntax:

_pragma name arguments

where name is the pragma name and arguments are additional data
whose meaning depends on the pragma.

Currently, only one pragma is defined. Pragmas with unknown
names are ignored.

Name Arguments Effect
line n Set the current line number to n

_pragma line 120 sets the current line number as reported by er-
ror messages or used by the debugger or profiler to 120. This can
be useful when the LME source code has been generated by process-
ing another file, and line numbers displayed in error messages should
refer to the original file.

3.2 Function Call

Functions are fragments of code which can use input arguments as
parameters and produce output arguments as results. They can be

LME Reference 31

built in LME (built-in functions), loaded from optional extensions, or
defined with LME statements (user functions).

A function call is the action of executing a function, maybe with
input and/or output arguments. LME supports different syntaxes.

fun
fun()
fun(in1)
fun(in1, in2,...)
out1 = fun...
(out1, out2, ...) = fun...
[out1, out2, ...] = fun...
[out1 out2 ...] = fun...

Input arguments are enclosed between parenthesis. They are passed
to the called function by value, which means that they cannot be mod-
ified by the called function. When a function is called without any input
argument, parenthesis may be omitted.

Output arguments are assigned to variables or part of variables
(structure field, list element, or array element). A single output argu-
ment is specified on the left on an equal character. Several output
arguments must be enclosed between parenthesis or square brackets
(arguments can simply be separated by spaces when they are en-
closed in brackets). Parenthesis and square brackets are equivalent
as far as LME is concerned; parenthesis are preferred in LME code, but
square brackets are available for compatibility with third-party appli-
cations.

In some cases, a simpler syntax can be used when the function
has only literal character strings as input arguments. The following
conditions must be satisfied:

– No output argument.

– Each input argument must be a literal string

– without any space, tabulator, comma or semicolon,

– beginning with a letter, a digit or one of ’-/.:*’ (minus, slash,
dot, colon, or star),

– containing at least one letter or digit.

In that case, the following syntax is accepted; left and right columns
are equivalent.

fun str1 fun(’str1’)
fun str1 str2 fun(’str1’,’str2’)
fun abc,def fun(’abc’),def

Arguments can also be quoted strings; in that case, they may con-
tain spaces, tabulators, commas, semicolons, and escape sequences

32 LyME User Manual ©1999-2008, Calerga Sàrl

beginning with a backslash (see below for a description of the string
data type). Quoted and unquoted arguments can be mixed:

fun ’a bc\n’ fun(’a bc\n’)
fun str1 ’str 2’ fun(’str1’,’str 2’)

This command syntax is especially useful for functions which
accept well-known options represented as strings, such as format
loose.

3.3 Libraries

Libraries are collections of user functions, identified in LME by a name.
Typically, they are stored in a file whose name is the library name with
a ".lml" suffix (for instance, library stdlib is stored in file "stdlib.lml").
Before a user function can be called, its library must be loaded with
the use statement. use statements have an effect only in the context
where they are placed, i.e. in a library, or the command-line interface,
or a Sysquake SQ file; this way, different libraries may define functions
with the same name provided they are not used in the same context.

In a library, functions can be public or private. Public functions
may be called from any context which use the library, while private
functions are visible only from the library they are defined in.

3.4 Types

Numerical, logical, and character arrays

The basic type of LME is the two-dimensional array, or matrix. Scalar
numbers and row or column vectors are special kinds of matrices. Ar-
rays with more than two dimensions are also supported. All elements
have the same type, which are described in the table below. Two non-
numerical types exist for character arrays and logical (boolean) arrays.
Cell arrays, which contain composite types, are described in a section
below.

LME Reference 33

Type Description
double 64-bit IEEE number
complex double Two 64-bit IEEE numbers
single 32-bit IEEE number
complex single Two 32-bit IEEE numbers
uint32 32-bit unsigned integer
int32 32-bit signed integer
uint16 16-bit unsigned integer
int16 16-bit signed integer
uint8 8-bit unsigned integer
int8 8-bit signed integer
uint64 64-bit unsigned integer
int64 64-bit signed integer

64-bit integer numbers are not supported by all applications on all
platforms.

These basic types can be used to represent many mathematic ob-
jects:

Scalar One-by-one matrix.

Vector n-by-one or one-by-n matrix. Functions which return vec-
tors usually give a column vector, i.e. n-by-one.

Empty object 0-by-0 matrix (0-by-n or n-by-0 matrices are always
converted to 0-by-0 matrices).

Polynomial of degree d 1-by-(d+1) vector containing the coeffi-
cients of the polynomial of degree d, highest power first.

List of n polynomials of same degree d n-by-(d+1) matrix con-
taining the coefficients of the polynomials, highest power at left.

List of n roots n-by-1 matrix.

List of n roots for m polynomials of same degree n n-by-m
matrix.

Single index One-by-one matrix.

List of indices Any kind of matrix; the real part of each element
taken row by row is used.

Sets Numerical array, or list or cell array of strings (see below).

Boolean value One-by-one logical array; 0 means false, and any
other value (including nan) means true (comparison and logical
operators and functions return logical values). In programs and
expressions, constant boolean values are entered as false and
true. Scalar boolean values are displayed as false or true; in
arrays, respectively as F or T.

34 LyME User Manual ©1999-2008, Calerga Sàrl

String Usually 1-by-n char array, but any shape of char arrays are
also accepted by most functions.

Unless a conversion function is used explicitly, numbers are repre-
sented by double or complex values. Most mathematical functions ac-
cept as input any type of numerical value and convert them to double;
they return a real or complex value according to their mathematical
definition.

Basic element-wise arithmetic and comparison operators accept di-
rectly integer types ("element-wise" means the operators + - .* ./ .\
and the functions mod and rem, as well as operators * / \ with a scalar
multiplicand or divisor). If their arguments do not have the same type,
they are converted to the size of the largest argument size, in the fol-
lowing order:

double > uint64 > int64 > uint32 > int32 > uint16 > int16 >
uint8 > int8

Functions which manipulate arrays (such as reshape which
changes their size or repmat which replicates them) preserve their
type.

To convert arrays to numerical, char, or logical arrays, use func-
tions + (unary operator), char, or logical respectively. To convert the
numerical types, use functions double, single, or uint8 and similar
functions.

Numbers

Double and complex numbers are stored as floating-point numbers,
whose finite accuracy depends on the number magnitude. During
computations, round-off errors can accumulate and lead to visible ar-
tifacts; for example, 2-sqrt(2)*sqrt(2), which is mathematically 0,
yields -4.4409e-16. Integers whose absolute value is smaller than
2̂ 52 (about 4.5e15) have an exact representation, though.

Literal double numbers (constant numbers given by their numerical
value) have an optional sign, an integer part, an optional fractional
part following a dot, and an optional exponent. The exponent is the
power of ten which multiplies the number; it is made of the letter ’e’
or ’E’ followed by an optional sign and an integer number. Numbers
too large to be represented by the floating-point format are changed
to plus or minus infinity; too small numbers are changed to 0. Here
are some examples (numbers on the same line are equivalent):

123 +123 123. 123.00 12300e-2
-2.5 -25e-1 -0.25e1 -0.25e+1
0 0.0 -0 1e-99999
inf 1e999999
-inf -1e999999

LME Reference 35

Literal integer numbers may also be expressed in hexadecimal with
prefix 0x, in octal with prefix 0, or in binary with prefix 0b. The four
literals below all represent 11, stored as double:

0xb
013
0b1011
11

Literal integer numbers stored as integers and literal single numbers
are followed by a suffix to specify their type, such as 2int16 for the
number 2 stored as a two-byte signed number or 0x300uint32 for the
number whose decimal representation is 768 stored as a four-byte un-
signed number. All the integer types are valid, as well as single. This
syntax gives the same result as the call to the corresponding function
(e.g. 2int16 is the same as int16(2)), except when the integer num-
ber cannot be represented with a double; then the number is rounded
to the nearest value which can be represented with a double. Compare
the expressions below:

Expression Value
uint64(123456789012345678) 123456789012345696
123456789012345678uint64 123456789012345678

Literal complex numbers are written as the sum or difference of
a real number and an imaginary number. Literal imaginary numbers
are written as double numbers with an i or j suffix, like 2i, 3.7e5j, or
0xffj. Functions i and j can also be used when there are no variables
of the same name, but should be avoided for safety reasons.

The suffices for single and imaginary can be combined as isingle
or jsingle, in this order only:

2jsingle
3single + 4isingle

Command format is used to specify how numbers are displayed.

Strings

Strings are stored as arrays (usually row vectors) of 16-bit unsigned
numbers. Literal strings are enclosed in single quotes:

’Example of string’
’’

The second string is empty. For special characters, the following es-
cape sequences are recognized:

36 LyME User Manual ©1999-2008, Calerga Sàrl

Character Escape seq. Character code
Null \0 0
Bell \a 7
Backspace \b 8
Horizontal tab \t 9
Line feed \n 10
Vertical tab \v 11
Form feed \f 12
Carriage return \r 13
Single tick \’ 39
Single tick ’’ (two ’) 39
Backslash \\ 92
Hexadecimal number \xhh hh
Octal number \ooo ooo
16-bit UTF-16 \uhhhh unicode UTF-16 code

For octal and hexadecimal representations, up to 3 (octal) or 2 (hex-
adecimal) digits are decoded; the first non-octal or non-hexadecimal
digit marks the end of the sequence. The null character can conve-
niently be encoded with its octal representation, \0, provided it is not
followed by octal digits (it should be written \000 in that case). It is an
error when another character is found after the backslash. Single ticks
can be represented either by a backslash followed by a single tick, or
by two single ticks.

Depending on the application and the operating system, strings can
contain directly Unicode characters encoded as UTF-8, or MBCS (multi-
byte character sequences). 16-bit characters encoded with \uhhhh
escape sequences are always accepted and handled correctly by all
built-in LME functions (low-level input/output to files and devices which
are byte-oriented is an exception; explicit UTF-8 conversion should be
performed if necessary).

Lists and cell arrays

Lists are ordered sets of other elements. They may be made of any
type, including lists. Literal lists are enclosed in braces; elements are
separated with commas.

{1,[3,6;2,9],’abc’,{1,’xx’}}

Lists can be empty:

{}

List’s purpose is to collect any kind of data which can be assigned to
variables or passed as arguments to functions.

Cell arrays are arrays whose elements (or cells) contain data of any
type. They differ from lists only by having more than one dimension.

LME Reference 37

Most functions which expect lists also accept cell arrays; functions
which expect cell arrays treat lists of n elements as 1-by-n cell arrays.

To create a cell array with 2 dimensions, cells are written between
braces, where rows are separated with semicolons and row elements
with commas:

{1, ’abc’; 27, true}

Since the use of braces without semicolon produces a list, there is no
direct way to create a cell array with a single row, or an empty cell
array. Most of the time, this is not a problem since lists are accepted
where cell arrays are expected. To force the creation of a cell array,
the reshape function can be used:

reshape({’ab’, ’cde’}, 1, 2)

Structures

Like lists and cell arrays, structures are sets of data of any type. While
list elements are ordered but unnamed, structure elements, called
fields, have a name which is used to access them. There are two
ways to make structures: with the struct function, or by setting each
field in an assignment. s.f refers to the value of the field named f
in the structure s. Usually, s is the name of a variable; but unless it
is in the left part of an assignment, it can be any expression which
evaluates to a structure.

a = struct(’name’, ’Sysquake’,
’os’, {’Windows’, ’Mac OS X’, ’Linux’});

b.x = 200;
b.y = 280;
b.radius = 90;

c.s = b;

With the assignments above, a.os{3} is ’Linux’ and c.s.radius is
90.

Structure arrays

While structure fields can contain any type of array and cell arrays can
have structures stored in their cells, structure arrays are arrays where
each element has the same named fields. Structures are structure
arrays of size [1,1], like scalar numbers are arrays of size [1,1].

Values are specified first by indices between parenthesis, then by
field name. Braces are invalid to access elements of structure arrays

38 LyME User Manual ©1999-2008, Calerga Sàrl

(they can be used to access elements of cell arrays stored in structure
array fields).

Structure arrays are created from cell arrays with functions
structarray or cell2struct, or by assigning values to fields.

A = structarray(’name’, {’dog’,’cat’},
’weight’, {[3,100],[3,18]});

B = cell2struct({’dog’,’cat’;[3,100],[3,18]},
{’name’,’weight’});

C(1,1).name = ’dog’;
C(1,1).weight = [3,100];
C(1,2).name = ’cat’;
C(1,2).weight = [3,18];

Value sequences

Value sequences are usually written as values separated with com-
mas. They are used as function input arguments or row elements in
arrays or lists.

When expressions involving lists, cell arrays or structure arrays
evaluate to multiple values, these values are considered as a value
sequence, or part of a value sequence, and used as such in context
where value sequences are expected. The number of values can be
known only at execution time, and may be zero.

L = {1, 2};
v = [L{:}]; // convert L to a row vector
c = complex(L{:}); // convert L to a complex number

Value sequences can arise from element access of list or cell arrays
with brace indexing, or from structure arrays with field access with or
without parenthesis indexing.

Function references

Function references are equivalent to the name of a function together
with the context in which they are created. Their main use is as argu-
ment to other functions. They are obtained with operator @.

Inline and anonymous functions

Inline and anonymous functions encapsulate executable code. They
differ only in the way they are created: inline functions are made with
function inline, while anonymous functions have special syntax and
semantics where the values of variables in the current context can be

LME Reference 39

captured implicitly without being listed as argument. Their main use
is as argument to other functions.

Sets

Sets are represented with numerical arrays of any type (integer, real
or complex double or single, character, or logical), or lists or cell ar-
rays of strings. Members correspond to an element of the array or list.
All set-related functions accept sets with multiple values, which are
always reduced to unique values with function unique. They imple-
ment membership test, union, intersection, difference, and exclusive
or. Numerical sets can be mixed; the result has the same type as
when mixing numerical types in array concatenation. Numerical sets
and list or cell arrays os strings cannot be mixed.

Objects

Objects are the basis of Object-Oriented Programming (OOP), an ap-
proach of programming which puts the emphasis on encapsulated
data with a known programmatic interface (the objects). Two OOP
languages in common use today are C++ and Java.

The exact definition of OOP varies from person to person. Here is
what it means when it relates to LME:

Data encapsulation Objects contain data, but the data cannot be
accessed directly from the outside. All accesses are performed via
special functions, called methods. What links a particular method
to a particular object is a class. Class are identified with a name.
When an object is created, its class name is specified. The names
of methods able to act on objects of a particular class are prefixed
with the class name followed with two colons. Objects are special
structures whose contents are accessible only to its methods.

Function and operator overloading Methods may have the
same name as regular functions. When LME has to call a function,
it first checks the type of the input arguments. If one of them is an
object, the corresponding method is called, rather than the
function defined for non-object arguments. A method which has
the same name as a function or another method is said to
overload it. User functions as well as built-in ones can be
overloaded. Operators which have a function name (for instance
x+y can also be written plus(x,y)) can also be overloaded.
Special functions, called object constructors, have the same name
as the class and create new objects. They are also methods of the
class, even if their input arguments are not necessarily objects.

40 LyME User Manual ©1999-2008, Calerga Sàrl

Inheritance A class (subclass) may extend the data and methods
of another class (base class or parent). It is said to inherit from the
parent. In LME, objects from a subclass contain in a special field
an object of the parent class; the field name has the same name
as the parent class. If LME does not find a method for an object, it
tries to find one for its parent, great-parent, etc. if any. An object
can also inherit from several parents.

Here is an example of the use of polynom objects, which (as can
be guessed from their name) contain polynomials. Statement use
classes imports the definitions of methods for class polynom and oth-
ers.

use classes;
p = polynom([1,5,0,1])
p =
x̂ 3+5x̂ 2+1

q = p̂ 2 + 3 * p / polynom([1,0])
q =

x̂ 6+10x̂ 5+25x̂ 4+2x̂ 3+13x̂ 2+15x+1

3.5 Input and Output

LME identifies channels for input and output with non-negative integer
numbers called file descriptors. File descriptors correspond to files,
devices such as serial port, network connections, etc. They are used
as input argument by most functions related to input and output, such
as fprintf for formatted data output or fgets for reading a line of
text.

Note that the description below applies to most LME applications.
For some of them, files, command prompts, or standard input are ir-
relevant or disabled; and standard output does not always correspond
to the screen.

At least four file descriptors are predefined:

Value Input/Output Purpose
0 Input Standard input from keyboard
1 Output Standard output to screen
2 Output Standard error to screen
3 Output Prompt for commands

You can use these file descriptors without calling any opening func-
tion first, and you cannot close them. For instance, to display the value
of π, you can use fprintf:

fprintf(1, ’pi = %.6f\n’, pi);
pi = 3.141593

LME Reference 41

Some functions use implicitly one of these file descriptors. For in-
stance disp displays a value to file descriptor 1, and warning displays
a warning message to file descriptor 2.

File descriptors for files and devices are obtained with specific func-
tions. For instance fopen is used for reading from or writing to a file.
These functions have as input arguments values which specify what
to open and how (file name, host name on a network, input or output
mode, etc.), and as output argument a file descriptor. Such file de-
scriptors are valid until a call to fclose, which closes the file or the
connection.

3.6 Error Messages

When an error occurs, the execution is interrupted and an error mes-
sage explaining what happened is displayed, unless the code is en-
closed in a try/catch block. The whole error message can look like

> use stat
> iqr(123})

Index out of range for variable ’M’ (stat/prctile;61)
-> stat/iqr;69

The first line contains an error message, the location in the source
code where the error occurred, and the name of the function or oper-
ator involved. Here stat is the library name, prctile is the function
name, and 61 is the line number in the file which contains the library.
If the function where the error occurs is called itself by another func-
tion, the whole chain of calls is displayed; here, prctile was called by
iqr at line 69 in library stat.

Here is the list of errors which can occur. For some of them, LME
attempts to solve the problem itself, e.g. by allocating more memory
for the task.

Stack overflow Too complex expression, or too many nested func-
tion calls.

Data stack overflow Too large objects on the stack (in expres-
sions or in nested function calls).

Variable overflow Not enough space to store the contents of a
variable.

Code overflow Not enough memory for compiling the program.

Not enough memory Not enough memory for an operation out-
side the LME core.

42 LyME User Manual ©1999-2008, Calerga Sàrl

Algorithm does not converge A numerical algorithm does not
converge to a solution, or does not converge quickly enough. This
usually means that the input arguments have invalid values or are
ill-conditioned.

Incompatible size Size of the arguments of an operator or a func-
tion do not agree together.

Bad size Size of the arguments of a function are invalid.

Non-vector array A row or column vector was expected, but a
more general array was found.

Not a column vector A column vector was expected, but a more
general array was found.

Not a row vector A row vector was expected, but a more general
array was found.

Non-matrix array A matrix was expected, but an array with more
than 2 dimensions was found.

Non-square matrix A square matrix was expected, but a rectan-
gular matrix was found.

Index out of range Index negative or larger than the size of the
array.

Wrong type String or complex array instead of real, etc.

Non-integer argument An argument has a fractional part while
an integer is required.

Argument out of range An argument is outside the permitted
range of values.

Non-scalar argument An argument is an array while a scalar
number is required.

Non-object argument An object is required as argument.

Not a permutation The argument is not a permutation of the
integers from 1 to n.

Bad argument A numerical argument has the wrong site or the
wrong value.

Unknown option A string option has an invalid value.

Object too large An object has a size larger than some fixed limit.

Undefined variable Attempt to retrieve the contents of a variable
which has not been defined.

LME Reference 43

Undefined input argument Attempt to retrieve the contents of
an input argument which was neither provided by the caller nor
defined in the function.

Undefined function Attempt to call a function not defined.

Too few or too many input arguments Less or more arguments
in the call than what the function accepts.

Too few or too many output arguments Less or more left-side
variables in an assignment than the function can return.

Syntax error Unspecified compile-time error.

"function" keyword without function name Incomplete func-
tion header.

Bad function header Syntax error in a function header

Missing expression Statement such as if or while without ex-
pression.

Unexpected expression Statement such as end or else followed
by an expression.

Incomplete expression Additional elements were expected dur-
ing the compilation of an expression, such as right parenthesis or
a sub-expression at the right of an operator.

"for" not followed by a single assignment for is followed by
an expression or an assignment with multiple variables.

Bad variable name The left-hand part of an assignment is not a
valid variable name (e.g. 2=3)

String without right quote The left quote of a string was found,
but the right quote is missing.

Unknown escape character sequence In a string, the backslash
character is not followed by a valid escape sequence.

Unexpected right parenthesis Right parenthesis which does not
match a left parenthesis.

Unexpected right bracket Right bracket which does not match
a left bracket.

Unrecognized or unexpected token An unexpected character
was found during compilation (such as (1+))

"end" not in an index expression end was used outside of any
index sub-expression in an expression.

44 LyME User Manual ©1999-2008, Calerga Sàrl

"beginning" not in an index expression beginning was used
outside of any index sub-expression in an expression.

"matrixcol" not in an index expression matrixcol was used
outside of any index sub-expression in an expression.

"matrixrow" not in an index expression matrixrow was used
outside of any index sub-expression in an expression.

"matrixrow" or "matrixcol" used in the wrong index
matrixrow was used in an index which was not the first one, or
matrixcol was used in an index which was not the only one or
the second one.

Compilation overflow Not enough memory during compilation.

Too many nested subexpressions The number of nested of
subexpressions is too high.

Variable table overflow A single statement attempts to define
too many new variables at once.

Expression too large Not enough memory to compile a large ex-
pression.

Too many nested (), [] and {} The maximum depth of nested
subexpressions, function argument lists, arrays and lists is
reached.

Too many nested programming structures Not enough mem-
ory to compile that many nested programming structures such as
if, while, switch, etc.

Wrong number of input arguments Too few or too many input
arguments for a built-in function during compilation.

Wrong number of output arguments Too few or too many out-
put arguments for a built-in function during compilation.

Too many indices More than two indices for a variable.

Variable not found A variable is referenced, but appears neither
in the arguments of the function nor in the left part of an assign-
ment.

Unbounded language construct if, while, for, switch, or try
without end.

Unexpected "end" The end statement does not match an if,
switch, while, for, or catch block.

LME Reference 45

"case" or "otherwise" without "switch" The case or otherwise
statement is not inside a switch block.

"catch" without "try" The catch statement does not match a try
block.

"break" or "continue" not in a loop The break or continue
statement is not inside a while or for block.

Variable name reused Same variable used twice as input or as
output argument.

Too many user functions Not enough memory for that many user
functions.

Attempt to redefine a function A function with the same name
already exists.

Can’t find function definition Cannot find a function definition
during compilation.

Unexpected end of expression Missing right parenthesis or
square bracket.

Unexpected statement Expression expected, but a statement is
found (e.g. if).

Null name Name without any character (when given as a string in
functions like feval and struct).

Name too long More than 32 characters in a variable or function
name.

Unexpected function header A function header (keyword "func-
tion") has been found in an invalid place, for example in the argu-
ment of eval.

Function header expected A function header was expected but
not found.

Bad variable in the left part of an assignment The left part of
an assignment does not contain a variable, a structure field, a list
element, or the part of an array which can be assigned to.

Bad variable in a for loop The left part of the assignment of a
for loop is not a variable.

Source code not found The source code of a function is not avail-
able.

File not found fopen does not find the file specified.

46 LyME User Manual ©1999-2008, Calerga Sàrl

Bad file ID I/O function with a file descriptor which neither is stan-
dard nor corresponds to an open file or device.

Cannot write to file Attempt to write to a read-only file.

Bad seek Seek out of range or attempted on a stream file.

Too many open files Attempt to open too many files.

End of file Attempt to read data past the end of a file.

Timeout Input or output did not succeed before a too large amount
of time elapsed.

No more OS memory The operating system cannot allocate more
memory.

Bad context Call of a function when it should not (application-
dependent).

Not supported The feature is not supported, at least in the current
version.

3.7 Variable Assignment and Subscripting

Variable assignment

Assignment to a variable or to some elements of a matrix variable.

Syntax

var = expr
(var1, var2, ...) = function(...)

Description

var = expr assigns the result of the expression expr to the variable
var. When the expression is a naked function call, (var1,var2,...)
= function(...) assigns the value of the output arguments of the
function to the different variables. Usually, providing less variables
than the function can provide just discards the superfluous output
arguments; however, the function can also choose to perform in a
different way (an example of such a function is size, which returns
the number of rows and the number of columns of a matrix either as
two numbers if there are two output arguments, or as a 1-by-2 vector
if there is a single output argument). Providing more variables than
what the function can provide is an error.

LME Reference — variables 47

Variables can store any kind of contents dynamically: the size and
type can change from assignment to assignment.

A subpart of a matrix variable can be replaced with the use of
parenthesis. In this case, the size of the variable is expanded when
required; padding elements are 0 for numeric arrays and empty ar-
rays [] for cell arrays and lists.

See also

Operator (), operator {}, clear, exist, for, subsasgn

beginning

First index of an array.

Syntax

v(...beginning...)
A(...beginning...)
function e = C::beginning(obj, i, n)

Description

In an expression used as an index to access some elements of an
array, beginning gives the index of the first element (line or column,
depending of the context). It is always 1 for native arrays.

beginning can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::beginning(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where beginning is used, and n is the total number of index
expressions.

See also

Operator (), operator {}, beginning, end, matrixcol, matrixrow

end

Last index of an array.

48 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

v(...end...)
A(...end...)
function e = C::end(obj, i, n)

Description

In an expression used as an index to access some elements of an ar-
ray, end gives the index of the last element (line or column, depending
of the context).

end can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::end(obj,i,n), where C is the name of the class, obj is the
object to be indexed, i is the position of the index expression where
end is used, n is the total number of index expressions.

Examples

Last 2 elements of a vector:

a = 1:5; a(end-1:end)
4 5

Assignment to the last element of a vector:

a(end) = 99
a =
1 2 3 4 99

Extension of a vector:

a(end + 1) = 100
a =
1 2 3 4 99 100

See also

Operator (), operator {}, size, length, beginning, matrixcol,
matrixrow

global persistent

Declaration of global or persistent variables.

Syntax

global x y ...
persistent x y ...

LME Reference — variables 49

Description

By default, all variables are local and created the first time they are
assigned to. Local variables can be accessed only from the body of the
function where they are defined, but not by any other function, even
the ones they call. They are deleted when the function exits. If the
function is called recursively (i.e. if it calls itself, directly or indirectly),
distinct variables are defined for each call. Similarly, local variables
defined in the workspace using the command-line interface cannot be
referred to in functions.

On the other hand, global variables can be accessed by multiple
functions and continue to exist even after the function which cre-
ated them exits. Global variables must be declared with global in
each functions which uses them. They can also be declared in the
workspace. There exists only a single variable for each different name.

Declaring a global variable has the following result:

– If a previous local variable with the same name exists, it is
deleted.

– If the global variable does not exist, it is created and initialized
with the empty array [].

– Every access which follows the declaration in the same function
or workspace uses the global variable.

Like global variables, persistent variables are preserved between func-
tion calls; but they cannot be shared between different functions. They
are declared with persistent. They cannot be declared outside a
function. Different persistent functions can have the same name in
different functions.

Examples

Functions to reset and increment a counter:

function reset
global counter;
counter = 0;

function value = increment
global counter;
counter = counter + 1;
value = counter;

Here is how the counter can be used:

reset;
i = increment

50 LyME User Manual ©1999-2008, Calerga Sàrl

i =
1

j = increment
j =
2

See also

function

matrixcol

First index in a subscript expression.

Syntax

A(...matrixcol...)
function e = C::matrixcol(obj, i, n)

Description

In an expression used as a single subscript to access some elements
of an array A(expr), matrixcol gives an array of the same size as
A where each element is the column index. For instance for a 2-by-3
matrix, matrixcol gives the 2-by-3 matrix [1,1,1;2,2,2].

In an expression used as the second of multiple subscripts to
access some elements of an array A(...,expr) or A(...,expr,...),
matrixcol gives a row vector of length size(A,2) whose elements
are the indices of each column. It is equivalent to the range
(beginning:end).

matrixcol is useful in boolean expressions to select some ele-
ments of an array.

matrixcol can be overloaded for objects of used-defined
classes. Its definition should have a header equivalent to function
e=C::matrixcol(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixcol is used, and n is the total number of index
expressions.

Example

Set to 0 the NaN values which are not in the first column:

A = [1, nan, 5; nan, 7, 2; 3, 1, 2];
A(matrixcol > 1 & isnan(A)) = 0
A =

LME Reference — variables 51

1 0 5
nan 7 2
3 1 2

See also

matrixrow, beginning, end

matrixrow

First index in a subscript expression.

Syntax

A(...matrixrow...)
function e = C::matrixrow(obj, i, n)

Description

In an expression used as a single subscript to access some elements
of an array A(expr), matrixrow gives an array of the same size as A
where each element is the row index. For instance for a 2-by-3 matrix,
matrixrow gives the 2-by-3 matrix [1,2,3;1,2,3].

In an expression used as the first of multiple subscripts to access
some elements of an array A(expr,...), matrixrow gives a row vec-
tor of length size(A,1) whose elements are the indices of each row.
It is equivalent to the range (beginning:end).

matrixrow is useful in boolean expressions to select some ele-
ments of an array.

matrixrow can be overloaded for objects of used-defined classes.
Its definition should be have a header equivalent to function
e=C::matrixrow(obj,i,n), where C is the name of the class, obj is
the object to be indexed, i is the position of the index expression
where matrixrow is used, and n is the total number of index
expressions.

See also

matrixcol, beginning, end

subsasgn

Assignment to a part of an array, list, or structure.

52 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

A = subsasgn(A, s, B)

Description

When an assignment is made to a subscripted part of an object in a
statement like A(s1,s2,...)=B, LME executes A=subsasgn(A,s,B),
where subsasgn is a method of the class of variable A and s is a struc-
ture with two fields: s.type which is ’()’, and s.subs which is the
list of subscripts {s1,s2,...}. If a subscript is the colon character
which stands for all elements along the corresponding dimensions, it
is represented with the string ’:’ in s.subs.

When an assignment is made to a subscripted part of an object
in a statement like A{s}=B, LME executes A=subsasgn(A,s,B), where
subsasgn is a method of the class of variable A and s is a structure
with two fields: s.type which is ’{}’, and s.subs which is the list
containing the single subscript {s}.

When an assignment is made to the field of an object in a statement
like A.f=B, LME executes A=subsasgn(A,s,B), where s is a structure
with two fields: s.type which is ’.’, and s.subs which is the name of
the field (’f’ in this case).

While the primary purpose of subsasgn is to permit the use of sub-
scripts with objects, a built-in implementation of subsasgn is provided
for arrays when s.type is ’()’, for lists when s.type is a list, and for
structures when s.type is ’.’.

Examples

A = [1,2;3,4];
subsasgn(A, struct(’type’,’()’,’subs’,{1,’:’}), 999)
999 999
3 4

subsasgn(A, struct(’type’,’()’,’subs’,{’:’,1}), [])
2
4

See also

Operator (), operator {}, subsref, beginning, end

subsref

Reference to a part of an array, list, or structure.

LME Reference — programming constructs 53

Syntax

B = subsref(A, s)

Description

When an object variable is subscripted in an expression like
A(s1,s2,...), LME evaluates subsref(A,s), where subsref is a
method of the class of variable A and s is a structure with two fields:
s.type which is ’()’, and s.subs which is the list of subscripts
{s1,s2,...}. If a subscript is the colon character which stands for all
elements along the corresponding dimensions, it is represented with
the string ’:’ in s.subs.

When an object variable is subscripted in an expression like A{s},
LME evaluates subsref(A,s), where subsref is a method of the class
of variable A and s is a structure with two fields: s.type which is ’{}’,
and s.subs which is the list containing the single subscript {s}.

When the field of an object variable is retrieved in an expression
like A.f, LME executes subsref(A,s), where s is a structure with two
fields: s.type which is ’.’, and s.subs which is the name of the field
(’f’ in this case).

While the primary purpose of subsref is to permit the use of sub-
scripts with objects, a built-in implementation of subsref is provided
for arrays when s.type is ’()’, for lists when s.type is ’{}’, and for
structures when s.type is ’.’.

Examples

A = [1,2;3,4];
subsref(A, struct(’type’,’()’,’subs’,{1,’:’}))
1 2

See also

Operator (), operator {}, subsasgn, beginning, end

3.8 Programming Constructs

Programming constructs are the backbone of any LME program. Ex-
cept for the variable assignment, all of them use reserved keywords
which may not be used to name variables or functions. In addition to
the constructs described below, the following keywords are reserved
for future use:

54 LyME User Manual ©1999-2008, Calerga Sàrl

classdef goto

break

Terminate loop immediately.

Syntax

break

Description

When a break statement is executed in the scope of a loop construct
(while, repeat or for), the loop is terminated. Execution continues
at the statement which follows end. Only the innermost loop where
break is located is terminated.

The loop must be in the same function as break. It is an error to
execute break outside any loop.

See also

while, repeat, for, continue, return

case

Conditional execution of statements depending on a number or a
string.

See also

switch

catch

Error recovery.

See also

try

LME Reference — programming constructs 55

continue

Continue loop from beginning.

Syntax

continue

Description

When a continue statement is executed in the scope of a loop con-
struct (while, repeat or for), statements following continue are ig-
nored and a new loop is performed if the loop termination criterion is
not fulfilled.

The loop must be in the same function as continue. It is an error
to execute continue outside any loop.

See also

while, repeat, for, break

define

Definition of a constant.

Syntax

define c = expr
define c = expr;

Description

define c=expr assign permanently expression expr to c. It is equiv-
alent to

function y = c
y = expr;

Since c does not have any input argument, the expression is usually
constant. A semicolon may follow the definition, but it does not have
any effect. define must be the first element of the line (spaces and
comments are skipped).

56 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

define e = exp(1);
define g = 9.81;
define c = 299792458;
define G = 6.672659e-11;

See also

function

for

Loop controlled by a variable which takes successively the value of the
elements of a vector or a list.

Syntax

for v = vect
s1
...

end

for v = list
s1
...

end

Description

The statements between the for statement and the corresponding
end are executed repeatedly with the control variable v taking succes-
sively every column of vect or every element of list list. Typically,
vect is a row vector defined with the range operator.

You can change the value of the control variable in the loop; how-
ever, next time the loop is repeated, that value is discarded and the
next column of vect is fetched.

Examples

for i = 1:3; i, end
i =
1

i =
2

i =
3

LME Reference — programming constructs 57

for i = (1:3)’; i, end
i =
1
2
3

for i = 1:2:5; end; i
i =
5

for i = 1:3; break; end; i
i =
1

for el = {1,’abc’,{2,5}}; el, end
el =
1

el =
abc

el =
{2,5}

See also

while, repeat, break, continue, variable assignment

function endfunction

Definition of a function, operator, or method.

Syntax

function f
statements

function f(x1, x2, ...)
statements

function f(x1, x2 = expr2, ...)
statements

function y = f(x1, x2, ...)
statements

function (y1,y2,...) = f(x1,x2,...)
statements

function ... class::method ...
statements

function ...

58 LyME User Manual ©1999-2008, Calerga Sàrl

statements
endfunction

Description

New functions can be written to extend the capabilities of LME. They
begin with a line containing the keyword function, followed by the
list of output arguments (if any), the function name, and the list of
input arguments between parenthesis (if any). The output arguments
must be enclosed between parenthesis or square brackets if they are
several. One or more variable can be shared in the list of input and
output arguments. When the execution of the function terminates (ei-
ther after the last statement or because of the command return), the
current value of the output arguments, as set by the function’s state-
ments, is given back to the caller. All variables used in the function’s
statements are local; their value is undefined before the first assign-
ment (and it is illegal to use them in an expression), and is not shared
with variables in other functions or with recursive calls of the same
function. Different kinds of variables can be declared explicitly with
global and persistent.

When multiple functions are defined in the same code source (for
instance in a library), the body of a function spans from its header
to the next function or until the endfunction keyword, whichever
comes first. Function definitions cannot be nested. endfunction is
required only when the function definition is followed by code to be
executed outside the scope of any function. This includes mixed code
and function definitions entered in one large entry in a command-
line interface, or applications where code is mainly provided as state-
ments, but where function definitions can help and separate libraries
are not wished (note that libraries cannot contain code outside func-
tion definitions; they do never require endfunction). Like function,
endfunction must be the first element of a line.

Not all of the input and output arguments are necessarily used.
The caller fixes the number of input and output arguments, which can
be retrieved by the called function with nargin and nargout, respec-
tively. The unused input arguments (from nargin+1 to the last one)
are undefined, unless a default value is provided in the function defi-
nition: with the definition function f(x,y=2), y is 2 when f is called
with a single input argument. The unused output arguments (from
nargout+1 to the last one) do not have to be set, but may be.

To redefine an operator (which is especially useful for object meth-
ods; see below), use the equivalent function, such as plus for operator
+. The complete list is given in the section about operators.

To define a method which is executed when one of the input argu-
ments is an object of class class (or a child in the classes hierarchy),
add class:: before the method (function) name. To call it, use only

LME Reference — programming constructs 59

the method name, not the class name.

Examples

Function with optional input and output arguments:

function (Sum, Prod) = calcSumAndProd(x, y)
if nargout == 0
return; % nothing to be computed

end
if nargin == 0 % make something to be computed...
x = 0;

end
if nargin <= 1 % sum of elements of x

Sum = sum(x);
else % sum of x and y
Sum = x + y;

end
if nargout == 2 % also compute the product
if nargin == 1 % product of elements of x
Prod = prod(x);

else % product of x and y
Prod = x .* y;

end
end

Two equivalent definitions:

function S = area(a, b = a, ellipse = false)
S = ellipse ? pi * a * b / 4 : a * b;

function S = area(a, b, ellipse)
if nargin < 2

b = a;
end
if nargin < 3
ellipse = false;

end
S = ellipse ? pi * a * b / 4 : a * b;

See also

return, nargin, nargout, define, inline, global, persistent

if elseif else end

Conditional execution depending on the value of one or more boolean
expressions.

60 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

if expr
s1
...

end

if expr
s1
...

else
s2
...

end

if expr1
s1
...

elseif expr2
s2
...

else
s3
...

end

Description

If the expression following if is true (nonempty and all elements dif-
ferent from 0 and false), the statements which follow are executed.
Otherwise, the expressions following elseif are evaluated, until one
of them is true. If all expressions are false, the statements following
else are executed. Both elseif and else are optional.

Example

if x > 2
disp(’large’);

elseif x > 1
disp(’medium’);

else
disp(’small’);

end

See also

switch, while

LME Reference — programming constructs 61

include

Include libraries.

Syntax

include lib

Description

include lib inserts the contents of the library file lib. Its effect is
similar to the use statement, except that the functions and constants
in lib are defined in the same context as the library where include
is located. Its main purpose is to permit to define large libraries in
multiple files in a transparent way for the user. include statements
must not follow other statements on the same line, and can reference
only one library which is searched at the same locations as use. They
can be used only in libraries.

Since LME replaces include with the contents of lib, one should
be cautious about the public or private context which is preserved
between the libraries. It is possible to include a fragment of function
without a function header.

See also

use, includeifexists, private, public

includeifexists

Include library if it exists.

Syntax

includeifexists lib

Description

includeifexists lib inserts the contents of the library file lib if it
exists; if the library does not exists, it does nothing.

See also

include, useifexists, private, public

62 LyME User Manual ©1999-2008, Calerga Sàrl

otherwise

Conditional execution of statements depending on a number or a
string.

See also

switch

private

Mark the beginning of a sequence of private function definitions in a
library.

Syntax

private

Description

In a library, functions which are defined after the private keyword are
private. private may not be placed in the same line of source code
as any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default.

Example

Here is a library for computing the roots of a second-order polynomial.
Only function roots2 may be called from the outside of the library.

private
function d = discr(a, b, c)
d = b̂ 2 - 4 * a * c;

public
function r = roots2(p)
a = p(1);
b = p(2);
c = p(3);
d = discr(a, b, c);
r = [-b+sqrt(d); -b-sqrt(d)] / (2 * a);

See also

public, function, use

LME Reference — programming constructs 63

public

Mark the beginning of a sequence of public function definitions in a
library.

Syntax

public

Description

In a library, functions which are defined after the public keyword are
public. public may not be placed in the same line of source code as
any other command (comments are possible, though).

In a library, functions are either public or private. Private functions
can only be called from the same library, while public functions can
also be called from contexts where the library has been imported with
a use command. Functions are public by default: the public keyword
is not required at the beginning of the library.

See also

private, function, use

repeat

Loop controlled by a boolean expression.

Syntax

repeat
s1
...

until expr

Description

The statements between the repeat statement and the corresponding
until are executed repeatedly (at least once) until the expression of
the until statement yields true (nonempty and all elements different
from 0 and false).

64 LyME User Manual ©1999-2008, Calerga Sàrl

Example

v = [];
repeat
v = [v, sum(v)+1];

until v(end) > 100;
v

1 2 4 8 16 32 64 128

See also

while, for, break, continue

return

Early return from a function.

Syntax

return

Description

return stops the execution of the current function and returns to the
calling function. The current value of the output arguments, if any,
is returned. return can be used in any control structure, such as if,
while, or try, or at the top level.

Example

function dispFactTable(n)
% display the table of factorials from 1 to n
if n == 0
return; % nothing to display

end
fwrite(’ i i!\n’);
for i = 1:n
fwrite(’%2d %3d\n’, i, prod(1:i));

end

See also

function

LME Reference — programming constructs 65

switch

Conditional execution of statements depending on a number or a
string.

Syntax

switch expr
case e1

s1
...

case [e2,e3,...]
s23
...

case {e4,e5,...}
s45
...

otherwise
so
...

end

switch string
case str1

s1
...

case str2
s2
...

case {str3,str4,...}
s34
...

otherwise
so
...

end

Description

The expression of the switch statement is evaluated. If it yields a
number, it is compared successively to the result of the expressions of
the case statements, until it matches one; then the statements which
follow the case are executed until the next case, otherwise or end.
If the case expression yields a vector or a list, a match occurs if the
switch expression is equal to any of the elements of the case expres-
sion. If no match is found, but otherwise is present, the statements
following otherwise are executed. If the switch expression yields a
string, a match occurs only in case of equality with a case string ex-
pression or any element of a case list expression.

66 LyME User Manual ©1999-2008, Calerga Sàrl

Example

switch option
case ’arithmetic’
m = mean(data);

case ’geometric’
m = prod(data)̂ (1/length(data));

otherwise
error(’unknown option’);

end

See also

if

try

Error recovery.

Syntax

try
...

end

try
...

catch
...

end

Description

The statements after try are executed. If an error occurs, execution is
switched to the statements following try, if any, or to the statements
following end. The error message can be retrieved with lasterr or
lasterror. If no error occurs, the statements between try and end
are ignored.

try ignores two errors:

– the interrupt key (Control-Break on Windows, Command-. on Mac
OS X, Control-C on other operating systems with a keyboard,
timeout in Sysquake Remote);

– an attempt to execute an untrusted function in a sandbox. The
error can be handled only outside the sandbox.

LME Reference — programming constructs 67

Examples

a = 1;
a(2), 555
Index out of range ’a’

try, a(2), end, 555
555

try, a(2), catch, 333, end, 555
333
555

try, a, catch, 333, end, 555
a =
1

555

See also

lasterr, lasterror, error

until

End of repeat/until loop.

See also

repeat

use

Import libraries.

Syntax

use lib
use lib1, lib2, ...

Description

Functions may be defined in separate files, called libraries. use makes
them available in the current context, so that they may be called by
the functions or statements which follow. Using a library does not
make available functions defined in its sublibraries; however, libraries
may be used multiple times, in each context where their functions are
referenced.

All use statements are parsed before execution begins. They may
be placed anywhere in the code, typically before the first function.

68 LyME User Manual ©1999-2008, Calerga Sàrl

They cannot be skipped by placing them after an if statement. Like-
wise, try/catch cannot be used to catch errors; useifexists should
be used if the absence of the library is to be ignored.

See also

useifexists, include, function, private, public, info

useifexists

Import libraries if they exist.

Syntax

useifexists lib
useifexists lib1, lib2, ...

Description

useifexists has the same syntax and effect as use, except that li-
braries which are not found are ignored without error.

See also

use, include, function, private, public, info

while

Loop controlled by a boolean expression.

Syntax

while expr
s1
...

end

Description

The statements between the while statement and the corresponding
end are executed repeatedly as long as the expression of the while
statement yields true (nonempty and all elements different from 0
and false).

If a break statement is executed in the scope of the while loop (i.e.
not in an enclosed loop), the loop is terminated.

LME Reference — debugging commands 69

If a continue statement is executed in the scope of the while loop,
statements following continue are ignored and a new loop is per-
formed if the while statement yields true.

Example

e = 1;
i = 2;
while true % forever
eNew = (1 + 1/i) ˆ i;
if abs(e - eNew) < 0.001
break;

end
e = eNew;
i = 2 * i;

end
e
2.717

See also

repeat, for, break, continue, if

3.9 Debugging Commands

dbclear

Remove a breakpoint.

Syntax

dbclear fun
dbclear fun line
dbclear(’fun’, line)
dbclear

Description

dbclear fun removes all breakpoints in function fun. dbclear fun
line or dbclear(’fun’,line) removes the breakpoint in function fun
at line number line.

Without argument, dbclear removes all breakpoints.

See also

dbstop, dbstatus

70 LyME User Manual ©1999-2008, Calerga Sàrl

dbcont

Resume execution.

Syntax

dbcont

Description

When execution has been suspended by a breakpoint or dbhalt, it can
be resumed from the command-line interface with dbcont.

See also

dbstop, dbhalt, dbstep, dbquit

dbhalt

Suspend execution.

Syntax

dbhalt

Description

In a function, dbhalt suspends normal execution as if a breakpoint
had been reached. Commands dbstep, dbcont and dbquit can then
be used from the command line to resume or abort execution.

See also

dbstop, dbcont, dbquit

dbquit

Abort suspended execution.

Syntax

dbquit

LME Reference — debugging commands 71

Description

When execution has been suspended by a breakpoint or dbhalt, it can
be aborted completely from the command-line interface with dbquit.

See also

dbstop, dbcont, dbhalt

dbstack

Chain of function calls.

Syntax

dbstack
s = dbstack
dbstack all
s = dbstack(’all’)

Description

dbstack displays the chain of function calls which lead to the current
execution point, with the line number where the call to the subfunction
is made. It can be executed in a function or from the command-line
interface when execution is suspended with a breakpoint or dbhalt.

dbstack all (or dbstack(’all’)) displays the whole stack of
function calls. For instance, if two executions are successively
suspended at breakpoints, dbstack displays only the second chain of
function calls, while dbstack all displays all functions.

With an output argument, dbstack returns the result as a structure
array. Field name contains the function name (or class and method
names), and field line the line number. Note that you cannot assign
the result of dbstack to a new variable in suspended mode.

Examples

use stat
dbstop prctile
iqr(rand(1,1000))
<prctile:45> if nargin < 3

dbstack
stat/prctile;45
stat/iqr;69

72 LyME User Manual ©1999-2008, Calerga Sàrl

See also

dbstop, dbhalt

dbstatus

Display list of breakpoints.

Syntax

dbstatus
dbstatus fun

Description

dbstatus displays the list of all breakpoints. dbstatus fun displays
the list of breakpoints in function fun.

See also

dbstop, dbclear, dbtype

dbstep

Execute a line of instructions.

Syntax

dbstep
dbstep in
dbstep out

Description

When normal execution is suspended after a breakpoint set with
dbstop or the execution of function dbhalt, dbstep, issued from the
command line, executes the next line of the suspended function. If
the line is the last one of the function, execution resumes in the
calling function.

dbstep in has the same effect as dbstep, except if a subfunction
is called. In this case, execution is suspended at the beginning of the
subfunction.

dbstep out resumes execution in the current function and sus-
pends it in the calling function.

LME Reference — debugging commands 73

Example

Load library stdlib and put a breakpoint at the beginning of function
linspace:

use stdlib
dbstop linspace

Start execution of function linspace until the breakpoint is reached
(the next line to be executed is displayed):

v = linspace(1,2,5)
<linspace:8> if nargin < 3

When the execution is suspended, any function can be called. Local
variables of the function can be accessed and changed; but no new
variable can be created. Here, the list of variables and the value of x2
are displayed:

info v
r (not defined)
x1 (1x1)
x2 (1x1)
n (1x1)

x2
x2 =
2

Display the stack of function calls:

dbstack
stdlib/linspace;8

Execute next line:

dbstep
<linspace:11> r = x1 + (x2 - x1) * (0:n-1) / (n-1);

Execute last line; then normal execution is resumed:

dbstep
v =
1 1.25 1.5 1.75 2

Display breakpoint and clear it:

dbstatus
stdlib/linspace;0

dbclear

74 LyME User Manual ©1999-2008, Calerga Sàrl

See also

dbstop, dbcont, dbquit

dbstop

Set a breakpoint.

Syntax

dbstop fun
dbstop fun line
dbstop(’fun’, line)

Description

dbstop fun sets a breakpoint at the beginning of function fun. dbstop
fun line or dbstop(’fun’,line) sets a breakpoint in function fun at
line line.

When LME executes a line where a breakpoint has been set, it sus-
pends execution and returns to the command-line interface. The user
can inspect or change variables, executes expressions or other func-
tions, continue execution with dbstep or dbcont, or abort execution
with dbquit.

Example

use stdlib
dbstop linspace
dbstatus
stdlib/linspace;0

dbclear linspace

See also

dbhalt, dbclear, dbstatus, dbstep, dbcont, dbquit, dbtype

dbtype

Display source code with line numbers, breakpoints, and current exe-
cution point.

Syntax

dbtype fun
dbtype

LME Reference — debugging commands 75

Description

dbtype fun displays the source code of function fun with line num-
bers, breakpoints, and the position where execution is suspended (if
it is in fun). Without argument, dbtype displays the function which is
suspended.

dbtype can be used at any time to check the source code of any
function known to LME.

Example

use stdlib
dbstop linspace
linspace(1,2,5);
<linspace:8> if nargin < 3

dbstep
<linspace:11> r = x1 + (x2 - x1) * (0:n-1) / (n-1);

dbtype
6 function r = linspace(x1, x2, n)

7
8 if nargin < 3
9 n = 100;

10 end
> 11 r = x1 + (x2 - x1) * (0:n-1) / (n-1);

See also

dbstatus, dbstack, echo

echo

Echo of code before its execution.

Syntax

echo on
echo off
echo fun on
echo(state)
echo(state, fd)
echo(fun, state)
echo(fun, state, fd)

Description

echo on enables the display of an echo of each line of function code
before execution. The display includes the function name and the line

76 LyME User Manual ©1999-2008, Calerga Sàrl

number. echo off disables the echo.
The argument can also be passed as a boolean value with the func-

tional form echo(state): echo on is equivalent to echo(true).
echo fun on enables echo for function named fun only. echo fun

off disables echo (the function name is ignored); echo off has the
same effect.

By default, the echo is output to the standard error channel (file
descriptor 2). Another file descriptor can be specified as an additional
numeric argument, with the functional form only.

Example

Trace of a function:

use stdlib
echo on
C = compan([2,5,4]);
compan 26 if min(size(v)) > 1
compan 29 v = v(:).’;
compan 30 n = length(v);
compan 31 M = [-v(2:end)/v(1); eye(n-2, n-1)];

Echo stored into a file ’log.txt’:

fd = fopen(’log.txt’, ’w’);
echo(true, fd);
...
echo off
fclose(fd);

See also

dbtype

3.10 Miscellaneous Functions

This section describes functions related to programming: function ar-
guments, error processing, evaluation, memory.

assert

Check that an assertion is true.

LME Reference — miscellaneous functions 77

Syntax

assert(expr)
assert(expr, str)
assert(expr, format, arg1, arg2, ...)
assert(expr, identifier, format, arg1, arg2, ...)

Description

assert(expr) checks that expr is true and throws an error otherwise.
Expression expr is considered to be true if it is a non-empty array
whose elements are all non-zero.

With more input arguments, assert checks that expr is true and
throws the error specified by remaining arguments otherwise. These
arguments are the same as those expected by function error.

When the intermediate code is optimized, assert can be ignored.
It should be used only to produce errors at an early stage or as a de-
bugging aid, not to trigger the try/catch mechanism. The expression
should not have side effects. The most common use of assert is to
check the validity of input arguments.

Example

function y = fact(n)
assert(length(n)==1 && isreal(n) && n==round(n), ’LME:nonIntArg’);
y = prod(1:n);

See also

error, warning, try

builtin

Built-in function evaluation.

Syntax

(argout1, ...) = builtin(fun, argin1, ...)

Description

(y1,y2,...)=builtin(fun,x1,x2,...) evaluates the built-in func-
tion fun with input arguments x1, x2, etc. Output arguments are as-
signed to y1, y2, etc. Function fun is specified by its name as a string.

builtin is useful to execute a built-in function which has been re-
defined.

78 LyME User Manual ©1999-2008, Calerga Sàrl

Example

Here is the definition of operator plus so that it can be used with
character strings to concatenate them.

function r = plus(a, b)
if ischar(a) && ischar(b)
r = [a, b];

else
r = builtin(’plus’, a, b);

end

The original meaning of plus for numbers is preserved:

1 + 2
3

’ab’ + ’cdef’
abcdef

See also

feval

clear

Discard the contents of a variable.

Syntax

clear
clear(v1, v2, ...)
clear -functions

Description

Without argument, clear discards the contents of all the local
variables, including input arguments. With string input arguments,
clear(v1,v2,...) discards the contents of the enumerated
variables. Note that the variables are specified by strings; clear is a
normal function which evaluates its arguments if they are enclosed
between parenthesis. You can also omit parenthesis and quotes and
use command syntax.

clear is usually not necessary, because local variables are auto-
matically discarded when the function returns. It may be useful if a
large variable is used only at the beginning of a function, or at the
command-line interface.

clear -functions or clear -f removes the definition of all func-
tions. It can be used only from the command-line interface, not in a
function.

LME Reference — miscellaneous functions 79

Examples

In the example below, clear(b) evaluates its argument and clears
the variable whose name is ’a’; clear b, without parenthesis and
quotes, does not evaluate it; the argument is the literal string ’b’.

a = 2;
b = ’a’;
clear(b)
a
Undefined variable ’a’

b
a

clear b
b
Undefined variable b

See also

variable assignment

deal

Copy input arguments to output arguments.

Syntax

(v1, v2, ...) = deal(e)
(v1, v2, ...) = deal(e1, e2, ...)

Description

With a single input argument, deal provides a copy of it to all its output
arguments. With multiple input arguments, deal provides them as
output arguments in the same order.

deal can be used to assign a value to multiple variables, to swap
the contents of two variables, or to assign the elements of a list to
different variables.

Examples

Swap variable a and b:

a = 2;
b = ’abc’;
(a, b) = deal(b, a)
a =

80 LyME User Manual ©1999-2008, Calerga Sàrl

abc
b =
2

Copy the same random matrix to variables x, y, and z:

(x, y, z) = deal(rand(5));

Assign the elements of list l to variables v1, v2, and v3:

l = {1, ’abc’, 3:5};
(v1, v2, v3) = deal(l{:})
v1 =
1

v2 =
abc

v3 =
3 4 5

See also

varargin, varargout, operator {}

dumpvar

Dump the value of an expression as an assignment to a variable.

Syntax

dumpvar(value)
dumpvar(name,value)
dumpvar(fd,name,value)
str = dumpvar(value)
str = dumpvar(name,value)

Description

dumpvar(fd,name,value) writes to the channel fd (the standard out-
put by default) a string which would set the variable name to value, if
it was evaluated by LME. If name is omitted, only the textual represen-
tation of value is written.

With an output argument, dumpvar stores result into a string and
produces no output.

LME Reference — miscellaneous functions 81

Examples

dumpvar(2+3)
5

a = 6; dumpvar(’a’, a)
a = 6;

s = ’abc’; dumpvar(’string’, s)
string = ’abc’;

See also

fprintf, sprintf, str2obj

error

Display an error message and abort the current computation.

Syntax

error(str)
error(format, arg1, arg2, ...)
error(identifier, format, arg1, arg2, ...)

Description

Outside a try block, error(str) displays string str as an error mes-
sage and the computation is aborted. With more arguments, error
use the first argument as a format string and displays remaining argu-
ments accordingly, like fprintf.

In a try block, error(str) throws a user error without displaying
anything.

An error identifier may be added in front of other arguments. It
is a string made of at least two segments separated by semicolons.
Each segment has the same syntax as variable or function name (i.e.
it begins with a letter or an underscore, and it continues with letters,
digits and underscores.) The identifier can be retrieved with lasterr
or lasterror in the catch part of a try/catch construct and helps to
identify the error. For errors thrown by LME built-in functions, the first
segment is always LME.

Examples

error(’Invalid argument.’);
Invalid argument.

o = ’ground’;
error(’robot:hit’, ’The robot is going to hit %s’, o);
The robot is going to hit ground

82 LyME User Manual ©1999-2008, Calerga Sàrl

lasterror
message: ’The robot is going to hit ground’
identifier: ’robot:hit’

See also

warning, try, lasterr, lasterror, assert, fprintf

eval

Evaluate the contents of a string as an expression or statements.

Syntax

x = eval(str_expression)
eval(str_statement)

Description

If eval has output argument(s), the input argument is evaluated as an
expression whose result(s) is returned. Without output arguments, the
input argument is evaluated as statement(s). eval can evaluate and
assign to existing variables, but cannot create new ones.

Examples

eval(’1+2’)
3

a = eval(’1+2’)
a = 3

eval(’a=2+3’)
a = 5

See also

feval

exist

Existence of a function or variable.

Syntax

b = exist(name)
b = exist(name, type)

LME Reference — miscellaneous functions 83

Description

exist returns true if its argument is the name of an existing function
or variable, or false otherwise. A second argument can restrict the
lookup to builtin functions (’builtin’), user functions (’function’),
or variable (’variable’).

Examples

exist(’sin’)
true

exist(’cos’, ’function’)
false

See also

info

feval

Function evaluation.

Syntax

(argout1,...) = feval(fun,argin1,...)

Description

(y1,y2,...)=feval(fun,x1,x2,...) evaluates function fun with in-
put arguments x1, x2, etc. Output arguments are assigned to y1, y2,
etc. Function fun is specified by either its name as a string, a function
reference, or an anonymous or inline function.

If a variable f contains a function reference or an anonymous or
inline function, f(arguments) is equivalent to feval(f,arguments).

Examples

y = feval(’sin’, 3:5)
y =
0.1411 -0.7568 -0.9589

y = feval(@(x) sin(2*x), 3:5)
y =
-0.2794 0.9894 -0.544

fun = @(x) sin(2*x);
y = fun(3:5)
y =
-0.2794 0.9894 -0.544

84 LyME User Manual ©1999-2008, Calerga Sàrl

See also

builtin, eval, fevalx, apply, inline, operator @

fevalx

Function evaluation with array expansion.

Syntax

(Y1,...) = fevalx(fun,X1,...)

Description

(Y1,Y2,...)=fevalx(fun,X1,X2,...) evaluates function fun with
input arguments X1, X2, etc. Arguments must be arrays, which are ex-
panded if necessary along singleton dimensions so that all dimensions
match. For instance, three arguments of size 3x1x2, 1x5 and 1x1 are
replicated into arrays of size 3x5x2. Output arguments are assigned
to Y1, Y2, etc. Function fun is specified by either by its name as a
string, a function reference, or an inline function.

Example

fevalx(@plus, 1:5, (10:10:30)’)
11 12 13 14 15
21 22 23 24 25
31 32 33 34 35

See also

feval, meshgrid, repmat, inline, operator @

fun2str

Name of a function given by reference or source code of an inline
function.

Syntax

str = fun2str(funref)
str = fun2str(inlinefun)

LME Reference — miscellaneous functions 85

Description

fun2str(funref) gives the name of the function whose reference is
funref.

fun2str(inlinefun) gives the source code of the inline function
inlinefun.

Examples

fun2str(@sin)
sin

fun2str(inline(’x+2*y’, ’x’, ’y’))
function y=f(x,y);y=x+2*y;

See also

operator @, str2fun

info

Information about LME.

Syntax

info
info builtin
info functions
info methods
info variables
info global
info persistent
info libraries
info usedlibraries
info size
info threads
str = info
SA = info(kind)

Description

info displays the language version. With an output argument, the
language version is given as a string.

info builtin displays the list of built-in functions with their mod-
ule name (modules are subsets of built-in functions). A letter u is
displayed after each untrusted function (functions which cannot be ex-
ecuted in the sandbox). With an output argument, info(’builtin’)

86 LyME User Manual ©1999-2008, Calerga Sàrl

gives a structure array which describes each built-in function, with the
following fields:

name function name
module module name
trusted true if the function is trusted

info operators displays the list of operators. With an output
argument, info(’operators’) gives a list of structures, like
info(’builtin’).

info functions displays the list of user-defined functions with the
library where they are defined. Parenthesis denote functions known by
LME, but not loaded; they also indicate spelling errors in function or
variable names. With an output argument, info(’functions’) gives
a structure array which describes each user-defined function, with the
following fields:

library library name
name function name
loaded true if loaded

info methods displays the list of methods. With an output argu-
ment, info(’methods’) gives a structure array which describes each
method, with the following fields:

library library name
class class name
name function name
loaded true if loaded

info variables displays the list of variables with their type and
size. With an output argument, info(’variables’) gives a structure
array which describes each variable, with the following fields:

name function name
defined true if defined

info global displays the list of all global variables. With an output
argument, info(’global’) gives the list of the global variable names.

info persistent displays the list of all persistent variables. With
an output argument, info(’persistent’) gives the list of the persis-
tent variable names.

info libraries displays the list of all loaded libraries. With an
output argument, info(’libraries’) gives the list of the library
names.

info usedlibraries displays the list of libraries available in the
current context. With an output argument, info(’usedlibraries’)
gives the list of the names of these libraries.

info size displays the size in bytes of integer numbers (as used
for indices and most internal computations) and of pointers. With

LME Reference — miscellaneous functions 87

an output argument, info(’size’) gives them in a structure of two
fields:
int integer size
ptr pointer size

info threads displays the ID of all threads. With an output argu-
ment, info(’threads’) gives a structure array which describes each
thread, with the following fields:

id thread ID
totaltime execution time in seconds

Only the first character of the argument is meaningful; info b is
equivalent to info builtin.

Examples

info
LME 5.1

info s
int: 8 bytes
ptr: 8 bytes

info b
abs
acos
acosh
(etc.)

info v
ans (1x1 complex)

vars = info(’v’)
var =
2x1 struct array (2 fields)

See also

inmem, which, exist

inline

Creation of inline function.

Syntax

fun = inline(funstr)
fun = inline(expr)
fun = inline(expr, arg1, ...)
fun = inline(funstr, param)
fun = inline(expr, arg1, ..., paramstruct)
fun = inline(expr, ..., true)

88 LyME User Manual ©1999-2008, Calerga Sàrl

Description

Inline function are LME objects which can be evaluated to give a result
as a function of their input arguments. Contrary to functions declared
with the function keyword, inline functions can be assigned to vari-
ables, passed as arguments, and built dynamically. Evaluating them
with feval is faster than using eval with a string, because they are
compiled only once to an intermediate code. They can also be used
as the argument of functions such as fzero and fmin.

inline(funstr) returns an inline function whose source code is
funstr. Input argument funstr follows the same syntax as a plain
function. The function name is ignored.

inline(expr) returns an inline function with one implicit input ar-
gument and one result. The input argument expr is a string which
evaluates to the result. The implicit input argument of the inline func-
tion is a symbol made of a single lower-case letter different from i and
j, such as x or t, which is found in expr. If several such symbols are
found, the one closer to x in alphabetical order is picked.

inline(expr,arg1,...) returns an inline function with one re-
sult and the specified arguments arg1 etc. These arguments are also
given as strings.

Inline functions also accept an additional input argument which cor-
respond to fixed parameters provided when the function is executed.
inline(funstr,param), where funstr is a string which contains the
source code of a function, stores param together with the function.
When the function is called, param is prepended to the list of input
arguments.

inline(expr,args...,paramstruct) is a simplified way to create
an inline function when the code consists of a single expression. args
is the names of the arguments which must be supplied when the inline
function is called, as strings; paramstruct is a structure whose fields
define fixed parameters.

inline(expr,...,true) defines a function which can return as
many output arguments as what feval (or other functions which call
the inline function) expects. Argument expr must be a function call
itself.

Anonymous functions are an alternative, often easier way of creat-
ing inline functions. The result is the same. Since inline is a normal
function, it must be used in contexts where fixed parameters cannot
be created as separate variables.

Examples

A simple expression, evaluated at x=1 and x=2:

fun = inline(’cos(x)*exp(-x)’);
y = feval(fun, 2)

LME Reference — miscellaneous functions 89

y =
-5.6319e-2

y = feval(fun, 5)
y =
1.9113e-3

A function of x and y:

fun = inline(’exp(-x̂ 2-ŷ 2)’, ’x’, ’y’);

A function with two output arguments (the string is broken in three
lines to have a nice program layout):

fun = inline([’function (a,b)=f(v);’,...
’a=mean(v);’,...
’b=prod(v)̂ (1/length(v));’]);

(am, gm) = feval(fun, 1:10)
am =
5.5

gm =
4.5287

Simple expression with fixed parameter a:

fun = inline(’cos(a*x)’, ’x’, struct(’a’,2));
feval(fun, 3)
0.9602

An equivalent function where the source code of a complete function
is provided:

fun = inline(’function y=f(a,x); y=cos(a*x);’, 2);
feval(fun, 3)
0.9602

A function with two fixed parameters a and b whose values are pro-
vided in a list:

inline(’function y=f(p,x);(a,b)=deal(p{:});y=a*x+b;’,{2,3})

An inline function with a variable number of output arguments:

fun = inline(’eig(exp(x))’,true);
e = feval(fun, magic(3))
e =
2867.4882
3173.2074

-2903.9354
(V,D) = feval(fun, magic(3))
V =

-0.0642 0.9579 0.8916

90 LyME User Manual ©1999-2008, Calerga Sàrl

-0.3370 -0.1013 0.1596
0.9393 -0.2687 0.4238

D =
-2903.9354 0.0000 0.0000

0.0000 2867.4882 0.0000
0.0000 0.0000 3173.2074

See also

function, operator @, feval, eval

inmem

List of functions loaded in memory.

Syntax

inmem
SA = inmem

Description

inmem displays the list of user-defined functions loaded in memory with
the library where they are defined. With an output argument, inmem
gives the result as a structure array which describes each user-defined
function loaded in memory, with the following fields:

library library name
class class name (’’ for functions)
name function name

See also

info, which

isglobal

Test for the existence of a global variable.

Syntax

b = isglobal(str)

LME Reference — miscellaneous functions 91

Description

isglobal(str) returns true if the string str is the name of a global
variable, defined as such in the current context.

See also

info, exist, which

iskeyword

Test for a keyword name.

Syntax

b = iskeyword(str)
list = iskeyword

Description

iskeyword(str) returns true if the string str is a reserved keyword
which cannot be used as a function or variable name, or false other-
wise. Keywords include if and global, but not the name of built-in
functions like sin or i.

Without input argument, iskeyword gives the list of all keywords.

Examples

iskeyword(’otherwise’)
true

iskeyword
{’break’,’case’,’catch’,’continue’,’else’,’elseif’,
’end’,’endfunction’,’for’,’function’,’global’,’if’,
’otherwise’,’persistent’,’private’,’public’,’repeat’,
’return’,’switch’,’try’,’until’,’use’,’useifexists’,
’while’}

See also

info, which

lasterr

Last error message.

92 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

msg = lasterr
(msg, identifier) = lasterr

Description

lasterr returns a string which describes the last error. With two out-
put arguments, it also gives the error identifier. It can be used in the
catch part of the try construct.

Example

x = 2;
x(3)
Index out of range

(msg, identifier) = lasterr
msg =
Index out of range

identifier =
LME:indexOutOfRange

See also

lasterror, try, error

lasterror

Last error structure.

Syntax

s = lasterror

Description

lasterror returns a structure which describes the last error. It con-
tains the following fields:

identifier string short tag which identifies the error
message string error message

The structure can be used as argument to rethrow in the catch
part of a try/catch construct to propagate the error further.

LME Reference — miscellaneous functions 93

Example

x = 2;
x(3)
Index out of range

lasterror
message: ’Index out of range’
identifier: ’LME:indexOutOfRange’

See also

lasterr, try, rethrow, error

nargin

Number of input arguments.

Syntax

n = nargin
n = nargin(fun)

Description

Calling a function with less arguments than what the function expects
is permitted. In this case, the trailing variables are not defined. The
function may use the nargin function to know how many arguments
were passed by the caller to avoid accessing the undefined variables.

Note that if you want to have an optional argument before the end
of the list, you have to interpret the meaning of the variables yourself.
LME always sets the nargin first arguments.

There are two other ways to let a function accept a variable num-
ber of input arguments: to define default values directly in the func-
tion header, or to call varargin to collect some or all of the input
arguments in a list.

With one argument, nargin(fun) returns the (maximum) number
of input arguments a function accepts. fun may be the name of a built-
in or user function, a function reference, or an inline function. Func-
tions with a variable number of input arguments (such as fprintf)
give -1.

Examples

A function with a default value (pi) for its second argument:

94 LyME User Manual ©1999-2008, Calerga Sàrl

function x = multiplyByScalar(a,k)
if nargin < 2 % multiplyByScalar(x)
k = pi; % same as multiplyByScalar(x,pi)

end
x = k * a;

A function with a default value (standard output) for its first argument.
Note how you have to interpret the arguments.

function fprintstars(fd,n)
if nargin == 1 % fprintstars(n) to standard output
fprintf(repmat(’*’,1,fd)); % n is actually stored in fd

else
fprintf(fd, repmat(’*’,1,n));

end

Number of input arguments of function plus (usually written "+"):

nargin(’plus’)
2

See also

nargout, varargin, function

nargout

Number of output arguments.

Syntax

n = nargout
n = nargout(fun)

Description

A function may be called with between 0 and the number of out-
put arguments listed in the function definition. The function can use
nargout to check whether some output arguments are not used, so
that it can avoid computing them or do something else.

With one argument, nargout(fun) returns the (maximum) number
of output arguments a function can provide. fun may be the name of
a built-in or user function, a function reference, or an inline function.
Functions with a variable number of output arguments (such as feval)
give -1.

LME Reference — miscellaneous functions 95

Example

A function which prints nicely its result when it is not assigned or used
in an expression:

function y = multiplyByTwo(x)
if nargout > 0
y = 2 * x;

else
fprintf(’The double of %f is %f\n’, x, 2*x);

end

Maximum number of output arguments of svd:

nargout(’svd’)
3

See also

nargin, varargout, function

rethrow

Throw an error described by a structure.

Syntax

rethrow(s)

Description

rethrow(s) throws an error described by structure s, which contains
the same fields as the output of lasterror. rethrow is typically used
in the catch part of a try/catch construct to propagate further an
error; but it can also be used to initiate an error, like error.

Example

The error whose identifier is ’LME:indexOutOfRange’ is handled by
catch; other errors are not.

try
...

catch
err = lasterror;
if err.identifier === ’LME:indexOutOfRange’
...

else

96 LyME User Manual ©1999-2008, Calerga Sàrl

rethrow(err);
end

end

See also

lasterror, try, error

str2fun

Function reference.

Syntax

funref = str2fun(str)

Description

str2fun(funref) gives a function reference to the function whose
name is given in string str. It has the same effect as operator @,
which is preferred when the function name is fixed.

Examples

str2fun(’sin’)
@sin

@sin
@sin

a = ’cos’;
str2fun(a)
@cos

See also

operator @, fun2str

str2obj

Convert to an object its string representation.

Syntax

obj = str2obj(str)

LME Reference — miscellaneous functions 97

Description

str2obj(str) evaluates string str and gives its result. It has the in-
verse effect as dumpvar with one argument. It differs from eval by
restricting the syntax it accepts to literal values and to the basic con-
structs for creating complex numbers, arrays, lists, structures, objects,
and other built-in types.

Examples

str2obj(’1+2j’)
1 + 2j

str = dumpvar({1, ’abc’, 1:100})
str =
{1, ...
’abc’, ...
[1:100]}

str2obj(str)
{1,’abc’,real 1x100}

eval(str)
{1,’abc’,real 1x100}

str2obj(’sin(2)’)
Bad argument ’str2obj’

eval(’sin(2)’)
0.9093

See also

eval, dumpvar

varargin

Remaining input arguments.

Syntax

function ... = fun(..., varargin)
l = varargin

Description

varargin is a special variable which may be used to collect input ar-
guments. In the function declaration, it must be used as the last (or
unique) input argument. When the function is called with more argu-
ments than what can be assigned to the other arguments, remaining
ones are collected in a list and assigned to varargin. In the body
of the function, varargin is a normal variable. Its elements may be

98 LyME User Manual ©1999-2008, Calerga Sàrl

accessed with the brace notation varargin{i}. nargin is always the
total number of arguments passed to the function by the caller.

When the function is called with fewer arguments than what is de-
clared, varargin is set to the empty list, {}.

Example

Here is a function which accepts any number of square matrices and
builds a block-diagonal matrix:

function M = blockdiag(varargin)
M = [];
for block = varargin
// block takes the value of each input argument
(m, n) = size(block);
M(end+1:end+m,end+1:end+n) = block;

end

In the call below, varargin contains the list {ones(3),2*ones(2),3}.

blockdiag(ones(3),2*ones(2),3)
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0
0 0 0 2 2 0
0 0 0 2 2 0
0 0 0 0 0 3

See also

nargin, varargout, function

varargout

Remaining output arguments.

Syntax

function (..., varargout) = fun(...)
varargout = ...

Description

varargout is a special variable which may be used to dispatch output
arguments. In the function declaration, it must be used as the last
(or unique) output argument. When the function is called with more

LME Reference — miscellaneous functions 99

output arguments than what can be obtained from the other argu-
ments, remaining ones are extracted from the list varargout. In the
body of the function, varargout is a normal variable. Its value can
be set globally with the brace notation {...} or element by element
with varargout{i}. nargout may be used to know how many output
arguments to produce.

Example

Here is a function which differentiates a vector of values as many
times as there are output arguments:

function varargout = multidiff(v)
for i = 1:nargout
v = diff(v);
varargout{i} = v;

end

In the call below, [1,3,7,2,5,3,1,8] is differentiated four times.

(v1, v2, v3, v4) = multidiff([1,3,7,2,5,3,1,8])
v1 =

2 4 -5 3 -2 -2 7
v2 =

2 -9 8 -5 0 9
v3 =

-11 17 -13 5 9
v4 =

28 -30 18 4

See also

nargout, varargin, function

variables

Contents of the variables as a structure.

Syntax

v = variables

Description

variables returns a structure whose fields contain the variables de-
fined in the current context.

100 LyME User Manual ©1999-2008, Calerga Sàrl

Example

a = 3;
b = 1:5;
variables
a: 3
b: real 1x5
...

See also

info

warning

Write a warning to the standard error channel.

Syntax

warning(msg)
warning(format, arg1, arg2, ...)

Description

warning(msg) displays the string msg. It should be used to notify the
user about potential problems, not as a general-purpose display func-
tion.

With more arguments, warning uses the first argument as a format
string and displays remaining arguments accordingly, like fprintf.

Example

warning(’Doesn\’t converge.’);

See also

error, disp, fprintf

which

Library where a function is defined.

Syntax

fullname = which(name)

LME Reference — sandbox function 101

Description

which(name) returns an indication of where function name is defined.
If name is a user function or a method prefixed with its class and two
colons, the result is name prefixed with the library name and a slash.
If name is a built-in function, it is prefixed with (builtin). If it is a
variable, it is prefixed with (var). If name is neither a function nor a
variable, which returns the empty string.

Examples

which logspace
stdlib/logspace

which polynom::plus
classes/polynom::plus

which sin
(builtin)/sin

x = 2;
which x
(var)/x

See also

info

3.11 Sandbox Function

sandbox

Execute untrusted code in a secure environment.

Syntax

sandbox(str)
sandbox(str, varin)
varout = sandbox(str)
varout = sandbox(str, varin)

Description

sandbox(str) executes the statements in string str. Functions which
might do harm if used improperly are disabled; they include those
related to the file system, to devices and to the network. Global and
persistent variables are forbidden as well; but local variables can be
created. The same restrictions apply to functions called directly or
indirectly by statements in str. The purpose of sandbox is to permit

102 LyME User Manual ©1999-2008, Calerga Sàrl

the evaluation of code which comes from untrusted sources, such as
the Internet.

sandbox(str,varin) evaluates the statements in string str in a
context with local variables equal to the fields of structure varin.

With an output argument, sandbox collects the contents of all vari-
ables in the fields of a single structure.

An error is thrown when the argument of sandbox attempts to exe-
cute one of the functions which are disabled. This error can be caught
by a try/catch construct outside sandbox, but not inside its argument,
so that unsuccessful attempts to circumvent the sandbox are always
reported to the appropriate level.

Examples

Evaluation of two assignments; the second value is displayed, and the
variables are discarded at the end of the evaluation.

sandbox(’a=2; b=3:5’);
b =
3 4 5

Evaluation of two assignments; the contents of the variables are
stored in structure result.

result = sandbox(’a=2; b=3:5;’)
result =
a: 2
b: real 1x3

Evaluation with local variables x and y initialized with the field of a
structure. Variable z is local to the sandbox.

in.x = 12;
in.y = 1:10;
sandbox(’z = x + y’, in);
z =
13 14 15 16 17 18 19 20 21 22

Attempt to execute the untrusted function fopen and to hide it from
the outside. Both attempts fail: fopen is trapped and the security
violation error is propagated outside the sandbox.

sandbox(’try; fd=fopen(’/etc/passwd’); end’);
Security violation ’fopen’

See also

sandboxtrust, eval, variables

LME Reference — operators 103

sandboxtrust

Escape the sandbox restrictions.

Syntax

sandboxtrust(fun)

Description

sandboxtrust(fun) sets a flag associated with function fun so that
fun is executed without restriction, even when called from a sandbox.
All functions called directly or indirectly from a trusted function are
executed without restriction, except if a nested call to sandbox is per-
formed. Argument fun can be a function reference or the name of a
function as a string; the function must be a user function, not a built-in
one.

The purpose of sandboxtrust is to give back some of the capabili-
ties of unrestricted code to code executed in a sandbox. For instance,
if unsecure code must be able to read the contents of a specific file, a
trusted function should be written for that. It is very important for the
trusted function to check carefully its arguments, such as file paths or
URL.

Example

Function which reads the contents of file ’data.txt’:

function data = readFile
fd = fopen(’data.txt’);
data = fread(fd, inf, ’*char’);
fclose(fd);

Execution of unsecure code which may read this file:

sandboxtrust(@readFile);
sandbox(’d = readFile;’);

See also

sandbox

3.12 Operators

Operators are special functions with a syntax which mimics mathe-
matical arithmetic operations like the addition and the multiplication.

104 LyME User Manual ©1999-2008, Calerga Sàrl

They can be infix (such as x+y), separating their two arguments (called
operands); prefix (such as -x), placed before their unique operand; or
postfix (such as M’), placed after their unique operand. In Sysquake,
their arguments are always evaluated from left to right. Since they
do not require parenthesis or comma, their priority matters. Priority
specifies when subexpressions are considered as a whole, as the argu-
ment of some operator. For instance, in the expression a+b*c, where
* denotes the multiplication, the evaluation could result in (a+b)*c or
a+(b*c); however, since operator *’s priority is higher than operator
+’s, the expression yields a+(b*c) without ambiguity.

Here is the list of operators, from higher to lower priority:

’ .’
ˆ .̂
- (unary)
* .* / ./ \ .\
+ -
== =̃ < > <= >= === =̃=
˜
&
|
&&
||
: ?
,
;

Most operators have also a functional syntax; for instance, a+b can
also be written plus(a,b). This enables their overriding with new
definitions and their use in functions such as feval which take the
name of a function as an argument.

Here is the correspondence between operators and functions:

LME Reference — operators 105

[a;b] vertcat(a,b)
[a,b] horzcat(a,b)
a:b colon(a,b)
a:b:c colon(a,b,c)
a|b or(a,b)
a&b and(a,b)
a<=b le(a,b)
a<b lt(a,b)
a>=b ge(a,b)
a>b gt(a,b)
a==b eq(a,b)
ã =b ne(a,b)
a===b same(a,b)
ã ==b unsame(a,b)
a+b plus(a,b)

a-b minus(a,b)
a*b mtimes(a,b)
a/b mrdivide(a,b)
a\b mldivide(a,b)
a.*b times(a,b)
a./b rdivide(a,b)
a.\b ldivide(a,b)
â b mpower(a,b)
a.̂ b power(a,b)
ã not(a)
-a uminus(a)
+a uplus(a)
a’ ctranspose(a)
a.’ transpose(a)

Operator which do not have a corresponding function are ?:, &&
and || because unlike functions, they do not always evaluate all of
their operands.

Operator ()

Parenthesis.

Syntax

(expr)
v(:)
v(index)
v(index1, index2)
v(:, index)
v(index, :)
v(select)
v(select1, select2)
v(:,:)

Description

A pair of parenthesis can be used to change the order of evaluation.
The subexpression it encloses is evaluated as a whole and used as if
it was a single object. Parenthesis serve also to indicate a list of input
or output parameters; see the description of the function keyword.

The last use of parenthesis is for specifying some elements of an
array or list variable.

Arrays: In LME, any numerical object is considered as an array of
two dimensions or more. Therefore, at least two indices are required

106 LyME User Manual ©1999-2008, Calerga Sàrl

to specify a single element; the first index specifies the row, the sec-
ond the column, and so on. In some circumstances, however, it is
sometimes convenient to consider an array as a vector, be it a column
vector, a row vector, or even a matrix whose elements are indexed
row-wise. For this way of handling arrays, a single index is specified.

The first valid value of an index is always 1. The array whose ele-
ments are extracted is usually a variable, but can be any expression:
an expression like [1,2;3,4](1,2) is valid and gives the 2nd element
of the first row, i.e. 3.

In all indexing operations, several indices can be specified simulta-
neously to extract more than one element along a dimension. A single
colon means all the elements along the corresponding dimension.

Instead of indices, the elements to be extracted can be selected by
the true values in a logical array of the same size as the variable (the
result is a column vector), or in a logical vector of the same size as the
corresponding dimension. Calculating a boolean expression based on
the variable itself used as a whole is the easiest way to get a logical
array.

Variable indexing can be used in an expression or in the left hand
side of an assignment. In this latter case, the right hand size can be
one of the following:

– An array of the same size as the extracted elements.

– A scalar, which is assigned to each selected element of the vari-
able.

– An empty matrix [], which means that the selected elements
should be deleted. Only whole rows or columns (or (hyper)planes
for arrays of more dimensions) can be deleted; i.e. a(2:5,:)
= [] and b([3,6:8]) = [] (if b is a row or column vector) are
legal, while c(2,3) = [] is not.

When indices are larger than the dimensions of the variable, the vari-
able is expanded; new elements are set to 0 for numeric arrays, false
for logical arrays, the nul character for character array, and the empty
array [] for cell arrays.

Lists: In LME, lists have one dimension; thus a single index is re-
quired. Be it with a single index or a vector of indices, indexed el-
ements are grouped in a list. New elements, also provided in a list,
can be assigned to indexed elements; if the list to be assigned has a
single element, the element is assigned to every indexed element of
the variable.

Cell arrays: cell arrays are subscripted like other arrays. The re-
sult, or the right-hand side of an assignment, is also a cell array, or
a list for the syntax v(select) (lists are to cell arrays what column
vectors are to non-cell arrays). To create a single logical array for se-
lecting some elements, function cellfun may be useful. To remove

LME Reference — operators 107

cells, the right-hand side of the assignment can be the empty list {}
or the empty array [].

Structure arrays: access to structure array fields combines sub-
scripting with parenthesis and structure field access with dot notation.
When the field is not specified, parenthesis indexing returns a struc-
ture or structure array. When indexing results in multiple elements
and a field is specified, the result is a value sequence.

Examples

Ordering evaluation:

(1+2)*3
9

Extracting a single element, a row, and a column:

a = [1,2,3; 4,5,6];
a(2,3)
6

a(2,:)
4 5 6

a(:,3)
3
6

Extracting a sub-array with contiguous rows and non-contiguous
columns:

a(1:2,[1,3])
1 3
4 6

Array elements as a vector:

a(3:5)
3
4
5

a(:)
1
2
3
4
5
6

Selections of elements where a logical expression is true:

108 LyME User Manual ©1999-2008, Calerga Sàrl

a(a>=5)
5
6

a(:, sum(a,1) > 6)
2 3
5 6

Assignment:

a(1,5) = 99
a =
1 2 3 0 99
4 5 6 0 0

Extraction and assignment of elements in a list:

a = {1,[2,7,3],’abc’,magic(3),’x’};
a([2,5])
{[2,7,3],’x’}

a([2,5]) = {’ab’,’cde’}
a =
{1,’ab’,’abc’,[8,1,6;3,5,7;4,9,2],’cde’}

a([2,5]) = {[3,9]}
a =
{1,[3,9],’abc’,[8,1,6;3,5,7;4,9,2],[3,9]}

Removing elements in a list ({} and [] have the same effect here):

a(4) = {}
a =
{1,[3,9],’abc’,[3,9]}

a([1, 3]) = []
a =
{[3,9],[3,9]}

Replacing NaN with empty arrays in a cell array:

C = {’abc’, nan; 2, false};
C(cellfun(@(x) any(isnan(x(:))), C)) = {[]};

Element in a structure array:

SA = structarray(’a’,{1,[2,3]},’b’,{’ab’,’cde’});
SA(1).a
2 3

SA(2).b = ’X’;

When assigning a new field and/or a new element of a structure array,
the new field is added to each element and the size of the array is
expanded; fields are initialized to the empty array [].

SA(3).c = true;
SA(1).c
[]

LME Reference — operators 109

See also

Operator {}, operator ., end, reshape, variable assignment, operator
[], subsref, subsasgn, cellfun

Operator []

Brackets.

Syntax

[matrix_elements]

Description

A pair of brackets is used to define a 2-d array given by its elements
or by submatrices. The operator , (or spaces) is used to separate
elements on the same row, and the operator ; (or newline) is used to
separate rows. Since the space is considered as a separator when it is
in the direct scope of brackets, it should not be used at the top level
of expressions; as long as this rule is observed, each element can be
given by an expression.

Inside brackets, commas and semicolons are interpreted as calls to
horzcat and vertcat. Brackets themselves have no other effect than
changing the meaning of commas, semicolons, spaces, and new lines:
the expression [1], for instance, is strictly equivalent to 1. The empty
array [] is a special case.

Since horzcat and vertcat also accept cell arrays, brackets can
be used to concatenate cell arrays, too.

Examples

[1, 2, 3+5]
1 2 8

[1:3; 2 5 , 9]
1 2 3
2 5 9

[5-2, 3]
3 3

[5 -2, 3]
5 -2 3

[(5 -2), 3]
3 3

[1 2
3 4]
1 2
3 4

110 LyME User Manual ©1999-2008, Calerga Sàrl

[]
[]

Concatenation of two cell arrays:

C1 = {1; 2};
C2 = {’ab’; false};
[C1, C2]
2x2 cell array

Compare this with the effect of braces, where elements are not con-
catenated but used as cells:

{C1, C2}
1x2 cell array

See also

Operator {}, operator (), operator ,, operator ;

Operator {}

Braces.

Syntax

{list_elements}
{cells}
v{index}
v{index1, index2, ...}
v{index} = expr
fun(...,v{:},...)

Description

A pair of braces is used to define a list or a cell array given by its
elements. In a list, the operator , is used to separate elements. In a
cell array, the operator , is used to separate cells on the same row;
the operator ; is used to separate rows. Braces without semicolons
produce a list; braces with semicolon(s) produce a cell array.

v{index} is the element of list variable v whose index is given.
index must be an integer between 1 (for the first element) and
length(v) (for the last element). v{index} may be used in an
expression to extract an element, or on the left hand-side of the
equal sign to assign a new value to an element. Unless it is the target
of an assignment, v may also be the result of an expression. If v is a
cell array, v{index} is the element number index.

LME Reference — operators 111

v{index1,index2,...} gives the specified cell of a cell array.
v itself may be an element or a field in a larger variable, provided

it is a list; i.e. complicated assignments like a{2}.f{3}(2,5)=3 are
accepted. In an assignment, when the index (or indices) are larger
than the list or cell array size, the variable is expanded with empty
arrays [].

In the list of the input arguments of a function call, v{:} is replaced
with its elements. v may be a list variable or the result of an expres-
sion.

Examples

x = {1, ’abc’, [3,5;7,1]}
x =
{1,string,real 2x2}

x{3}
3 5
7 1

x{2} = 2+3j
x =
{1,2+3j,real 2x2}

x{3} = {2}
x =
{1,2+3j,list}

x{end+1} = 123
x =
{1,2+3j,list,123}

C = {1, false; ’ab’, magic(3)}
2x2 cell array

C{2, 1}
ab

a = {1, 3:5};
fprintf(’%d ’, a{:}, 99);
1 3 4 5 99

See also

operator ,, operator [], operator (), operator ;, operator ., subsref,
subsasgn

Operator . (dot)

Structure field access.

112 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

v.field
v.field = expr

Description

A dot is used to access a field in a structure. In v.field, v is the name
of a variable which contains a structure, and field is the name of the
field. In expressions, v.field gives the value of the field; it is an error
if it does not exist. As the target of an assignment, the value of the
field is replaced if it exists, or a new field is added otherwise; if v itself
is not defined, a structure is created from scratch.

v itself may be an element or a field in a larger variable, provided
it is a structure (or does not exists in an assignment); i.e. complicated
assignments like a{2}.f{3}(2,5)=3 are accepted.

If V is a structure array, V.field is a value sequence which contains
the specified field of each element of V.

The syntax v.(expr) permits to specify the field name
dynamically at run-time, as the result of evaluating expression expr.
v(’f’) is equivalent to v.f. This syntax is more elegant than
functions getfield and setfield.

Examples

s.f = 2
s =
f: 2

s.g = ’hello’
s =
f: 2
s: string

s.f = 1:s.f
s =
f: real 1x2
g: string

See also

Operator (), operator {}, getfield setfield, subsref, subsasgn

Operator +

Addition.

LME Reference — operators 113

Syntax

x + y
M1 + M2
M + x
plus(x, y)
+x
+M
uplus(x)

Description

With two operands, both operands are added together. If both
operands are matrices with a size different from 1-by-1, their size
must be equal; the addition is performed element-wise. If one
operand is a scalar, it is added to each element of the other operand.

With one operand, no operation is performed, except that the result
is converted to a number if it was a string or a logical value, like with
all mathematical operators and functions. For strings, each character
is replaced with its numerical encoding. The prefix + is actually a
synonym of double.

plus(x,y) is equivalent to x+y, and uplus(x) to +x. They can be
used to redefine these operators for objects.

Example

2 + 3
5

[1 2] + [3 5]
4 7

[3 4] + 2
5 6

See also

operator -, sum, addpol, double

Operator -

Subtraction or negation.

Syntax

x - y
M1 - M2
M - x
minus(x, y)

114 LyME User Manual ©1999-2008, Calerga Sàrl

-x
-M
uminus(x)

Description

With two operands, the second operand is subtracted from the first
operand. If both operands are matrices with a size different from 1-
by-1, their size must be equal; the subtraction is performed element-
wise. If one operand is a scalar, it is repeated to match the size of the
other operand.

With one operand, the sign of each element is changed.
minus(x,y) is equivalent to x-y, and uminus(x) to -x. They can

be used to redefine these operators for objects.

Example

2 - 3
-1

[1 2] - [3 5]
-2 -3

[3 4] - 2
1 2

-[2 2-3j]
-2 -2+3j

See also

operator +, conj

Operator *

Matrix multiplication.

Syntax

x * y
M1 * M2
M * x
mtimes(x, y)

Description

x*y multiplies the operands together. Operands can be scalars (plain
arithmetic product), matrices (matrix product), or mixed scalar and
matrix.

LME Reference — operators 115

mtimes(x,y) is equivalent to x*y. It can be used to redefine this
operator for objects.

Example

2 * 3
6

[1,2;3,4] * [3;5]
13
29

[3 4] * 2
6 8

See also

operator .*, operator /, prod

Operator .*

Scalar multiplication.

Syntax

x .* y
M1 .* M2
M .* x
times(x, y)

Description

x.*y is the element-wise multiplication. If both operands are matrices
with a size different from 1-by-1, their size must be equal; the mul-
tiplication is performed element-wise. If one operand is a scalar, it
multiplies each element of the other operand.

times(x,y) is equivalent to x.*y. It can be used to redefine this
operator for objects.

Example

[1 2] .* [3 5]
3 10

[3 4] .* 2
6 8

116 LyME User Manual ©1999-2008, Calerga Sàrl

See also

operator *, operator ./, operator .̂

Operator /

Matrix right division.

Syntax

a / b
A / B
A / b
mrdivide(a, b)

Description

a/b divides the first operand by the second operand. If the second
operand is a scalar, it divides each element of the first operand.

If the second operand is Otherwise, it must be a square matrix;
M1/M2 is equivalent to M1*inv(M2).

mrdivide(x,y) is equivalent to x/y. It can be used to redefine this
operator for objects.

Example

9 / 3
3

[2,6] / [1,2;3,4]
5 -1

[4 10] / 2
2 5

See also

operator \, inv, operator ./, deconv

Operator ./

Scalar right division.

LME Reference — operators 117

Syntax

x ./ y
M1 ./ M2
M ./ x
x ./ M
rdivide(x, y)

Description

The first operand is divided by the second operand. If both operands
are matrices with a size different from 1-by-1, their size must be equal;
the division is performed element-wise. If one operand is a scalar, it is
repeated to match the size of the other operand.

rdivide(x,y) is equivalent to x./y. It can be used to redefine this
operator for objects.

Examples

[3 10] ./ [3 5]
1 2

[4 8] ./ 2
2 4

10 ./ [5 2]
2 5

See also

operator /, operator .*, operator .̂

Operator \
Matrix left division.

Syntax

x \ y
M1 \ M2
x \ M
mldivide(x, y)

Description

x\y divides the second operand by the first operand. If the first
operand is a scalar, it divides each element of the second operand.
Otherwise, it must be a square matrix; M1\M2 is equivalent to
inv(M1)*M2.

118 LyME User Manual ©1999-2008, Calerga Sàrl

mldivide(x,y) is equivalent to x\y. It can be used to redefine this
operator for objects.

Examples

3 \ 9
3

[1,2;3,4] \ [2;6]
2
0

2 \ [4 10]
2 5

See also

operator /, inv, operator .\

Operator .\

Scalar left division.

Syntax

M1 .\ M2
M1 .\ x
ldivide(x, y)

Description

The second operand is divided by the first operand. If both operands
are matrices with a size different from 1-by-1, their size must be equal;
the division is performed element-wise. If one operand is a scalar, it is
repeated to match the size of the other operand.

ldivide(x,y) is equivalent to x.\y. It can be used to redefine this
operator for objects.

Example

[1 2 3] .\ [10 11 12]
10 5.5 4

See also

operator \, operator ./

LME Reference — operators 119

Operator ˆ

Matrix power.

Syntax

x ˆ y
M ˆ k
x ˆ M
mpower(x, y)

Description

x̂ y calculates x to the y power, provided that either

– both operands are scalar;

– the first operand is a square matrix and the second operand is an
integer;

– or the first operand is a scalar and the second operand is a square
matrix.

Other cases yield an error.
mpower(x,y) is equivalent to x̂ y. It can be used to redefine this

operator for objects.

Examples

2 ˆ 3
8

[1,2;3,4] ˆ 2
7 10
15 22

2 ˆ [1,2;3,4]
10.4827 14.1519
21.2278 31.7106

See also

operator .̂ , expm

Operator .̂

Scalar power.

120 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

M1 .̂ M2
x .̂ M
M .̂ x
power(x, y)

Description

M1.̂ M2 calculates M1 to the M2 power, element-wise. Both arguments
must have the same size, unless one of them is a scalar.

power(x,y) is equivalent to x.̂ y. It can be used to redefine this
operator for objects.

Examples

[1,2;3,4].̂ 2
1 4
9 16

[1,2,3].̂ [5,4,3]
1 16 27

See also

operator ,̂ exp

Operator ’

Complex conjugate transpose.

Syntax

M’
ctranspose(M)

Description

M’ is the transpose of the real matrix M, i.e. columns and rows are per-
muted. If M is complex, the result is the complex conjugate transpose
of M. If M is an array with multiple dimensions, the first two dimensions
are permuted.

ctranspose(M) is equivalent to M’. It can be used to redefine this
operator for objects.

LME Reference — operators 121

Examples

[1,2;3,4]’
1 3
2 4

[1+2j, 3-4j]’
1-2j
3+4j

See also

operator .’, conj

Operator .’

Transpose.

Syntax

M.’
transpose(M)

Description

M.’ is the transpose of the matrix M, i.e. columns and rows are per-
muted. M can be real or complex. If M is an array with multiple dimen-
sions, the first two dimensions are permuted.

transpose(M) is equivalent to M.’. It can be used to redefine this
operator for objects.

Example

[1,2;3,4].’
1 3
2 4

[1+2j, 3-4j].’
1+2j
3-4j

See also

operator ’, permute, fliplr, flipud, rot90

Operator ==

Equality.

122 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

x == y
eq(x, y)

Description

x == y is true if x is equal to y, and false otherwise. Comparing NaN
(not a number) to any number yields false, including to NaN. If x and/or
y is an array, the comparison is performed element-wise and the result
has the same size.

eq(x,y) is equivalent to x==y. It can be used to redefine this oper-
ator for objects.

Example

1 == 1
true

1 == 1 + eps
false

1 == 1 + eps / 2
true

inf == inf
true

nan == nan
false

[1,2,3] == [1,3,3]
T F T

See also

operator =̃, operator <, operator <=, operator >, operator >=, opera-
tor ===, operator =̃=, strcmp

Operator ===

Object equality.

Syntax

a === b
same(a, b)

LME Reference — operators 123

Description

a === b is true if a is the same as b, and false otherwise. a and b must
have exactly the same internal representation to be considered as
equal; with IEEE floating-point numbers, nan===nan is true and 0===-0
is false. Contrary to the equality operator ==, === returns a single
boolean even if its operands are arrays.

same(a,b) is equivalent to a===b.

Example

(1:5) === (1:5)
true

(1:5) == (1:5)
T T T T T

[1,2,3] === [4,5]
false

[1,2,3] == [4,5]
Incompatible size

nan === nan
true

nan == nan
false

See also

operator =̃=, operator ==, operator =̃, operator <, operator <=, oper-
ator >, operator >=, operator ==, operator =̃, strcmp

Operator =̃

Inequality.

Syntax

x =̃ y
ne(x, y)

Description

x =̃ y is true if x is not equal to y, and false otherwise. Comparing
NaN (not a number) to any number yields true, including to NaN. If x
and/or y is an array, the comparison is performed element-wise and
the result has the same size.

ne(x,y) is equivalent to x̃ =y. It can be used to redefine this oper-
ator for objects.

124 LyME User Manual ©1999-2008, Calerga Sàrl

Example

1 =̃ 1
false

inf =̃ inf
false

nan =̃ nan
true

[1,2,3] =̃ [1,3,3]
F T F

See also

operator ==, operator <, operator <=, operator >, operator >=, oper-
ator ===, operator =̃=, strcmp

Operator =̃=

Object inequality.

Syntax

a =̃= b
unsame(a, b)

Description

a =̃= b is true if a is not the same as b, and false otherwise. a and b
must have exactly the same internal representation to be considered
as equal; with IEEE numbers, nañ ==nan is false and 0̃ ==-0 is true.
Contrary to the inequality operator, =̃= returns a single boolean even
if its operands are arrays.

unsame(a,b) is equivalent to ã ==b.

Example

(1:5) =̃= (1:5)
false

(1:5) =̃ (1:5)
F F F F F

[1,2,3] =̃= [4,5]
true

[1,2,3] =̃ [4,5]
Incompatible size

nan =̃= nan
false

nan =̃ nan
true

LME Reference — operators 125

See also

operator ===, operator ==, operator =̃, operator <, operator <=, oper-
ator >, operator >=, strcmp

Operator <

Less than.

Syntax

x < y
lt(x, y)

Description

x < y is true if x is less than y, and false otherwise. Comparing NaN
(not a number) to any number yields false, including to NaN. If x and/or
y is an array, the comparison is performed element-wise and the result
has the same size.

lt(x,y) is equivalent to x<y. It can be used to redefine this oper-
ator for objects.

Example

[2,3,4] < [2,4,2]
F T F

See also

operator ==, operator =̃, operator <=, operator >, operator >=

Operator >

Greater than.

Syntax

x > y
gt(x, y)

126 LyME User Manual ©1999-2008, Calerga Sàrl

Description

x > y is true if x is greater than y, and false otherwise. Comparing
NaN (not a number) to any number yields false, including to NaN. If x
and/or y is an array, the comparison is performed element-wise and
the result has the same size.

gt(x,y) is equivalent to x>y. It can be used to redefine this oper-
ator for objects.

Example

[2,3,4] > [2,4,2]
F F T

See also

operator ==, operator =̃, operator <, operator <=, operator >=

Operator <=

Less or equal to.

Syntax

x <= y
le(x, y)

Description

x <= y is true if x is less than or equal to y, and false otherwise.
Comparing NaN (not a number) to any number yields false, including
to NaN. If x and/or y is an array, the comparison is performed element-
wise and the result has the same size.

le(x,y) is equivalent to x<=y. It can be used to redefine this op-
erator for objects.

Example

[2,3,4] <= [2,4,2]
T T F

See also

operator ==, operator =̃, operator <, operator >, operator >=

LME Reference — operators 127

Operator >=

Greater or equal to.

Syntax

x >= y
ge(x, y)

Description

x >= y is true if x is greater than or equal to y, and false otherwise.
Comparing NaN (not a number) to any number yields false, including
to NaN. If x and/or y is an array, the comparison is performed element-
wise and the result has the same size.

ge(x,y) is equivalent to x>=y. It can be used to redefine this op-
erator for objects.

Example

[2,3,4] >= [2,4,2]
T F T

See also

operator ==, operator =̃, operator <, operator <=, operator >

Operator ˜

Not.

Syntax

b̃
not(b)

Description

b̃ is false (logical 0) if b is different from 0 or false, and true otherwise.
If b is an array, the operation is performed on each element.

not(b) is equivalent to b̃. It can be used to redefine this operator
for objects.

128 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

t̃rue
false

[̃1,0,3,false]
F T F T

See also

operator =̃, bitcmp

Operator &

And.

Syntax

b1 & b2
and(b1, b2)

Description

b1&b2 performs the logical AND operation between the corresponding
elements of b1 and b2; the result is true (logical 1) if both operands
are different from false or 0, and false (logical 0) otherwise.

and(b1,b2) is equivalent to b1&b2. It can be used to redefine this
operator for objects.

Example

[false, false, true, true] & [false, true, false, true]
F F F T

See also

operator |, xor, operator ,̃ operator &&, all

Operator &&

And with lazy evaluation.

Syntax

b1 && b2

LME Reference — operators 129

Description

b1&&b2 is b1 if b1 is false, and b2 otherwise. Like with if and while
statements, b1 is true if it is a nonempty array with only non-zero
elements. b2 is evaluated only if b1 is true.

b1&&b2&&...&&bn returns the last operand which is false (remain-
ing operands are not evaluated), or the last one.

Example

Boolean value which is true if the vector v is made of pairs of equal
values:

mod(length(v),2) == 0 && v(1:2:end) == v(2:2:end)

The second operand of && is evaluated only if the length is even.

See also

operator ||, operator ?, operator &, if

Operator |
Or.

Syntax

b1 | b2
or(b1, b2)

Description

b1|b2 performs the logical OR operation between the corresponding
elements of b1 and b2; the result is false (logical 0) if both operands
are false or 0, and true (logical 1) otherwise.

or(b1,b2) is equivalent to b1|b2. It can be used to redefine this
operator for objects.

Example

[false, false, true, true] | [false, true, false, true]
F T T T

See also

operator &, xor, operator ,̃ operator ||, any

130 LyME User Manual ©1999-2008, Calerga Sàrl

Operator ||

Or with lazy evaluation.

Syntax

b1 || b2

Description

b1||b2 is b1 if b1 is true, and b2 otherwise. Like with if and while
statements, b1 is true if it is a nonempty array with only non-zero
elements. b2 is evaluated only if b1 is false.

b1||b2||...||bn returns the last operand which is true (remaining
operands are not evaluated), or the last one.

Example

Boolean value which is true if the vector v is empty or if its first ele-
ment is NaN:

isempty(v) || isnan(v(1))

See also

operator &&, operator ?, operator |, if

Operator ?

Alternative with lazy evaluation.

Syntax

b ? x : y

Description

b?x:y is x if b is true, and y otherwise. Like with if and while state-
ments, b is true if it is a nonempty array with only non-zero elements.
Only one of x and y is evaluated depending on b.

Operators ? and : have the same priority; parenthesis or brackets
should be used if e.g. x or y is a range.

LME Reference — operators 131

Example

Element of a vector v, or default value 5 if the index ind is out of
range:

ind < 1 || ind > length(v) ? 5 : v(ind)

See also

operator &&, operator ||, if

Operator ,

Horizontal matrix concatenation.

Syntax

[M1, M2]
[M1 M2]
horzcat(M1, M2)

Description

Between brackets, the comma is used to separate elements on the
same row in a matrix. Elements can be scalars, vector or matrices;
their number of rows must be the same, unless one of them is an
empty matrix.

Outside brackets or between parenthesis, the comma is used to
separate statements or the arguments of functions.

horzcat(M1,M2) is equivalent to [M1,M2]. It can be used to rede-
fine this operator for objects.

Between braces, the comma separates cells on the same row.

Examples

[1,2]
1 2

[[3;5],ones(2)]
3 1 1
5 1 1

[’abc’,’def’]
abcdef

See also

operator [], operator ;, cat, join, operator {}

132 LyME User Manual ©1999-2008, Calerga Sàrl

Operator ;

Vertical matrix concatenation.

Syntax

[M1; M2]
vertcat(M1, M2)

Description

Between brackets, the semicolon is used to separate rows in a matrix.
Rows can be scalars, vector or matrices; their number of columns must
be the same, unless one of them is an empty matrix.

Outside brackets, the comma is used to separate statements; they
loose any meaning between parenthesis and give a syntax error.

vertcat(M1,M2) is equivalent to [M1;M2]. It can be used to rede-
fine this operator for objects.

Between braces, the semicolon separates rows of cells.

Examples

[1;2]
1
2

[1:5;3,2,4,5,1]
1 2 3 4 5
3 2 4 5 1

[’abc’;’def’]
abc
def

See also

operator [], operator ,, join, operator {}

Operator :

Range.

Syntax

x1:x2
x1:step:x2
colon(x1,x2)
colon(x1,step,x2)

LME Reference — operators 133

Description

x1:x2 gives a row vector with the elements x1, x1+1, x1+2, etc. until
x2. The last element is equal to x2 only if x2-x1 is an integer, and
smaller otherwise. If x2<x1, the result is an empty matrix.

x1:step:x2 gives a row vector with the elements x1, x1+step,
x1+2*step, etc. until x2. The last element is equal to x2 only if
(x2-x1)/step is an integer. With fractional numbers, rounding er-
rors may cause x2 to be discarded even if (x2-x1)/step is "almost"
an integer. If x2*sign(step)<x1*sign(step), the result is an empty
matrix.

If x1 or step is complex, a complex vector is produced, with the
expected contents. The following algorithm is used to generate each
element:

z = x1
while real((z - x1)/(x2 - x1)) <= 1

add z to the vector
z = z + step

end

This algorithm is robust enough to stop even if x2 is not on the complex
straight line defined by x1 and step. If x2-x1 and step are orthogonal,
it is attempted to produce an infinite number of elements, which will
obviously trigger an out of memory error. This is similar to having a
null step in the real case.

Note that the default step value is always 1 for consistency with
real values. Choosing for instance sign(x2-x1) would have made the
generation of lists of indices more difficult. Hence for a vector of purely
imaginary numbers, always specify a step.

colon(x1,x2) is equivalent to x1:x2, and colon(x1,step,x2) to
x1:step:x2. It can be used to redefine this operator for objects.

The colon character is also used to separate the alternatives of a
conditional expression b?x:y.

Example

2:5
2 3 4 5

2:5.3
2 3 4 5

3:3
3

3:2
[]

2:2:8
2 4 6 8

5:-1:2

134 LyME User Manual ©1999-2008, Calerga Sàrl

5 4 3 2
0:1j:10j
0 1j 2j 3j 4j 5j 6j 7j 8j 9j 10j

1:1+1j:5+4j
1 2+1j 3+2j 4+3j 5+4j

0:1+1j:5
0 1+1j 2+2j 3+3j 4+4j 5+5j

See also

repmat, operator ?

Operator @

Function reference or anonymous function.

Syntax

@fun
@(arguments) expression

Description

@fun gives a reference to function fun which can be used wherever
an inline function can. Its main use is as the argument of functions
like feval or quad, but it may also be stored in lists, cell arrays, or
structures. A reference cannot be cast to a double (unlike characters
or logical values), nor can it be stored in an array.

Anonymous functions are an alternative, more compact syntax for
inline functions. In @(args) expr, args is a list of input arguments
and expr is an expression which contains two kinds of variables:

– input arguments, provided when the anonymous expression is
executed;

– captured variables (all variables which do not appear in the list
of input arguments), which have the value of variables of the
same name existing when and where the anonymous function is
created. These values are fixed.

If the top-level element of the anonymous function is itself a function,
multiple output arguments can be specified for the call of the anony-
mous function, as if a direct call was performed.

Anonymous functions are a convenient way to provide the glue be-
tween functions like fzero and ode45 and the function they accept as
argument. Additional parameters can be passed directly in the anony-
mous function with captured variables, instead of being supplied as
additional arguments; the code becomes clearer.

LME Reference — mathematical functions 135

Examples

Function reference:

quad(@sin, 0, pi)
2

Anonymous function:

a = 2;
fun = @(x) sin(a * x);
fun(3)
-0.2794

quad(fun, 0, 2)
0.8268

Without anonymous function, parameter a should be passed as an
additional argument after all the input arguments defined for quad,
including those which are optional when parameters are missing:

quad(inline(’sin(a * x)’, ’x’, ’a’), 0, 2, [], false, a)
0.8268

Anonymous functions are actually stored as inline functions with all
captured variables:

dumpvar(fun)
inline(’function y=f(a,x);y=sin(a*x);’,2)

Anonymous function with multiple output arguments:

fun = @(A) size(A);
s = fun(ones(2,3))
s =
2 3

(m, n) = fun(ones(2,3))
m =
2

n =
3

See also

fun2str, str2fun, inline, feval, apply

3.13 Mathematical Functions

abs

Absolute value.

136 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

x = abs(z)

Description

abs takes the absolute value of each element of its argument. The
result is an array of the same size as the argument; each element is
non-negative.

Example

abs([2,-3,0,3+4j]
2 3 0 5

See also

angle, sign, real, imag, hypot

acos

Arc cosine.

Syntax

y = acos(x)

Description

acos(x) gives the arc cosine of x, which is complex if x is complex or
if abs(x)>1.

Examples

acos(2)
0+1.3170j

acos([0,1+2j])
1.5708 1.1437-1.5286j

See also

cos, asin, acosh

acosh

Inverse hyperbolic cosine.

LME Reference — mathematical functions 137

Syntax

y = acosh(x)

Description

acosh(x) gives the inverse hyperbolic cosine of x, which is complex if
x is complex or if x<1.

Examples

acosh(2)
1.3170

acosh([0,1+2j])
0+1.5708j 1.5286+1.1437j

See also

cosh, asinh, acos

acot

Inverse cotangent.

Syntax

y = acot(x)

Description

acot(x) gives the inverse cotangent of x, which is complex if x is.

See also

cot, acoth, cos

acoth

Inverse hyperbolic cotangent.

Syntax

y = acoth(x)

138 LyME User Manual ©1999-2008, Calerga Sàrl

Description

acoth(x) gives the inverse hyperbolic cotangent of x, which is complex
if x is complex or is in the range (-1,1).

See also

coth, acot, atanh

acsc

Inverse cosecant.

Syntax

y = acsc(x)

Description

acsc(x) gives the inverse cosecant of x, which is complex if x is com-
plex or is in the range (-1,1).

See also

csc, acsch, asin

acsch

Inverse hyperbolic cosecant.

Syntax

y = acsch(x)

Description

acsch(x) gives the inverse hyperbolic cosecant of x, which is complex
if x is.

See also

csc, acsc, asinh

LME Reference — mathematical functions 139

angle

Phase angle of a complex number.

Syntax

phi = angle(z)

Description

angle(z) gives the phase of the complex number z, i.e. the angle be-
tween the positive real axis and a line joining the origin to z. angle(0)
is 0.

Examples

angle(1+3j)
1.2490

angle([0,1,-1])
0 0 3.1416

See also

abs, sign, atan2

asec

Inverse secant.

Syntax

y = asec(x)

Description

asec(x) gives the inverse secant of x, which is complex if x is complex
or is in the range (-1,1).

See also

sec, asech, acos

asech

Inverse hyperbolic secant.

140 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

y = asech(x)

Description

asech(x) gives the inverse hyperbolic secant of x, which is complex if
x is complex or strictly negative.

See also

sech, asec, acosh

asin

Arc sine.

Syntax

y = asin(x)

Description

asin(x) gives the arc sine of x, which is complex if x is complex or if
abs(x)>1.

Examples

asin(0.5)
0.5236

asin(2)
1.5708-1.317j

See also

sin, acos, asinh

asinh

Inverse hyperbolic sine.

Syntax

y = asinh(x)

LME Reference — mathematical functions 141

Description

asinh(x) gives the inverse hyperbolic sine of x, which is complex if x
is complex.

Examples

asinh(2)
1.4436

asinh([0,1+2j])
0 1.8055+1.7359j

See also

sinh, acosh, asin

atan

Arc tangent.

Syntax

y = atan(x)

Description

atan(x) gives the arc tangent of x, which is complex if x is complex.

Example

atan(1)
0.7854

See also

tan, asin, acos, atan2, atanh

atan2

Direction of a point given by its Cartesian coordinates.

Syntax

phi = atan2(y,x)

142 LyME User Manual ©1999-2008, Calerga Sàrl

Description

atan2(y,x) gives the direction of a point given by its Cartesian coor-
dinates x and y. Imaginary component of complex numbers is ignored.
atan2(y,x) is equivalent to atan(y/x) if x>0.

Examples

atan2(1, 1)
0.7854

atan2(-1, -1)
-2.3562

atan2(0, 0)
0

See also

atan, angle

atanh

Inverse hyperbolic tangent.

Syntax

y = atanh(x)

Description

atan(x) gives the inverse hyperbolic tangent of x, which is complex if
x is complex or if abs(x)>1.

Examples

atanh(0.5)
0.5493

atanh(2)
0.5493 + 1.5708j

See also

asinh, acosh, atan

beta

Beta function.

LME Reference — mathematical functions 143

Syntax

y = beta(z,w)

Description

beta(z,w) gives the beta function of z and w. Arguments and result
are real (imaginary part is discarded). The beta function is defined as

B(z,) =
∫ 1

0
tz−1(1− t)−1 dt

Example

beta(1,2)
0.5

See also

gamma, betaln, betainc

betainc

Incomplete beta function.

Syntax

y = betainc(x,z,w)

Description

betainc(x,z,w) gives the incomplete beta function of x, z and w.
Arguments and result are real (imaginary part is discarded). x must
be between 0 and 1. The incomplete beta function is defined as

(z,) =
1

B(z,)

∫ 

0
tz−1(1− t)−1 dt

Example

betainc(0.2,1,2)
0.36

See also

beta, betaln, gammainc

144 LyME User Manual ©1999-2008, Calerga Sàrl

betaln

Logarithm of beta function.

Syntax

y = betaln(z,w)

Description

betaln(z,w) gives the logarithm of the beta function of z and w. Ar-
guments and result are real (imaginary part is discarded).

Example

betaln(0.5,2)
0.2877

See also

beta, betainc, gammaln

cast

Type conversion.

Syntax

Y = cast(X, type)

Description

cast(X,type) converts the numeric array X to the type given by string
type, which can be ’double’, ’single’, ’int8’ or any other signed
or unsigned integer type, ’char’, or ’logical’. The number value
is preserved when possible; conversion to integer types discards most
significant bytes. If X is an array, conversion is performed on each
element; the result has the same size. The imaginary part, if any, is
discarded only with conversions to integer types.

Example

cast(pi, ’int8’)
3int8

LME Reference — mathematical functions 145

See also

uint8 and related functions, double, single, typecast

cdf

Cumulative distribution function.

Syntax

y = cdf(distribution,x)
y = cdf(distribution,x,a1)
y = cdf(distribution,x,a1,a2)

Description

cdf(distribution,x) calculates the integral of a probability density
function from −∞ to x. The distribution is specified with the first argu-
ment, a string; case is ignored (’t’ and ’T’ are equivalent). Additional
arguments must be provided for some distributions. The distributions
are given in the table below. Default values for the parameters, when
mentioned, mean that the parameter may be omitted.

Distribution Name Parameters
Beta beta a and b
Cauchy cauchy a and b
χ chi deg. of freedom ν
χ2 chi2 deg. of freedom ν
γ gamma shape α and λ
exponential exp mean
F f deg. of freedom ν1 and ν2
half-normal half-normal ϑ
Laplace laplace mean and scale
lognormal logn mean (0) and st. dev. (1)
normal norm mean (0) and st. dev. (1)
Rayleigh rayl b
Student’s T t deg. of freedom ν
uniform unif limits of the range (0 and 1)
Weibull weib a and b

See also

pdf, icdf, erf

146 LyME User Manual ©1999-2008, Calerga Sàrl

ceil

Rounding towards +infinity.

Syntax

y = ceil(x)

Description

ceil(x) gives the smallest integer larger than or equal to x. If the
argument is a complex number, the real and imaginary parts are han-
dled separately.

Examples

ceil(2.3)
3

ceil(-2.3)
-2

ceil(2.3-4.5j)
3-4j

See also

floor, fix, round

complex

Make a complex number.

Syntax

z = complex(x, y)

Description

complex(x,y) makes a complex number from its real part x and imag-
inary part y. The imaginary part of its input arguments is ignored.

Examples

complex(2, 3)
2 + 3j

complex(1:5, 2)
1+2j 2+2j 3+2j 4+2j 5+2j

LME Reference — mathematical functions 147

See also

real, imag, i

conj

Complex conjugate value.

Syntax

w = conj(z)

Description

conj(z) changes the sign of the imaginary part of the complex num-
ber z.

Example

conj([1+2j,-3-5j,4,0])
1-2j -3+5j 4 0

See also

imag, angle, j, operator -

cos

Cosine.

Syntax

y = cos(x)

Description

cos(x) gives the cosine of x, which is complex if x is complex.

Example

cos([0, 1+2j])
1 2.0327-3.0519j

148 LyME User Manual ©1999-2008, Calerga Sàrl

See also

sin, acos, cosh

cosh

Hyperbolic cosine.

Syntax

y = cosh(x)

Description

cos(x) gives the hyperbolic cosine of x, which is complex if x is com-
plex.

Example

cosh([0, 1+2j])
1 -0.6421+1.0686j

See also

sinh, acosh, cos

cot

Cotangent.

Syntax

y = cot(x)

Description

cot(x) gives the cotangent of x, which is complex if x is.

See also

acot, coth, tan

coth

Hyperbolic cotangent.

LME Reference — mathematical functions 149

Syntax

y = coth(x)

Description

coth(x) gives the hyperbolic cotangent of x, which is complex if x is.

See also

acoth, cot, tanh

csc

Cosecant.

Syntax

y = csc(x)

Description

csc(x) gives the cosecant of x, which is complex if x is.

See also

acsc, csch, sin

csch

Hyperbolic cosecant.

Syntax

y = csch(x)

Description

csch(x) gives the hyperbolic cosecant of x, which is complex if x is.

See also

acsch, csc, sinh

150 LyME User Manual ©1999-2008, Calerga Sàrl

diln

Dilogarithm.

Syntax

y = diln(x)

Description

diln(x) gives the dilogarithm, or Spence’s integral, of x. Argument
and result are real (imaginary part is discarded). The dilogarithm is
defined as

diln() =
∫ 

1

log(t)

t − 1
dt

Example

diln([0.2, 0.7, 10])
-1.0748 -0.3261 3.9507

double

Conversion to double-precision numbers.

Syntax

B = double(A)

Description

double(A) converts number or array A to double precision. A can be
any kind of numeric value (real, complex, or integer), or a character
or logical array.

To keep the integer type of logical and character arrays, the unitary
operator + should be used instead.

Examples

double(uint8(3))
3

double(’AB’)
65 66

islogical(double(1>2))
false

LME Reference — mathematical functions 151

See also

uint8 and related functions, single, cast, operator +, setstr, char,
logical

ellipam

Jacobi elliptic amplitude.

Syntax

phi = ellipam(u, m)
phi = ellipam(u, m, tol)

Description

ellipam(u,m) gives the Jacobi elliptic amplitude phi. Parameter m
must be in [0,1]. The Jacobi elliptic amplitude is the inverse of the
Jacobi integral of the first kind, such that  = F(φ|m).

ellipam(u,m,tol) uses tolerance tol; the default tolerance is
eps.

Example

phi = ellipam(2.7, 0.6)
phi =
2.0713

u = ellipf(phi, 0.6)
u =
2.7

See also

ellipf, ellipj

ellipe

Jacobi elliptic integral of the second kind.

Syntax

u = ellipe(phi, m)

152 LyME User Manual ©1999-2008, Calerga Sàrl

Description

ellipe(phi,m) gives the Jacobi elliptic integral of the second kind,
defined as

E(φ|m) =
∫ φ

0

p

1−m sin2 t dt

Complete elliptic integrals of first and second kinds, with phi=pi/2,
can be obtained with ellipke.

See also

ellipf, ellipke

ellipf

Jacobi elliptic integral of the first kind.

Syntax

u = ellipf(phi, m)

Description

ellipf(phi,m) gives the Jacobi elliptic integral of the first kind, de-
fined as

F(φ|m) =
∫ φ

0

dt
p

1−m sin2 t

Complete elliptic integrals of first and second kinds, with phi=pi/2,
can be obtained with ellipke.

See also

ellipe, ellipke, ellipam

ellipj

Jacobi elliptic functions.

Syntax

(sn, cn, dn) = ellipj(u, m)
(sn, cn, dn) = ellipj(u, m, tol)

LME Reference — mathematical functions 153

Description

ellipj(u,m) gives the Jacobi elliptic function sn, cn, and dn. Parame-
ter m must be in [0,1]. These functions are based on the Jacobi elliptic
amplitude φ, the inverse of the Jacobi elliptic integral of the first kind
which can be obtained with ellipam):

 = F(φ|m)

sn(|m) = sin(φ)

cn(|m) = cos(φ)

dn(|m) =
Æ

1−m sin2 φ

ellipj(u,m,tol) uses tolerance tol; the default tolerance is eps.

Examples

(sn, cn, dn) = ellipj(2.7, 0.6)
sn =
0.8773

cn =
-0.4799

dn =
0.7336

sin(ellipam(2.7, 0.6))
0.8773

ellipj(0:5, 0.3)
0.0000 0.8188 0.9713 0.4114 -0.5341 -0.9930

See also

ellipam, ellipke

ellipke

Complete elliptic integral.

Syntax

(K, E) = ellipke(m)
(K, E) = ellipke(m, tol)

154 LyME User Manual ©1999-2008, Calerga Sàrl

Description

(K,E)=ellipke(m) gives the complete elliptic integrals of the first
kind K=F(m) and second kind E=E(m), defined as

F(m) =
∫ π/2

0

dt
p

1−m sin2 t

E(m) =
∫ π/2

0

p

1−m sin2 t dt

Parameter m must be in [0,1].
ellipke(m,tol) uses tolerance tol; the default tolerance is eps.

Example

(K, E) = ellipke(0.3)
K =
1.7139

E =
1.4454

See also

ellipj

eps

Difference between 1 and the smallest number x such that x > 1.

Syntax

e = eps
e = eps(x)
e = eps(type)

Description

Because of the floating-point encoding of "real" numbers, the absolute
precision depends on the magnitude of the numbers. The relative
precision is characterized by the number given by eps, which is the
smallest double positive number such that 1+eps can be distinguished
from 1.

eps(x) gives the smallest number e such that x+e has the same
sign as x and can be distinguished from x. It takes into account

LME Reference — mathematical functions 155

whether x is a double or a single number. If x is an array, the re-
sult has the same size; each element corresponds to an element of
the input.

eps(’single’) gives the smallest single positive number e such
that 1single+e can be distinguished from 1single. eps(’double’)
gives the same value as eps without input argument.

Examples

eps
2.2204e-16

1 + eps - 1
2.2204e-16

eps / 2
1.1102e-16

1 + eps / 2 - 1
0

See also

inf, realmin, pi, i, j

erf

Error function.

Syntax

y = erf(x)

Description

erf(x) gives the error function of x. Argument and result are real
(imaginary part is discarded). The error function is defined as

erf() =
2
p
π

∫ 

0
e−t

2
dt

Example

erf(1)
0.8427

See also

erfc, erfinv

156 LyME User Manual ©1999-2008, Calerga Sàrl

erfc

Complementary error function.

Syntax

y = erfc(x)

Description

erfc(x) gives the complementary error function of x. Argument and
result are real (imaginary part is discarded). The complementary error
function is defined as

erfc() = 1− erf() =
2
p
π

∫ ∞



e−t
2
dt

Example

erfc(1)
0.1573

See also

erf, erfinv

erfinv

Inverse error function.

Syntax

x = erfinv(y)

Description

erfinv(y) gives the value x such that y=erf(x). Argument and result
are real (imaginary part is discarded). y must be in the range [-1,1];
values outside this range give nan.

Example

y = erf(0.8)
y =
0.7421

erfinv(y)
0.8

LME Reference — mathematical functions 157

See also

erf, erfc

exp

Exponential.

Syntax

y = exp(x)

Description

exp(x) is the exponential of x, i.e. 2.7182818284590446...̂ x.

Example

exp([0,1,0.5j*pi])
1 2.7183 1j

See also

log, expm1, expm, operator .̂

expm1

Exponential minus one.

Syntax

y = expm1(x)

Description

expm1(x) is exp(x)-1 with improved precision for small x.

Example

expm1(1e-15)
1e-15

exp(1e-15)-1
1.1102e-15

158 LyME User Manual ©1999-2008, Calerga Sàrl

See also

exp, log1p

factor

Prime factors.

Syntax

v = factor(n)

Description

factor(n) gives a row vector which contains the prime factors of n in
ascending order. Multiple prime factors are repeated.

Example

factor(350)
2 5 5 7

See also

isprime

factorial

Factorial.

Syntax

y = factorial(n)

Description

factorial(n) gives the factorial n! of nonnegative integer n. If the
input argument is negative or noninteger, the result is NaN. The imag-
inary part is ignored.

Examples

factorial(5)
120

factorial([-1,0,1,2,3,3.14])
nan 1 1 2 6 nan

LME Reference — mathematical functions 159

See also

gamma, nchoosek

fix

Rounding towards 0.

Syntax

y = fix(x)

Description

fix(x) truncates the fractional part of x. If the argument is a complex
number, the real and imaginary parts are handled separately.

Examples

fix(2.3)
2

fix(-2.6)
-2

See also

floor, ceil, round

floor

Rounding towards -infinity.

Syntax

y = floor(x)

Description

floor(x) gives the largest integer smaller than or equal to x. If the
argument is a complex number, the real and imaginary parts are han-
dled separately.

160 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

floor(2.3)
2

floor(-2.3)
-3

See also

ceil, fix, round

gamma

Gamma function.

Syntax

y = gamma(x)

Description

gamma(x) gives the gamma function of x. Argument and result are
real (imaginary part is discarded). The gamma function is defined as

() =
∫ ∞

0
t−1e−t dt

For positive integer values, (n) = (n− 1)!.

Examples

gamma(5)
24

gamma(-3)
inf

gamma(-3.5)
0.2701

See also

beta, gammaln, gammainc, factorial

gammainc

Incomplete gamma function.

LME Reference — mathematical functions 161

Syntax

y = gammainc(x,a)

Description

gammainc(x,a) gives the incomplete gamma function of x and a. Ar-
guments and result are real (imaginary part is discarded). x must be
nonnegative. The incomplete gamma function is defined as

gmminc(, ) =
1

()

∫ 

0
t−1e−t dt

Example

gammainc(2,1.5)
0.7385

See also

gamma, gammaln, betainc

gammaln

Logarithm of gamma function.

Syntax

y = gammaln(x)

Description

gammaln(x) gives the logarithm of the gamma function of x. Argument
and result are real (imaginary part is discarded). gammaln does not rely
on the computation of the gamma function to avoid overflows for large
numbers.

Examples

gammaln(1000)
5905.2204

gamma(1000)
inf

162 LyME User Manual ©1999-2008, Calerga Sàrl

See also

gamma, gammainc, betaln

gcd

Greatest common divisor.

Syntax

q = gcd(a, b)

Description

gcd(a,b) gives the greatest common divisor of integer numbers a and
b.

Example

gcd(72, 56)
8

See also

lcm

goldenratio

Golden ratio constant.

Syntax

x = goldenratio

Description

goldenratio is the golden ration (
p
5+ 1)/2, up to the precision of its

floating-point representation.

Example

goldenratio
1.6180

LME Reference — mathematical functions 163

See also

pi, eps

hypot

Hypotenuse.

Syntax

c = hypot(a, b)

Description

hypot(a,b) gives the square root of the square of a and b, or of their
absolute value if they are complex. The result is always real. hypot
avoids overflow when the result itself does not overflow.

Examples

hypot(3, 4)
5

hypot([1,2,3+4j,inf], 5)
5.099 5.3852 5.831 inf

See also

sqrt, abs, norm

i j

Imaginary unit.

Syntax

i
j
1.23e4i
1.23e4j

164 LyME User Manual ©1999-2008, Calerga Sàrl

Description

i or j are the imaginary unit, i.e. the pure imaginary number whose
square is -1. i and j are equivalent.

Used as a suffix appended without space to a number, i or j mark
an imaginary number. They must follow the fractional part and the
exponent, if any; for single-precision numbers, they must precede the
single suffix.

To obtain a complex number i, you can write either i or 1i (or j or
1j). The second way is safer, because variables i and j are often used
as indices and would hide the meaning of the built-in functions. The
expression 1i is always interpreted as an imaginary constant number.

Imaginary numbers are displayed with i or j depending on the op-
tion set with the format command.

Examples

i
1j

format i
2i
2i

2single + 5jsingle
2+5i (single)

See also

imag, complex

icdf

Inverse cumulative distribution function.

Syntax

x = icdf(distribution,p)
x = icdf(distribution,p,a1)
x = icdf(distribution,p,a1,a2)

Description

icdf(distribution,p) calculates the value of x such that
cdf(distribution,x) is p. The distribution is specified with the first
argument, a string; case is ignored (’t’ and ’T’ are equivalent).
Additional arguments must be provided for some distributions. The
distributions are given in the table below. Default values for the

LME Reference — mathematical functions 165

parameters, when mentioned, mean that the parameter may be
omitted.
Distribution Name Parameters
Beta beta a and b
χ2 chi2 deg. of freedom ν
γ gamma shape α and scale λ
F f deg. of freedom ν1 and ν2
lognormal logn mean (0) and st. dev. (1)
normal norm mean (0) and st. dev. (1)
Student’s T t deg. of freedom ν
uniform unif limits of the range (0 and 1)

See also

cdf, pdf

imag

Imaginary part of a complex number.

Syntax

im = imag(z)

Description

imag(z) is the imaginary part of the complex number z, or 0 if z is
real.

Examples

imag(1+2j)
2

imag(1)
0

See also

real, complex, i, j

inf

Infinity.

166 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

x = inf
x = Inf
x = inf(n)
x = inf(n1,n2,...)
x = inf([n1,n2,...])
x = inf(..., type)

Description

inf is the number which represents infinity. Most mathematical func-
tions accept infinity as input argument and yield an infinite result if
appropriate. Infinity and minus infinity are two different quantities.

With integer non-negative arguments, inf creates arrays whose
elements are infinity. Arguments are interpreted the same way as
zeros and ones.

The last argument of inf can be a string to specify the type of
the result: ’double’ for double-precision (default), or ’single’ for
single-precision.

Examples

1/inf
0

-inf
-inf

See also

isfinite, isinf, nan, zeros, ones

isfinite

Test for finiteness.

Syntax

b = isfinite(x)

Description

isfinite(x) is true if the input argument is a finite number (neither
infinite nor nan), and false otherwise. The result is performed on each
element of the input argument, and the result has the same size.

LME Reference — mathematical functions 167

Example

isfinite([0,1,nan,inf])
T T F F

See also

isinf, isnan

isfloat

Test for a floating-point object.

Syntax

b = isfloat(x)

Description

isfloat(x) is true if the input argument is a floating-point type (dou-
ble or single), and false otherwise.

Examples

isfloat(2)
true

isfloat(2int32)
false

See also

isnumeric, isinteger

isinf

Test for infinity.

Syntax

b = isinf(x)

Description

isinf(x) is true if the input argument is infinite (neither finite nor
nan), and false otherwise. The result is performed on each element of
the input argument, and the result has the same size.

168 LyME User Manual ©1999-2008, Calerga Sàrl

Example

isinf([0,1,nan,inf])
F F F T

See also

isfinite, isnan, inf

isinteger

Test for an integer object.

Syntax

b = isinteger(x)

Description

isinteger(x) is true if the input argument is an integer type (includ-
ing char and logical), and false otherwise.

Examples

isinteger(2int16)
true

isinteger(false)
true

isinteger(’abc’)
true

isinteger(3)
false

See also

isnumeric, isfloat

isnan

Test for Not a Number.

Syntax

b = isnan(x)

LME Reference — mathematical functions 169

Description

isnan(x) is true if the input argument is nan (not a number), and
false otherwise. The result is performed on each element of the input
argument, and the result has the same size.

Example

isnan([0,1,nan,inf])
F F T F

See also

isinf, nan

isnumeric

Test for a numeric object.

Syntax

b = isnumeric(x)

Description

isnumeric(x) is true if the input argument is numeric (real or complex
scalar, vector, or array), and false otherwise.

Examples

isnumeric(pi)
true

isnumeric(’abc’)
false

See also

ischar, isfloat, isinteger, isscalar, isvector

isprime

Prime number test.

170 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

b = isprime(n)

Description

isprime(n) returns true if n is a prime number, or false otherwise.
If n is a matrix, the test is applied to each element and the result is a
matrix the same size.

Examples

use stdlib
isprime(7)
true

isprime([0, 2, 10])
F T F

See also

factor

isscalar

Test for a scalar number.

Syntax

b = isscalar(x)

Description

isscalar(x) is true if the input argument is scalar (real or complex
number of any floating-point or integer type, character or logical
value), and false otherwise.

Examples

isscalar(2)
true

isscalar([1, 2, 5])
false

See also

isnumeric, isvector, size

LME Reference — mathematical functions 171

isvector

Test for a vector.

Syntax

b = isvector(x)

Description

isvector(x) is true if the input argument is a row or column vec-
tor (real or complex 2-dimension array of any floating-point or inte-
ger type, character or logical value with one dimension equal to 1, or
empty array), and false otherwise.

Examples

isvector([1, 2, 3])
true

isvector([1; 2])
true

isvector(7)
true

isvector([1, 2; 3, 4])
false

See also

isnumeric, isscalar, size, ndims, length

lcm

Least common multiple.

Syntax

q = lcm(a, b)

Description

lcm(a,b) gives the least common multiple of integer numbers a and
b.

172 LyME User Manual ©1999-2008, Calerga Sàrl

Example

lcm(72, 56)
504

See also

gcd

log

Natural (base e) logarithm.

Syntax

y = log(x)

Description

log(x) gives the natural logarithm of x. It is the inverse of exp. The
result is complex if x is not real positive.

Example

log([-1,0,1,10,1+2j])
0+3.1416j inf 0 2.3026 0.8047+1.1071j

See also

log10, log2, log1p, reallog, exp

log10

Decimal logarithm.

Syntax

y = log10(x)

Description

log10(x) gives the decimal logarithm of x, defined by log10(x) =
log(x)/log(10). The result is complex if x is not real positive.

LME Reference — mathematical functions 173

Example

log10([-1,0,1,10,1+2j])
0+1.3644j inf 0 1 0.3495+0.4808j

See also

log, log2

log1p

Logarithm of x plus one.

Syntax

y = log1p(x)

Description

log1p(x) is log(1+x) with improved precision for small x.

Example

log1p(1e-15)
1e-15

log(1 + 1e-15)
1.1102e-15

See also

log, expm1

log2

Base 2 logarithm.

Syntax

y = log2(x)

Description

log2(x) gives the base 2 logarithm of x, defined as
log2(x)=log(x)/log(2). The result is complex if x is not real
positive.

174 LyME User Manual ©1999-2008, Calerga Sàrl

Example

log2([1, 2, 1024, 2000, -5])
0 1 10 10.9658 2.3219+4.5324j

See also

log, log10

mod

Modulo.

Syntax

m = mod(x, y)

Description

mod(x,y) gives the modulo of x divided by y, i.e. a number m between
0 and y such that x = q*y+m with integer q. Imaginary parts, if they
exist, are ignored.

Examples

mod(10,7)
3

mod(-10,7)
4

mod(10,-7)
-4

mod(-10,-7)
-3

See also

rem

nan

Not a Number.

LME Reference — mathematical functions 175

Syntax

x = nan
x = NaN
x = nan(n)
x = nan(n1,n2,...)
x = nan([n1,n2,...])
x = nan(..., type)

Description

NaN (Not a Number) is the result of the primitive floating-point func-
tions or operators called with invalid arguments. For example, 0/0,
inf-inf and 0*inf all result in NaN. When used in an expression, NaN
propagates to the result. All comparisons involving NaN result in false,
except for comparing NaN with any number for inequality, which re-
sults in true.

Contrary to built-in functions usually found in the underlying oper-
ating system, many functions which would result in NaNs give complex
numbers when called with arguments in a certain range.

With integer non-negative arguments, nan creates arrays whose
elements are NaN. Arguments are interpreted the same way as zeros
and ones.

The last argument of nan can be a string to specify the type of
the result: ’double’ for double-precision (default), or ’single’ for
single-precision.

Examples

nan
nan

0*nan
nan

nan==nan
false

nañ =nan
true

log(-1)
0+3.1416j

See also

inf, isnan, zeros, ones

nchoosek

Binomial coefficient.

176 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

b = nchoosek(n, k)

Description

nchoosek(n,k) gives the number of combinations of n objects taken
k at a time. Both n and k must be nonnegative integers with k<n.

Examples

nchoosek(10,4)
210

nchoosek(10,6)
210

See also

factorial, gamma

nthroot

Real nth root.

Syntax

y = nthroot(x,n)

Description

nthroot(x,n) gives the real nth root of real number x. If x is positive,
it is x.̂ (1./n); if x is negative, it is -abs(x).̂ (1./n) if n is an odd
integer, or NaN otherwise.

Example

nthroot([-2,2], 3)
-1.2599 1.2599

[-2,2] .̂ (1/3)
0.6300+1.0911i 1.2599

See also

operator .̂ , realsqrt, sqrt

LME Reference — mathematical functions 177

pdf

Probability density function.

Syntax

y = pdf(distribution,x)
y = pdf(distribution,x,a1)
y = pdf(distribution,x,a1,a2)

Description

pdf(distribution,x) gives the probability of a density function. The
distribution is specified with the first argument, a string; case is ig-
nored (’t’ and ’T’ are equivalent). Additional arguments must be pro-
vided for some distributions. See cdf for the list of distributions.

See also

cdf

pi

Constant π.

Syntax

x = pi

Description

pi is the number π, up to the precision of its floating-point represen-
tation.

Example

exp(1j * pi)
-1

See also

goldenratio, i, j, eps

178 LyME User Manual ©1999-2008, Calerga Sàrl

real

Real part of a complex number.

Syntax

re = real(z)

Description

real(z) is the real part of the complex number z, or z if z is real.

Examples

real(1+2j)
1

real(1)
1

See also

imag, complex

reallog

Real natural (base e) logarithm.

Syntax

y = reallog(x)

Description

reallog(x) gives the real natural logarithm of x. It is the inverse of
exp for real numbers. The imaginary part of x is ignored. The result is
NaN if x is negative.

Example

reallog([-1,0,1,10,1+2j])
nan inf 0 2.3026 0

See also

log, realpow, realsqrt, exp

LME Reference — mathematical functions 179

realmax realmin

Largest and smallest real numbers.

Syntax

x = realmax
x = realmax(n)
x = realmax(n1,n2,...)
x = realmax([n1,n2,...])
x = realmax(..., type)
x = realmin
x = realmin(...)

Description

realmax gives the largest positive real number in double precision.
realmin gives the smallest positive real number in double precision
which can be represented in normalized form (i.e. with full mantissa
precision).

With integer non-negative arguments, realmax and realmin create
arrays whose elements are all set to the respective value. Arguments
are interpreted the same way as zeros and ones.

The last argument of realmax and realmin can be a string to spec-
ify the type of the result: ’double’ for double-precision (default), or
’single’ for single-precision.

Examples

realmin
2.2251e-308

realmin(’single’)
1.1755e-38

realmax
1.7977e308

realmax(’single’)
3.4028e38single

realmax + eps(realmax)
inf

See also

inf, ones, zeros, eps

realpow

Real power.

180 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

z = realpow(x, y)

Description

realpow(x,y) gives the real value of x to the power y. The imaginary
parts of x and y are ignored. The result is NaN if it is not defined for the
input arguments. If the arguments are arrays, their size must match
or one of them must be a scalar number; the power is performed
element-wise.

See also

operator .̂ , reallog, realsqrt

realsqrt

Real square root.

Syntax

y = realsqrt(x)

Description

realsqrt(x) gives the real square root of x. The imaginary part of x
is ignored. The result is NaN if x is negative.

Example

realsqrt([-1,0,1,10,1+2j])
nan 0 1 3.1623 1

See also

sqrt, reallog, realpow, nthroot

rem

Remainder of a real division.

Syntax

r = rem(x, y)

LME Reference — mathematical functions 181

Description

rem(x,y) gives the remainder of x divided by y, i.e. a number r be-
tween 0 and sign(x)*abs(y) such that x = q*y+r with integer q.
Imaginary parts, if they exist, are ignored.

Examples

rem(10,7)
3

rem(-10,7)
-3

rem(10,-7)
3

rem(-10,-7)
-3

See also

mod

round

Rounding to the nearest integer.

Syntax

y = round(x)

Description

round(x) gives the integer nearest to x. If the argument is a complex
number, the real and imaginary parts are handled separately.

Examples

round(2.3)
2

round(2.6)
3

round(-2.3)
-2

See also

floor, ceil, fix

182 LyME User Manual ©1999-2008, Calerga Sàrl

sign

Sign of a real number or direction of a complex number.

Syntax

s = sign(x)
z2 = sign(z1)

Description

With a real argument, sign(x) is 1 if x>0, 0 if x==0, or -1 if x<0. With a
complex argument, sign(z1) is a complex value with the same phase
as z1 and whose magnitude is 1.

Examples

sign(-2)
-1

sign(1+1j)
0.7071+0.7071j

sign([0, 5])
0 1

See also

abs, angle

sec

Secant.

Syntax

y = sec(x)

Description

sec(x) gives the secant of x, which is complex if x is.

See also

asec, sech, cos

LME Reference — mathematical functions 183

sech

Hyperbolic secant.

Syntax

y = sech(x)

Description

acot(x) gives the hyperbolic secant of x, which is complex if x is.

See also

asech, sec, cosh

sin

Sine.

Syntax

y = sin(x)

Description

sin(x) gives the sine of x, which is complex if x is complex.

Example

sin(2)
0.9093

See also

cos, asin, sinh

sinc

Sinc.

Syntax

y = sinc(x)

184 LyME User Manual ©1999-2008, Calerga Sàrl

Description

sinc(x) gives the sinc of x, i.e. sin(pi*x)/(pi*x) if x̃ =0 or 1 if x==0.
The result is complex if x is complex.

Example

sinc(1.5)
-0.2122

See also

sin, sinh

single

Conversion to single-precision numbers.

Syntax

B = single(A)

Description

single(A) converts number or array A to single precision. A can be
any kind of numeric value (real, complex, or integer), or a character
or logical array.

Single literal numbers can be entered as a floating-point number
with the single suffix.

Examples

single(pi)
3.1416single

single(’AB’)
1x2 single array
65 66

3.7e4single
37000single

See also

double, uint8 and related functions, operator +, setstr, char,
logical

LME Reference — mathematical functions 185

sinh

Hyperbolic sine.

Syntax

y = sinh(x)

Description

sinh(x) gives the hyperbolic sine of x, which is complex if x is com-
plex.

Example

sinh(2)
3.6269

See also

cosh, asinh, sin

sqrt

Square root.

Syntax

r = sqrt(z)

Description

sqrt(z) gives the square root of z, which is complex if z is not real
positive.

Examples

sqrt(4)
2

sqrt([1 4 -9 3+4j])
1 2 3j 2+1j

See also

realsqrt, sqrtm, chol

186 LyME User Manual ©1999-2008, Calerga Sàrl

swapbytes

Conversion between big-endian and little-endian representation.

Syntax

Y = swapbytes(X)

Description

swapbytes(X) swaps the bytes representing number X. If X is an array,
each number is swapped separately. The imaginary part, if any, is
discarded. X can be of any numerical type. swapbytes is its own
inverse for real numbers.

Example

swapbytes(1uint32)
16777216uint32

See also

typecast, cast

tan

Tangent.

Syntax

y = tan(x)

Description

tan(x) gives the tangent of x, which is complex if x is complex.

Example

tan(2)
-2.185

See also

atan, tanh

LME Reference — mathematical functions 187

tanh

Hyperbolic tangent.

Syntax

y = tanh(x)

Description

tanh(x) gives the hyperbolic tangent of x, which is complex if x is
complex.

Example

tanh(2)
0.964

See also

atanh, tan

typecast

Type conversion with same binary representation.

Syntax

Y = typecast(X, type)

Description

typecast(X,type) changes the numeric array X to the type given by
string type, which can be ’double’, ’single’, ’int8’ or any other
signed or unsigned integer type, ’char’, or ’logical’. The binary
representation in memory is preserved. The imaginary part, if any, is
discarded. Depending on the conversion, the number of elements is
changed, so that the array size in bytes in preserved. The result is a
row vector if X is a scalar or a row vector, or a column vector otherwise.
The result depends on the computer architecture.

188 LyME User Manual ©1999-2008, Calerga Sàrl

Example

typecast(1uint32, ’uint8’)
1x4 uint8 array
0 0 0 1

typecast(pi, ’uint8’)
1x8 uint8 array
64 9 33 251 84 68 45 24

See also

swapbytes, bwrite, sread, cast

3.14 Linear Algebra

addpol

Addition of two polynomials.

Syntax

p = addpol(p1,p2)

Description

addpol(p1,p2) adds two polynomials p1 and p2. Each polynomial is
given as a vector of coefficients, with the highest power first; e.g.,
2 + 2 − 3 is represented by [1,2,-3]. Row vectors and column
vectors are accepted, as well as matrices made of row vectors or col-
umn vectors, provided one matrix is not larger in one dimension and
smaller in the other one. addpol is equivalent to the plain addition
when both arguments have the same size.

Examples

addpol([1,2,3], [2,5])
1 4 8

addpol([1,2,3], -[2,5]) % subtraction
1 0 -2

addpol([1,2,3;4,5,6], [1;1])
1 2 4
4 5 7

See also

conv, deconv, operator +

LME Reference — linear algebra 189

balance

Diagonal similarity transform for balancing a matrix.

Syntax

B = balance(A)
(T, B) = balance(A)

Description

balance(A) applies a diagonal similarity transform to the square ma-
trix A to make the rows and columns as close in norm as possible.
Balancing may reduce the 1-norm of the matrix, and improves the
accuracy of the computed eigenvalues and/or eigenvectors. To avoid
round-off errors, balance scales A with powers of 2.

balance returns the balanced matrix B which has the same eigen-
values and singular values as A, and optionally the diagonal scaling
matrix T such that T\A*T=B.

Example

A = [1,2e6;3e-6,4];
(T,B) = balance(A)
T =
16384 0

0 3.125e-2
B =

1 3.8147
1.5729 4

See also

eig

care

Continuous-time algebraic Riccati equation.

Syntax

(X, L, K) = care(A, B, Q)
(X, L, K) = care(A, B, Q, R)
(X, L, K) = care(A, B, Q, R, S)
(X, L) = care(A, S, Q, true)

190 LyME User Manual ©1999-2008, Calerga Sàrl

Description

care(A,B,Q) calculates the stable solution X of the following
continuous-time algebraic Riccati equation:

A′X + XA− XBB′X +Q = 0

All matrices are real; Q and X are symmetric.
With four input arguments, care(A,B,Q,R) (with R real symmetric)

solves the following Riccati equation:

A′X + XA− XBR−1B′X +Q = 0

With five input arguments, care(A,B,Q,R,S) solves the following
equation:

A′X + XA− (S+ XB)R−1(S′ + B′X) +Q = 0

With two or three output arguments, (X,L,K) = care(...) also re-
turns the gain matrix K defined as

K = R−1B′X

and the column vector of closed-loop eigenvalues

L = eig(A− BK)

care(A,S,Q,true) with up to two output arguments is equivalent to
care(A,B,Q) or care(A,B,Q,false) with S=B*B’.

Example

A = [-4,2;1,2];
B = [0;1];
C = [2,-1];
Q = C’ * C;
R = 5;
(X, L, K) = care(A, B, Q, R)
X =

1.07 3.5169
3.5169 23.2415

L =
-4.3488
-2.2995

K =
0.7034 4.6483

A’ * X + X * A - X * B / R * B’ * X + Q
1.7319e-14 1.1369e-13
8.5265e-14 6.2528e-13

LME Reference — linear algebra 191

See also

dare

chol

Cholesky decomposition.

Syntax

M2 = chol(M1)

Description

If a square matrix M1 is symmetric (or hermitian) and positive definite,
it can be decomposed into the following product:

M1 = M′2M2
where M2 is an upper triangular matrix. The Cholesky decomposi-

tion can be seen as a kind of square root.
The part of M1 below the main diagonal is not used, because M1

is assumed to be symmetric or hermitian. An error occurs if M1 is not
positive definite.

Example

M = chol([5,3;3,8])
M =
2.2361 1.3416
0 2.4900

M’*M
5 3
3 8

See also

inv, sqrtm

cond

Condition number of a matrix.

Syntax

x = cond(M)

192 LyME User Manual ©1999-2008, Calerga Sàrl

Description

cond(M) returns the condition number of matrix M, i.e. the ratio of its
largest singular value divided by the smallest one, or infinity for singu-
lar matrices. The larger the condition number, the more ill-conditioned
the inversion of the matrix.

Examples

cond([1, 0; 0, 1])
1
cond([1, 1; 1, 1+1e-3])
4002.0008

See also

svd, rank

conv

Convolution or polynomial multiplication.

Syntax

v = conv(v1,v2)
M = conv(M1,M2)
M = conv(M1,M2,dim)

Description

conv(v1,v2) convolves the vectors v1 and v2, giving a vector whose
length is length(v1)+length(v2)-1. The result is a row vector if both
arguments are row vectors, and a column vector if both arguments are
column vectors. Otherwise, arguments are considered as matrices.

conv(M1,M2) convolves the matrices M1 and M2 column by columns.
conv(M1,M2,dim) convolves along the dimension dim, 1 for columns
and 2 for rows. If one of the matrices has only one column, or one row,
it is repeated to match the size of the other argument.

Example

conv([1,2],[1,2,3])
1 4 7 6

conv([1,2],[1,2,3;4,5,6],2)
1 4 7 6
4 13 16 12

LME Reference — linear algebra 193

See also

deconv, filter, addpol, conv2

conv2

Two-dimensions convolution of matrices.

Syntax

M = conv2(M1,M2)
M = conv2(M1,M2,kind)

Description

conv2(M1,M2) convolves the matrices M1 and M2 along both
directions. The optional third argument specifies how to crop the
result. Let (nl1,nc1)=size(M1) and (nl2,nc2)=size(M2). With
kind=’full’ (default value), the result M has nl1+nl2-1 lines and
nc1+nc2-1 columns. With kind=’same’, the result M has nl1 lines
and nc1 columns; this options is very useful if M1 represents
equidistant samples in a plane (e.g. pixels) to be filtered with the
finite-impulse response 2-d filter M2. With kind=’valid’, the result M
has nl1-nl2+1 lines and nc1-nc2+1 columns, or is the empty matrix
[]; if M1 represents data filtered by M2, the borders where the
convolution sum is not totally included in M1 are removed.

Examples

conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1])
1 3 6 5 3
5 12 21 16 9

12 27 45 33 18
11 24 39 28 15
7 15 24 17 9

conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1],’same’)
12 21 16
27 45 33
24 39 28
conv2([1,2,3;4,5,6;7,8,9],[1,1,1;1,1,1;1,1,1],’valid’)
45

See also

conv

194 LyME User Manual ©1999-2008, Calerga Sàrl

cov

Covariance.

Syntax

M = cov(data)
M = cov(data, 0)
M = cov(data, 1)

Description

cov(data) returns the best unbiased estimate m-by-m covariance ma-
trix of the n-by-m matrix data for a normal distribution. Each row of
data is an observation where n quantities were measured. The co-
variance matrix is real and symmetric, even if data is complex. The
diagonal is the variance of each column of data. cov(data,0) is the
same as cov(data).

cov(data,1) returns the m-by-m covariance matrix of the n-by-m
matrix data which contains the whole population.

Example

cov([1,2;2,4;3,5])
1 1.5
1.5 2.3333

See also

mean, var

cross

Cross product.

Syntax

v3 = cross(v1, v2)
v3 = cross(v1, v2, dim)

Description

cross(v1,v2) gives the cross products of vectors v1 and v2. v1 and
v2 must be row or columns vectors of three components, or arrays of

LME Reference — linear algebra 195

the same size containing several such vectors. When there is ambi-
guity, a third argument dim may be used to specify the dimension of
vectors: 1 for column vectors, 2 for row vectors, and so on.

Examples

cross([1; 2; 3], [0; 0; 1])
2

-1
0

cross([1, 2, 3; 7, 1, -3], [4, 0, 0; 0, 2, 0], 2)
0 12 -8
6 0 14

See also

dot, operator *, det

cumprod

Cumulative products.

Syntax

M2 = cumprod(M1)
M2 = cumprod(M1,dim)

Description

cumprod(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the product of all the elements M1(k,j) with k<=i.
cumprod(M1,dim) operates along the dimension dim (column-wise if
dim is 1, row-wise if dim is 2).

Examples

cumprod([1,2,3;4,5,6])
1 2 3
4 10 18

cumprod([1,2,3;4,5,6],2)
1 2 6
4 20 120

See also

prod, cumsum

196 LyME User Manual ©1999-2008, Calerga Sàrl

cumsum

Cumulative sums.

Syntax

M2 = cumsum(M1)
M2 = cumsum(M1,dim)

Description

cumsum(M1) returns a matrix M2 of the same size as M1, whose ele-
ments M2(i,j) are the sum of all the elements M1(k,j) with k<=i.
cumsum(M1,dim) operates along the dimension dim (column-wise if
dim is 1, row-wise if dim is 2).

Examples

cumsum([1,2,3;4,5,6])
1 2 3
5 7 9

cumsum([1,2,3;4,5,6],2)
1 3 6
4 9 15

See also

sum, diff, cumprod

dare

Discrete-time algebraic Riccati equation.

Syntax

(X, L, K) = dare(A, B, Q)
(X, L, K) = dare(A, B, Q, R)

Description

dare(A,B,Q) calculates the stable solution X of the following discrete-
time algebraic Riccati equation:

X = A′XA− A′XB(B′XB+ )−1B′XA+Q

All matrices are real; Q and X are symmetric.

LME Reference — linear algebra 197

With four input arguments, dare(A,B,Q,R) (with R real symmetric)
solves the following Riccati equation:

X = A′XA− A′XB(B′XB+ R)−1B′XA+Q

With two or three output arguments, (X,L,K) = dare(...) also re-
turns the gain matrix K defined as

K = (B′XB+ R)−1B′XA

and the column vector of closed-loop eigenvalues

L = eig(A− BK)

Example

A = [-4,2;1,2];
B = [0;1];
C = [2,-1];
Q = C’ * C;
R = 5;
(X, L, K) = dare(A, B, Q, R)
X =
2327.9552 -1047.113

-1047.113 496.0624
L =

-0.2315
0.431

K =
9.3492 -2.1995

-X + A’*X*A - A’*X*B/(B’*X*B+R)*B’*X*A + Q
1.0332e-9 -4.6384e-10

-4.8931e-10 2.2101e-10

See also

care

deconv

Deconvolution or polynomial division.

Syntax

q = deconv(a,b)
(q,r) = deconv(a,b)

198 LyME User Manual ©1999-2008, Calerga Sàrl

Description

(q,r)=deconv(a,b) divides the polynomial a by the polynomial b, re-
sulting in the quotient q and the remainder r. All polynomials are
given as vectors of coefficients, highest power first. The degree of
the remainder is strictly smaller than the degree of b. deconv is the
inverse of conv: a = addpol(conv(b,q),r).

Examples

[q,r] = deconv([1,2,3,4,5],[1,3,2])
q =
1 -1 4

r =
-6 -3

addpol(conv(q,[1,3,2]),r)
1 2 3 4 5

See also

conv, filter, addpol

det

Determinant of a square matrix.

Syntax

d = det(M)

Description

det(M) is the determinant of the square matrix M, which is 0 (up to
the rounding errors) if M is singular. The function rank is a numerically
more robust test for singularity.

Examples

det([1,2;3,4])
-2

det([1,2;1,2])
0

See also

poly, rank

LME Reference — linear algebra 199

diff

Differences.

Syntax

dm = diff(A)
dm = diff(A,n)
dm = diff(A,n,dim)
dm = diff(A,[],dim)

Description

diff(A) calculates the differences between each elements of the
columns of matrix A, or between each elements of A if it is a row
vector.

diff(A,n) calculates the n:th order differences, i.e. it repeats n
times the same operation. Up to a scalar factor, the result is an ap-
proximation of the n:th order derivative based on equidistant samples.

diff(A,n,dim) operates along dimension dim. If the second argu-
ment n is the empty matrix [], the default value of 1 is assumed.

Examples

diff([1,3,5,4,8])
2 2 -1 4

diff([1,3,5,4,8],2)
0 -3 5

diff([1,3,5;4,8,2;3,9,8],1,2)
2 2
4 -6
6 -1

See also

cumsum

dlyap

Discrete-time Lyapunov equation.

Syntax

X = dlyap(A, C)

200 LyME User Manual ©1999-2008, Calerga Sàrl

Description

dlyap(A,C) calculates the solution X of the following discrete-time
Lyapunov equation:

AXA′ − X + C = 0

All matrices are real.

Example

A = [3,1,2;1,3,5;6,2,1];
C = [7,1,2;4,3,5;1,2,1];
X = dlyap(A, C)
X =
-1.0505 3.2222 -1.2117
3.2317 -11.213 4.8234

-1.4199 5.184 -2.7424

See also

lyap, dare

dot

Scalar product.

Syntax

v3 = dot(v1, v2)
v3 = dot(v1, v2, dim)

Description

dot(v1,v2) gives the scalar products of vectors v1 and v2. v1 and v2
must be row or columns vectors of same length, or arrays of the same
size; then the scalar product is performed along the first dimension not
equal to 1. A third argument dim may be used to specify the dimension
the scalar product is performed along.

Examples

dot([1; 2; 3], [0; 0; 1])
3

dot([1, 2, 3; 7, 1, -3], [4, 0, 0; 0, 2, 0], 2)
4
2

LME Reference — linear algebra 201

See also

cross, operator *, det

eig

Eigenvalues and eigenvectors of a matrix.

Syntax

e = eig(M)
(V,D) = eig(M)

Description

eig(M) returns the vector of eigenvalues of the square matrix M.
(V,D) = eig(M) returns a diagonal matrix D of eigenvalues and a

matrix V whose columns are the corresponding eigenvectors. They are
such that M*V = V*D.

Examples

eig([1,2;3,4])
-0.3723
5.3723

(V,D) = eig([1,2;2,1])
V =
0.7071 0.7071
-0.7071 0.7071

D =
-1 0
0 3

[1,2;2,1] * V
-0.7071 2.1213
0.7071 2.1213

V * D
-0.7071 2.1213
0.7071 2.1213

See also

schur, svd, det, roots

expm

Exponential of a square matrix.

202 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

M2 = expm(M1)

Description

expm(M) is the exponential of the square matrix M, which is usually
different from the element-wise exponential of M given by exp.

Examples

expm([1,1;1,1])
4.1945 3.1945
3.1945 4.1945

exp([1,1;1,1])
2.7183 2.7183
2.7183 2.7183

See also

logm, operator ,̂ exp

fft

Fast Fourier Transform.

Syntax

F = fft(f)
F = fft(f,n)
F = fft(f,n,dim)

Description

fft(f) returns the discrete Fourier transform (DFT) of the vector f, or
the DFT’s of each columns of the array f. With a second argument
n, the n first values are used; if n is larger than the length of the
data, zeros are added for padding. An optional argument dim gives
the dimension along which the DFT is performed; it is 1 for calculating
the DFT of the columns of f, 2 for its rows, and so on. fft(f,[],dim)
specifies the dimension without resizing the array.

fft is based on a mixed-radix Fast Fourier Transform if the data
length is non-prime. It can be very slow if the data length has large
prime factors or is a prime number.

The coefficients of the DFT are given from the zero frequency to
the largest frequency (one point less than the inverse of the sampling

LME Reference — linear algebra 203

period). If the input f is real, its DFT has symmetries, and the first half
contain all the relevant information.

Examples

fft(1:4)
10 -2+2j -2 -2-2j

fft(1:4, 3)
6 -1.5+0.866j -1.5-0.866j

See also

ifft

fft2

2-d Fast Fourier Transform.

Syntax

F = fft2(f)
F = fft2(f, size)
F = fft2(f, nr, nc)
F = fft2(f, n)

Description

fft2(f) returns the 2-d Discrete Fourier Transform (DFT along dimen-
sions 1 and 2) of array f.

With two or three input arguments, fft2 resizes the two first dimen-
sions by cropping or by padding with zeros. fft2(f,nr,nc) resizes
first dimension to nr rows and second dimension to nc columns. In
fft2(f,size), the new size is given as a two-element vector [nr,nc].
fft2(F,n) is equivalent to fft2(F,n,n).

If the first argument is an array with more than two dimensions,
fft2 performs the 2-d DFT along dimensions 1 and 2 separately for
each plane along remaining dimensions; fftn performs an DFT along
each dimension.

See also

ifft2, fft, fftn

fftn

n-dimension Fast Fourier Transform.

204 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

F = fftn(f)
F = fftn(f, size)

Description

fftn(f) returns the n-dimension Discrete Fourier Transform of array f
(DFT along each dimension of f).

With two input arguments, fftn(f,size) resizes f by cropping or
by padding f with zeros.

See also

ifftn, fft, fft2

filter

Digital filtering of data.

Syntax

y = filter(b,a,u)
y = filter(b,a,u,x0)
y = filter(b,a,u,x0,dim)
(y, xf) = filter(...)

Description

filter(b,a,u) filters vector u with the digital filter whose coefficients
are given by polynomials b and a. The filtered data can also be an
array, filtered along the first non-singleton dimension or along the
dimension specified with a fifth input argument. The fourth argu-
ment, if provided and different than the empty matrix [], is a ma-
trix whose columns contain the initial state of the filter and have
max(length(a),length(b))-1 element. Each column correspond to
a signal along the dimension of filtering. The result y, which has the
same size as the input, can be computed with the following code if u
is a vector:

a = a / a(1);
if length(a) > length(b)
b = [b, zeros(1, length(a)-length(b))];

else
a = [a, zeros(1, length(b)-length(a))];

end
n = length(x);

LME Reference — linear algebra 205

for i = 1:length(u)
y(i) = b(1) * u(i) + x(1);
for j = 1:n-1
x(j) = b(j + 1) * u(i) + x(j + 1) - a(j + 1) * y(i);

end
x(n) = b(n + 1) * u(i) - a(n + 1) * y(i);

end

The optional second output argument is set to the final state of the
filter.

Examples

filter([1,2], [1,2,3], ones(1,10))
1 1 -2 4 1 -11 22 -8 -47 121

u = [5,6,5,6,5,6,5];
p = 0.8;
filter(1-p, [1,-p], u, p*u(1))

% low-pass with matching initial state
5 5.2 5.16 5.328 5.2624 5.4099 5.3279

See also

conv, deconv, conv2

funm

Matrix function.

Syntax

Y = funm(X, fun)
(Y, err) = funm(X, fun)

Description

funm(X,fun) returns the matrix function of square matrix X specified
by function fun. fun takes a scalar input argument and gives a scalar
output. It is either specified by its name or given as an inline function
or a function reference.

With a second output argument err, funm also returns an estimate
of the relative error.

206 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

funm([1,2;3,4], @sin)
-0.4656 -0.1484
-0.2226 -0.6882

X = [1,2;3,4];
funm(X, inline(’(1+x)/(2-x)’))

-0.25 -0.75
-1.125 -1.375

(eye(2)+X)/(2*eye(2)-X)
-0.25 -0.75

-1.125 -1.375

See also

expm, logm, sqrtm, schur

ifft

Inverse Fast Fourier Transform.

Syntax

f = ifft(F)
f = ifft(F, n)
f = ifft(F, n, dim)

Description

ifft returns the inverse Discrete Fourier Transform (inverse DFT). Up
to the sign and a scaling factor, the inverse DFT and the DFT are the
same operation: for a vector, ifft(d) = conj(fft(d))/length(d).
ifft has the same syntax as fft.

Examples

F = fft([1,2,3,4])
F =
10 -2+2j -2 -2-2j

ifft(F)
1 2 3 4

See also

fft, ifft2, ifftn

LME Reference — linear algebra 207

ifft2

Inverse 2-d Fast Fourier Transform.

Syntax

f = ifft2(F)
f = ifft2(F, size)
f = ifft2(F, nr, nc)
f = ifft2(F, n)

Description

ifft2 returns the inverse 2-d Discrete Fourier Transform (inverse DFT
along dimensions 1 and 2).

With two or three input arguments, ifft2 resizes the two first di-
mensions by cropping or by padding with zeros. ifft2(F,nr,nc) re-
sizes first dimension to nr rows and second dimension to nc columns.
In ifft2(F,size), the new size is given as a two-element vector
[nr,nc]. ifft2(F,n) is equivalent to ifft2(F,n,n).

If the first argument is an array with more than two dimensions,
ifft2 performs the inverse 2-d DFT along dimensions 1 and 2 sepa-
rately for each plane along remaining dimensions; ifftn performs an
inverse DFT along each dimension.

Up to the sign and a scaling factor, the inverse 2-d DFT and the 2-d
DFT are the same operation. ifft2 has the same syntax as fft2.

See also

fft2, ifft, ifftn

ifftn

Inverse n-dimension Fast Fourier Transform.

Syntax

f = ifftn(F)
f = ifftn(F, size)

Description

ifftn(F) returns the inverse n-dimension Discrete Fourier Transform
of array F (inverse DFT along each dimension of F).

With two input arguments, ifftn(F,size) resizes F by cropping or
by padding F with zeros.

208 LyME User Manual ©1999-2008, Calerga Sàrl

Up to the sign and a scaling factor, the inverse n-dimension DFT
and the n-dimension DFT are the same operation. ifftn has the same
syntax as fftn.

See also

fftn, ifft, ifft2

hess

Hessenberg reduction.

Syntax

(P,H) = hess(A)
H = hess(A)

Description

hess(A) reduces the square matrix A A to the upper Hessenberg form
H using an orthogonal similarity transformation P*H*P’=A. The result
H is zero below the first subdiagonal and has the same eigenvalues as
A.

Example

(P,H)=hess([1,2,3;4,5,6;7,8,9])
P =
1 0 0
0 -0.4961 -0.8682
0 -0.8682 0.4961

H =
1 -3.597 -0.2481
-8.0623 14.0462 2.8308
0 0.8308 -4.6154e-2

P*H*P’
ans =
1 2 3
4 5 6
7 8 9

See also

lu, qr, schur

LME Reference — linear algebra 209

inv

Inverse of a square matrix.

Syntax

M2 = inv(M1)

Description

inv(M1) returns the inverse M2 of the square matrix M1, i.e. a matrix of
the same size such that M2*M1 = M1*M2 = eye(size(M1)). M1 must
not be singular; otherwise, its elements are infinite.

To solve a set of linear of equations, the operator \ is more efficient.

Example

inv([1,2;3,4])
-2 1
1.5 -0.5

See also

operator /, operator \, pinv, lu, rank, eye

kron

Kronecker product.

Syntax

M = kron(A, B)

Description

kron(A,B) returns the Kronecker product of matrices A (size m1 by
n1) and B (size m2 by n2), i.e. an m1*m2-by-n1*n2 matrix made of
m1 by n1 submatrices which are the products of each element of A
with B.

210 LyME User Manual ©1999-2008, Calerga Sàrl

Example

kron([1,2;3,4],ones(2))
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4

See also

repmat

kurtosis

Kurtosis of a set of values.

Syntax

k = kurtosis(A)
k = kurtosis(A, dim)

Description

kurtosis(A) gives the kurtosis of the columns of array A or of the
row vector A. The dimension along which kurtosis proceeds may be
specified with a second argument.

The kurtosis measures how much values are far away from the
mean. It is 3 for a normal distribution, and positive for a distribution
which has more values far away from the mean.

Example

kurtosis(rand(1, 10000))
1.8055

See also

mean, var, skewness, moment

linprog

Linear programming.

LME Reference — linear algebra 211

Syntax

x = linprog(c, A, b)
x = linprog(c, A, b, xlb, xub)

Description

linprog(c,A,b) solves the following linear programming problem:

min c
s.t. A ≤ b

The optimum x is either finite, infinite if there is no bounded solution,
or not a number if there is no feasible solution.

Additional arguments may be used to constrain x between lower
and upper bounds. linprog(c,A,b,xlb,xub) solves the following lin-
ear programming problem:

min c
s.t. A ≤ b

 ≥ lb
 ≤ b

If xub is missing, there is no upper bound. xlb and xub may have less
elements than x, or contain -inf or +inf; corresponding elements
have no lower and/or upper bounds.

Examples

Maximize 3+ 2y subject to + y ≤ 9, 3+ y ≤ 18,  ≤ 7, and y ≤ 6:

c = [-3,-2];
A = [1,1; 3,1; 1,0; 0,1];
b = [9; 18; 7; 6];
x = linprog(c, A, b)
x =
4.5
4.5

A more efficient way to solve the problem, with bounds on variables:

c = [-3,-2];
A = [1,1; 3,1];
b = [9; 18];
xlb = [];
xub = [7; 6];

212 LyME User Manual ©1999-2008, Calerga Sàrl

x = linprog(c, A, b, xlb, xub)
x =
4.5
4.5

Check that the solution is feasible and bounded:

all(isfinite(x))
true

logm

Matrix logarithm.

Syntax

Y = logm(X)
(Y, err) = logm(X)

Description

logm(X) returns the matrix logarithm of X, the inverse of the matrix
exponential. X must be square. The matrix logarithm does not always
exist.

With a second output argument err, logm also returns an estimate
of the relative error norm(expm(logm(X))-X)/norm(X).

Example

Y = logm([1,2;3,4])
Y =
-0.3504 + 2.3911j 0.9294 - 1.0938j
1.394 - 1.6406j 1.0436 + 0.7505j

expm(Y)
1 - 5.5511e-16j 2 -7.7716e-16j
3 - 8.3267e-16j 4

See also

expm, sqrtm, funm, schur, log

lu

LU decomposition.

LME Reference — linear algebra 213

Syntax

(L, U, P) = lu(A)
(L2, U) = lu(A)
Y = lu(A)

Description

With three output arguments, lu(A) computes the LU decomposition
of matrix A with partial pivoting, i.e. a lower triangular matrix L, an up-
per triangular matrix U, and a permutation matrix P such that P*A=L*U.
If A in an m-by-n mytrix, L is m-by-min(m,n), U is min(m,n)-by-n and P
is m-by-m. A can be rank-deficient.

With two output arguments, lu(A) permutes the lower triangular
matrix and gives L2=P’*L, such that A=L2*U.

With a single output argument, lu gives Y=L+U-eye(n).

Example

X = [1,2,3;4,5,6;7,8,8];
(L,U,P) = lu(X)
L =
1 0 0
0.143 1 0
0.571 0.5 1
U =
7 8 8
0 0.857 1.857
0 0 0.5
P =
0 0 1
1 0 0
0 1 0
P*X-L*U
ans =
0 0 0
0 0 0
0 0 0

See also

inv, qr, svd

lyap

Continuous-time Lyapunov equation.

214 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

X = lyap(A, B, C)
X = lyap(A, C)

Description

lyap(A,B,C) calculates the solution X of the following continuous-time
Lyapunov equation:

AX + XB+ C = 0

All matrices are real.
With two input arguments, lyap(A,C) solves the following Lya-

punov equation:

AX + XA′ + C = 0

Example

A = [3,1,2;1,3,5;6,2,1];
B = [2,7;8,3];
C = [2,1;4,5;8,9];
X = lyap(A, B, C)
X =
0.1635 -0.1244

-0.2628 0.1311
-0.7797 -0.7645

See also

dlyap, care

max

Maximum value of a vector or of two arguments.

Syntax

x = max(v)
(v,ind) = max(v)
v = max(M,[],dim)
(v,ind) = max(M,[],dim)
M3 = max(M1,M2)

LME Reference — linear algebra 215

Description

max(v) returns the largest number of vector v. NaN’s are ignored. The
optional second output argument is the index of the maximum in v; if
several elements have the same maximum value, only the first one is
obtained. The argument type can be double, single, or integer of any
size.

max(M) operates on the columns of the matrix M and returns a row
vector. max(M,[],dim) operates along dimension dim (1 for columns,
2 for rows).

max(M1,M2) returns a matrix whose elements are the maximum
between the corresponding elements of the matrices M1 and M2. M1
and M2 must have the same size, or be a scalar which can be compared
against any matrix.

Examples

(mx,ix) = max([1,3,2,5,8,7])
mx =
8

ix =
5

max([1,3;5,nan], [], 2)
3
5

max([1,3;5,nan], 2)
2 3
5 2

See also

min

mean

Arithmetic mean of a vector.

Syntax

x = mean(v)
v = mean(M)
v = mean(M,dim)

Description

mean(v) returns the arithmetic mean of the elements of vector v.
mean(M) returns a row vector whose elements are the means of the

216 LyME User Manual ©1999-2008, Calerga Sàrl

corresponding columns of matrix M. mean(M,dim) returns the mean of
matrix M along dimension dim; the result is a row vector if dim is 1, or
a column vector if dim is 2.

Examples

mean(1:5)
7.5

mean((1:5)’)
7.5

mean([1,2,3;5,6,7])
3 4 5

mean([1,2,3;5,6,7],1)
3 4 5

mean([1,2,3;5,6,7],2)
2
6

See also

cov, std, var, sum, prod

min

Minimum value of a vector or of two arguments.

Syntax

x = min(v)
(v,ind) = min(v)
v = min(M,[],dim)
(v,ind) = min(M,[],dim)
M3 = min(M1,M2)

Description

min(v) returns the largest number of vector v. NaN’s are ignored. The
optional second smallest argument is the index of the minimum in v;
if several elements have the same minimum value, only the first one
is obtained. The argument type can be double, single, or integer of
any size.

min(M) operates on the columns of the matrix M and returns a row
vector. min(M,[],dim) operates along dimension dim (1 for columns,
2 for rows).

min(M1,M2) returns a matrix whose elements are the minimum be-
tween the corresponding elements of the matrices M1 and M2. M1 and

LME Reference — linear algebra 217

M2 must have the same size, or be a scalar which can be compared
against any matrix.

Examples

(mx,ix) = min([1,3,2,5,8,7])
mx =
1

ix =
1

min([1,3;5,nan], [], 2)
1
5

min([1,3;5,nan], 2)
1 2
2 2

See also

max

moment

Central moment of a set of values.

Syntax

m = moment(A, order)
m = moment(A, order, dim)

Description

moment(A,order) gives the central moment (moment about the
mean) of the specified order of the columns of array A or of the row
vector A. The dimension along which moment proceeds may be
specified with a third argument.

Example

moment(randn(1, 10000), 3)
3.011

See also

mean, var, skewness, kurtosis

218 LyME User Manual ©1999-2008, Calerga Sàrl

norm

Norm of a vector or matrix.

Syntax

x = norm(v)
x = norm(v,kind)
x = norm(M)
x = norm(M,kind)

Description

With one argument, norm calculates the 2-norm of a vector or the
induced 2-norm of a matrix. The optional second argument specifies
the kind of norm.
Kind Vector Matrix
none or 2 sqrt(sum(abs(v).̂ 2)) largest singular value

(induced 2-norm)
1 sum(abs(V)) largest column sum of abs
inf or ’inf’ max(abs(v)) largest row sum of abs
-inf min(abs(v)) largest row sum of abs
p sum(abs(V).̂ p)̂ (1/p) invalid
’fro’ sqrt(sum(abs(v).̂ 2)) sqrt(sum(diag(M’*M)))

Examples

norm([3,4])
5

norm([2,5;9,3])
10.2194

norm([2,5;9,3],1)
11

See also

abs, hypot, svd

null

Null space.

Syntax

Z = null(A)

LME Reference — linear algebra 219

Description

null(A) returns a matrix Z whose columns are an orthonormal basis
for the null space of m-by-n matrix A. Z has n-rank(A) columns, which
are the last right singular values of A (that is, those corresponding to
the negligible singular values).

Example

null([1,2,3;1,2,4;1,2,5])
-0.8944
0.4472
8.0581e-17

See also

svd, orth

orth

Orthogonalization.

Syntax

Q = orth(A)

Description

orth(A) returns a matrix Q whose columns are an orthonormal basis
for the range of those of matrix A. Q has rank(A) columns, which are
the first left singular vectors of A (that is, those corresponding to the
largest singular values).

Example

orth([1,2,3;1,2,4;1,2,5])
-0.4609 0.788
-0.5704 8.9369e-2
-0.6798 -0.6092

See also

svd, null

220 LyME User Manual ©1999-2008, Calerga Sàrl

pinv

Pseudo-inverse of a matrix.

Syntax

M2 = pinv(M1)
M2 = pinv(M1,e)

Description

pinv(M1) returns the pseudo-inverse of matrix M. For a nonsingular
square matrix, the pseudo-inverse is the same as the inverse. For an
arbitrary matrix (possibly nonsquare), the pseudo-inverse M2 has the
following properties: size(M2) = size(M1’), M1*M2*M1 = M1,
M2*M1*M2 = M2, and the norm of M2 is minimum. To pseudo-inverse is
based on the singular-value decomposition, where only the singular
values larger than some small threshold are considered. This
threshold can be specified with an optional second argument.

If M1 is a full-rank matrix with more rows than columns, pinv returns
the least-square solution pinv(M1)*y = (M1’*M1)\M1’*y of the over-
determined system M1*x = y.

Examples

pinv([1,2;3,4])
-2 1
1.5 -0.5

M2 = pinv([1;2])
M2 =
0.2 0.4

[1;2] * M2 * [1;2]
1
2

M2 * [1;2] * M2
0.2 0.4

See also

inv, svd

poly

Characteristic polynomial of a square matrix or polynomial coefficients
based on its roots.

LME Reference — linear algebra 221

Syntax

pol = poly(M)
pol = poly(r)

Description

With a matrix argument, poly(M) returns the characteristic polyno-
mial det(x*eye(size(M))-M) of the square matrix M. The roots of the
characteristic polynomial are the eigenvalues of M.

With a vector argument, poly(r) returns the polynomial whose
roots are the elements of the vector r. The first coefficient of the
polynomial is 1. If the complex roots form conjugate pairs, the result
is real.

Examples

poly([1,2;3,4]
1 -5 -2

roots(poly([1,2;3,4]))
5.3723

-0.3723
eig([1,2;3,4])
-0.3723
5.3723

poly(1:3)
1 -6 11 -6

See also

roots, det

polyder

Derivative of a polynomial or a polynomial product or ratio.

Syntax

A1 = polyder(A)
C1 = polyder(A, B)
(N1, D1) = polyder(N, D)

Description

polyder(A) returns the polynomial which is the derivative of the poly-
nomial A. Both polynomials are given as vectors of their coefficients,
highest power first. The result is a row vector.

222 LyME User Manual ©1999-2008, Calerga Sàrl

With a single output argument, polyder(A,B) returns the
derivative of the product of polynomials A and B. It is equivalent to
polyder(conv(A,B)).

With two output arguments, (N1,D1)=polyder(N,D) returns the
derivative of the polynomial ratio N/D as N1/D1. Input and output ar-
guments are polynomial coefficients.

Examples

Derivative of 3 + 22 + 5+ 2:

polyder([1, 2, 5, 2])
3 4 5

Derivative of (3 + 22 + 5+ 2)/(2+ 3):

(N, D) = polyder([1, 2, 5, 2], [2, 3])
N =
4 13 12 11

D =
4 12 9

See also

polyint, polyval, poly, addpol, conv

polyint

Integral of a polynomial.

Syntax

pol2 = polyint(pol1)

pol2 = polyint(pol1, c)

Description

polyint(pol1) returns the polynomial which is the integral of the
polynomial pol1, whose zero-order coefficient is 0. Both polynomi-
als are given as vectors of their coefficients, highest power first. The
result is a row vector. A second input argument can be used to specify
the integration constant.

LME Reference — linear algebra 223

Example

Y = polyint([1, 2, 3, 4, 5])
Y =
0.2 0.5 1 2 5 0

y = polyder(Y)
y =
1 2 3 4 5

Y = polyint([1, 2, 3, 4, 5], 10)
Y =
0.2 0.5 1 2 5 10

See also

polyder, polyval, poly, addpol, conv

polyval

Numerical value of a polynomial evaluated at some point.

Syntax

y = polyval(pol, x)

Description

polyval(pol,x) evaluates the polynomial pol at x, which can be a
scalar or a matrix of arbitrary size. The result has the same size as x.

Examples

polyval([1,3,8], 2)
18

polyval([1,2], 1:5)
3 4 5 6 7

See also

polyder, polyint, poly, addpol, conv

prod

Product of the elements of a vector.

224 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

x = prod(v)
v = prod(M)
v = prod(M,dim)

Description

prod(v) returns the product of the elements of vector v. prod(M)
returns a row vector whose elements are the products of the corre-
sponding columns of matrix M. prod(M,dim) returns the product of
matrix M along dimension dim; the result is a row vector if dim is 1, or
a column vector if dim is 2.

Examples

prod(1:5)
120

prod((1:5)’)
120

prod([1,2,3;5,6,7])
5 12 21

prod([1,2,3;5,6,7],1)
5 12 21

prod([1,2,3;5,6,7],2)
6
210

See also

sum, mean, operator *

qr

QR decomposition.

Syntax

(Q, R, E) = qr(A)
(Q, R) = qr(A)
(Qe, Re, e) = qr(A, false)
(Qe, Re) = qr(A, false)

LME Reference — linear algebra 225

Description

With three output arguments, qr(A) computes the QR decomposition
of matrix A with column pivoting, i.e. a square unitary matrix Q and
an upper triangular matrix R such that A*E=Q*R. With two output argu-
ments, qr(A) computes the QR decomposition without pivoting, such
that A=Q*R.

With a second input argument with the value false, if A has m rows
and n columns with m>n, qr produces an m-by-n Q and an n-by-n R.
Bottom rows of zeros of R, and the corresponding columns of Q, are
discarded. With column pivoting, the third output argument e is a
permutation vector: A(:,e)=Q*R.

Example

(Q,R) = qr([1,2;3,4;5,6])
Q =

-0.169 0.8971 0.4082
-0.5071 0.276 -0.8165
-0.8452 -0.345 0.4082

R =
-5.9161 -7.4374

0 0.8281
0 0

(Q,R) = qr([1,2;3,4;5,6],false)
Q =
0.169 0.8971
0.5071 0.276
0.8452 -0.345

R =
5.9161 7.4374
0 0.8281

See also

lu, schur, hess, svd

rank

Rank of a matrix.

Syntax

x = rank(M)
x = rank(M,e)

226 LyME User Manual ©1999-2008, Calerga Sàrl

Description

rank(M) returns the rank of matrix M, i.e. the number of lines or
columns linearly independent. To obtain it, the singular values are
computed and the number of values significantly larger than 0 is
counted. The value below which they are considered to be 0 can be
specified with the optional second argument.

Examples

rank([1,1;0,0])
1
rank([1,1;0,1j])
2

See also

svd, cond, pinv, det

roots

Roots of a polynomial.

Syntax

r = roots(pol)
r = roots(M)
r = roots(M,dim)

Description

roots(pol) calculates the roots of the polynomial pol. The polyno-
mial is given by the vector of its coefficients, highest power first, while
the result is a column vector.

With a matrix as argument, roots(M) calculates the roots of the
polynomials corresponding to each column of M. An optional second
argument is used to specify in which dimension roots operates (1 for
columns, 2 for rows). The roots of the i:th polynomial are in the i:th
column of the result, whatever the value of dim is.

Examples

roots([1, 0, -1])
1

-1
roots([1, 0, -1]’)

LME Reference — linear algebra 227

1
-1
roots([1, 1; 0, 5; -1, 6])
1 -2

-1 -3
roots([1, 0, -1]’, 2)
[]

See also

poly, eig

schur

Schur factorization.

Syntax

(U,T) = schur(A)
T = schur(A)
(U,T) = schur(A, ’c’)
T = schur(A, ’c’)

Description

schur(A) computes the Schur factorization of square matrix A, i.e. a
unitary matrix U and a square matrix T (the Schur matrix) such that
A=U*T*U’. If A is complex, the Schur matrix is upper triangular, and its
diagonal contains the eigenvalues of A; if A is real, the Schur matrix is
real upper triangular, except that there may be 2-by-2 blocks on the
main diagonal which correspond to the complex eigenvalues of A. To
force a complex Schur factorization with an upper triangular matrix T,
schur is given a second input argument ’c’ or ’complex’.

Example

(U,T) = schur([1,2;3,4])
U =
-0.8246 -0.5658
0.5658 -0.8246

T =
-0.3723 -1

0 5.3723
eig([1,2;3,4])
ans =
-0.3723
5.3723

228 LyME User Manual ©1999-2008, Calerga Sàrl

T = schur([1,0,0;0,1,2;0,-3,1])
T =

1 0 0
0 1 2
0 -3 1

T = schur([1,0,0;0,1,2;0,-3,1],’c’)
T =

1 0 0
0 1 + 2.4495j 1
0 0 1 - 2.4495j

See also

lu, hess, qr, eig

skewness

Skewness of a set of values.

Syntax

s = skewness(A)
s = skewness(A, dim)

Description

skewness(A) gives the skewness of the columns of array A or of the
row vector A. The dimension along which skewness proceeds may be
specified with a second argument.

The skewness measures how asymmetric a distribution is. It is 0
for a symmetric distribution, and positive for a distribution which has
more values much larger than the mean.

Example

skewness(randn(1, 10000).̂ 2)
2.6833

See also

mean, var, kurtosis, moment

sqrtm

Matrix square root.

LME Reference — linear algebra 229

Syntax

Y = sqrtm(X)
(Y, err) = sqrtm(X)

Description

sqrtm(X) returns the matrix square root of X, such that sqrtm(X)̂ 2=X.
X must be square. The matrix square root does not always exist.

With a second output argument err, sqrtm also returns an estimate
of the relative error norm(sqrtm(X)̂ 2-X)/norm(X).

Example

Y = sqrtm([1,2;3,4])
Y =
0.5537 + 0.4644j 0.807 - 0.2124j
1.2104 - 0.3186j 1.7641 + 0.1458j

Ŷ 2
1 2
3 4

See also

expm, logm, funm, schur, chol, sqrt

std

Standard deviation.

Syntax

x = std(v)
x = std(v, p)
v = std(M)
v = std(M, p)
v = std(M, p, dim)

Description

std(v) gives the standard deviation of vector v, normalized by
length(v)-1. With a second argument, std(v,p) normalizes by
length(v)-1 if p is true, or by length(v) if p is false.

std(M) gives a row vector which contains the standard deviation
of the columns of M. With a third argument, std(M,p,dim) operates
along dimension dim.

230 LyME User Manual ©1999-2008, Calerga Sàrl

Example

std([1, 2, 5, 6, 10, 12])
4.3359

See also

mean, var, cov

sum

Sum of the elements of a vector.

Syntax

x = sum(v)
v = sum(M)
v = sum(M,dim)

Description

sum(v) returns the sum of the elements of vector v. sum(M) returns a
row vector whose elements are the sums of the corresponding
columns of matrix M. sum(M,dim) returns the sum of matrix M along
dimension dim; the result is a row vector if dim is 1, or a column
vector if dim is 2.

Examples

sum(1:5)
15

sum((1:5)’)
15

sum([1,2,3;5,6,7])
6 8 10

sum([1,2,3;5,6,7],1)
6 8 10

sum([1,2,3;5,6,7],2)
6
18

See also

prod, mean, operator +

LME Reference — linear algebra 231

svd

Singular value decomposition.

Syntax

s = svd(M)
(U,S,V) = svd(M)
(U,S,V) = svd(M,false)

Description

The singular value decomposition (U,S,V) = svd(M) decomposes the
m-by-n matrix M such that M = U*S*V’, where S is an m-by-n diagonal
matrix with decreasing positive diagonal elements (the singular values
of M), U is an m-by-m unitary matrix, and V is an n-by-n unitary matrix.
The number of non-zero diagonal elements of S (up to rounding errors)
gives the rank of M.

When M is rectangular, in expression U*S*V’, some columns of U or
V are multiplied by rows or columns of zeros in S, respectively. (U,S,V)
= svd(M,false) produces U, S and V where these columns or rows are
discarded (relationship M = U*S*V’ still holds):

Size of A Size of U Size of S Size of V
m by n, m <= n m by m m by m n by m
m by n, m > n m by n n by n n by n

svd(M,true) produces the same result as svd(M).
With one output argument, s = svd(M) returns the vector of sin-

gular values s=diag(S).
The singular values of M can also be computed with s =

sqrt(eig(M’*M)), but svd is faster and more robust.

Examples

(U,S,V)=svd([1,2;3,4])
U =
0.4046 0.9145
0.9145 -0.4046

S =
5.465 0
0 0.366

V =
0.576 -0.8174
0.8174 0.576

U*S*V’
1 2
3 4

232 LyME User Manual ©1999-2008, Calerga Sàrl

svd([1,2;1,2])
3.1623
3.4697e-19

See also

eig, pinv, rank, cond, norm

trace

Trace of a matrix.

Syntax

tr = trace(M)

Description

trace(M) returns the trace of the matrix M, i.e. the sum of its diagonal
elements.

Example

trace([1,2;3,4])
5

See also

norm, diag

var

Variance of a set of values.

Syntax

s2 = var(A)
s2 = var(A, p)
s2 = var(A, p, dim)

LME Reference — arrays 233

Description

var(A) gives the variance of the columns of array A or of the row
vector A. The variance is normalized with the number of observations
minus 1, or by the number of observations if a second argument is
true. The dimension along which var proceeds may be specified with
a third argument.

See also

mean, std, cov, kurtosis, skewness, moment

3.15 Array Functions

cat

Array concatenation.

Syntax

cat(dim, A1, A2, ...)

Description

cat(dim,A1,A2,...) concatenates arrays A1, A2, etc. along dimen-
sion dim. Other dimensions must match. cat is a generalization of the
comma and the semicolon inside brackets.

Examples

cat(2, [1,2;3,4], [5,6;7,8])
1 2 5 6
3 4 7 8

cat(3, [1,2;3,4], [5,6;7,8])
2x2x2 array
(:,:,1) =
1 2
3 4

(:,:,2) =
5 6
7 8

See also

operator [], operator ;, operator ,

234 LyME User Manual ©1999-2008, Calerga Sàrl

cell

Cell array of empty arrays.

Syntax

C = cell(n)
C = cell(n1,n2,...)
C = cell([n1,n2,...])

Description

cell builds a cell array whose elements are empty arrays []. The
size of the cell array is specified by one integer for a square array, or
several integers (either as separate arguments or in a vector) for a
cell array of any size.

Example

cell(2, 3)
2x3 cell array

See also

zeros, operator {}, iscell

cellfun

Function evaluation for each cell of a cell array.

Syntax

A = cellfun(fun, C)
A = cell(fun, C, ...)

Description

cellfun(fun,C) evaluates function fun for each cell of cell array C.
Each evaluation must give a scalar result of numeric, logical, or char-
acter type; results are returned as a non-cell array the same size as C.
First argument is a function reference, an inline function, or the name
of a function as a string.

With more than two input arguments, cellfun calls function fun
as feval(fun,C{i},other), where C{i} is each cell of C in turn, and
other stands for the remaining arguments of cellfun.

LME Reference — arrays 235

cellfun differs from map in two ways: the result is a non-cell array,
and remaining arguments of cellfun are provided directly to fun.

Examples

cellfun(@isempty, {1, ’’; {}, ones(5)})
F T
T F

map(@isempty, {1, ’’; {}, ones(5)})
2x2 cell array

cellfun(@size, {1, ’’; {}, ones(5)}, 2)
1 0
0 5

See also

map

diag

Creation of a diagonal matrix or extraction of the diagonal elements
of a matrix.

Syntax

M = diag(v)
M = diag(v,k)
v = diag(M)
v = diag(M,k)

Description

With a vector input argument, diag(v) creates a square diagonal ma-
trix whose main diagonal is given by v. With a second argument, the
diagonal is moved by that amount in the upper right direction for pos-
itive values, and in the lower left direction for negative values.

With a matrix input argument, the main diagonal is extracted and
returned as a column vector. A second argument can be used to spec-
ify another diagonal.

Examples

diag(1:3)
1 0 0
0 2 0
0 0 3

236 LyME User Manual ©1999-2008, Calerga Sàrl

diag(1:3,1)
0 1 0 0
0 0 2 0
0 0 0 3
0 0 0 0

M = magic(3)
M =
8 1 6
3 5 7
4 9 2

diag(M)
8
5
2

diag(M,1)
1
7

See also

tril, triu, eye, trace

eye

Identity matrix.

Syntax

M = eye(n)
M = eye(m,n)
M = eye([m,n])
M = eye(..., type)

Description

eye builds a matrix whose diagonal elements are 1 and other elements
0. The size of the matrix is specified by one integer for a square ma-
trix, or two integers (either as two arguments or in a vector of two
elements) for a rectangular matrix.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

LME Reference — arrays 237

Examples

eye(3)
1 0 0
0 1 0
0 0 1

eye(2, 3)
1 0 0
0 1 0

eye(2, ’int8’)
2x2 int8 array
1 0
0 1

See also

ones, zeros, diag

find

Find the indices of the non-null elements of an array.

Syntax

ix = find(v)
[s1,s2] = find(M)
[s1,s2,x] = find(M)
... = find(..., n)
... = find(..., n, dir)

Description

With one output argument, find(v) returns a vector containing the
indices of the nonzero elements of v. v can be an array of any dimen-
sion; the indices correspond to the internal storage ordering and can
be used to access the elements with a single subscript.

With two output arguments, find(M) returns two vectors contain-
ing the subscripts (row in the first output argument, column in the
second output argument) of the nonzero elements of 2-dim array M.
To obtain subscripts for an array of higher dimension, you can convert
the single output argument of find to subscripts with ind2sub.

With three output arguments, find(M) returns in addition the
nonzero values themselves in the third output argument.

With a second input argument n, find limits the maximum number
of elements found. It searches forward by default; with a third input
argument dir, find gives the n first nonzero values if dir is ’first’
or ’f’, and the n last nonzero values if dir is ’last’ or ’l’.

238 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

ix = find([1.2,0;0,3.6])
ix =
1
4

[s1,s2] = find([1.2,0;0,3.6])
s1 =
1
2

s2 =
1
2

[s1,s2,x] = find([1.2,0;0,3.6])
s1 =
1
2

s2 =
1
2

x =
1.2
3.6

A = rand(3)
A =
0.5599 0.3074 0.5275
0.3309 0.8077 0.3666
0.7981 0.6424 0.6023

find(A > 0.7, 2, ’last’)
7
5

See also

nnz, sort

flipdim

Flip an array along any dimension.

Syntax

B = flipdim(A, dim)

Description

flipdim(A,dim) gives an array which has the same size as A, but
where indices of dimension dim are reversed.

LME Reference — arrays 239

Examples

flipdim(cat(3, [1,2;3,4], [5,6;7,8]), 3)
2x2x2 array
(:,:,1) =
5 6
7 8

(:,:,2) =
1 2
3 4

See also

fliplr, flipud, rot90, reshape

fliplr

Flip an array or a list around its vertical axis.

Syntax

A2 = fliplr(A1)
list2 = fliplr(list1)

Description

fliplr(A1) gives an array A2 which has the same size as A1, but
where all columns are placed in reverse order.

fliplr(list1) gives a list list2 which has the same length as
list1, but where all top-level elements are placed in reverse order.
Elements themselves are left unchanged.

Examples

fliplr([1,2;3,4])
2 1
4 3

fliplr({1, ’x’, {1,2,3}})
{{1,2,3}, ’x’, 1}

See also

flipud, flipdim, rot90, reshape

flipud

Flip an array upside-down.

240 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

A2 = flipud(A1)

Description

flipud(A1) gives an array A2 which has the same size as A1, but
where all lines are placed in reverse order.

Example

flipud([1,2;3,4])
3 4
1 2

See also

fliplr, flipdim, rot90, reshape

ind2sub

Conversion from single index to row/column subscripts.

Syntax

(i, j, ...) = ind2sub(size, ind)

Description

ind2sub(size,ind) gives the subscripts of the element which would
be retrieved from an array whose size is specified by size by the single
index ind. size must be either a scalar for square matrices or a vector
of two elements or more for arrays. ind can be an array; the result is
calculated separately for each element and has the same size.

Example

M = [3, 6; 8, 9];
M(3)
8

(i, j) = ind2sub(size(M), 3)
i =
2

j =
1

M(i, j)
8

LME Reference — arrays 241

See also

sub2ind, size

interp1

1D interpolation.

Syntax

yi = interp1(x, y, xi)
yi = interp1(x, y, xi, xi, method)
yi = interp1(y, xi, xi)
yi = interp1(y, xi, xi, method)
yi = interp1(..., method, extraval)

Description

interp1(x,y,xi) interpolates data along one dimension. Input data
are defined by vector y, where element y(i) corresponds to coordi-
nates x(i). Interpolation is performed at points defined in vector xi;
the result is a vector of the same site as xi.

If y is an array, interpolation is performed along dimension 1 (i.e.
along its columns), and size(y,1) must be equal to length(x). Then
if xi is a vector, interpolation is performed at the same points for
each remaining dimensions of y, and the result is an array of size
[length(xi),size(y)(2:end)]; if xi is an array, all sizes must match
y except for the first one.

The default interpolation method is linear. An additional input argu-
ment can be provided to specify it with a string (only the first character
is considered):

Argument Meaning
’0’ or ’nearest’ nearest value
’<’ lower coordinate
’>’ higher coordinate
’1’ or ’linear’ linear

With vectors, interp1 produces the same result as interpn; vector
orientations do not have to match, though.

When the method is followed by a scalar number extraval, that
value is assigned to all values outside the range defined by x (i.e.
extrapolated values). The default is NaN.

Examples

One-dimension interpolation:

242 LyME User Manual ©1999-2008, Calerga Sàrl

interp1([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7])
nan 0.2000 0.3000 0.8333

interp1([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7], ’0’)
nan 0.2000 0.2000 1.0000

Interpolation of multiple values:

t = 0:10;
y = [sin(t’), cos(t’)];
tnew = 0:0.4:8;
ynew = interp1(t, y, tnew)
ynew =
0.0000 1.0000
0.3366 0.8161
...
0.8564 0.2143
0.9894 -0.1455

See also

interpn

interpn

Multidimensional interpolation.

Syntax

Vi = interpn(x1, ..., xn, V, xi1, ..., xin)
Vi = interpn(x1, ..., xn, V, xi1, ..., xin, method)
Vi = interpn(..., method, extraval)

Description

interpn(x1,...,xn,V,xi1,...,xin) interpolates data in a
space of n dimensions. Input data are defined by array V, where
element V(i,j,...) corresponds to coordinates x1(i), x2(j), etc.
Interpolation is performed for each coordinates defined by arrays
xi1, xi2, etc., which must all have the same size; the result is an
array of the same size.

Length of vectors x1, x2, ... must match the size of V along the
corresponding dimension. Vectors x1, x2, ... must be sorted (mono-
tonically increasing or decreasing), but they do not have to be spaced
uniformly. Interpolated points outside the input volume are set to nan.
Input and output data can be complex. Imaginary parts of coordinates
are ignored.

LME Reference — arrays 243

The default interpolation method is multilinear. An additional input
argument can be provided to specify it with a string (only the first
character is considered):

Argument Meaning
’0’ or ’nearest’ nearest value
’<’ lower coordinates
’>’ higher coordinates
’1’ or ’linear’ multilinear

Method ’<’ takes the sample where each coordinate has its in-
dex as large as possible, lower or equal to the interpolated value,
and smaller than the last coordinate. Method ’>’ takes the sample
where each coordinate has its index greater or equal to the interpo-
lated value.

When the method is followed by a scalar number extraval, that
value is assigned to all values outside the input volume (i.e. extrapo-
lated values). The default is NaN.

Examples

One-dimension interpolation:

interpn([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7])
nan 0.2000 0.3000 0.8333

interpn([1, 2, 5, 8], [0.1, 0.2, 0.5, 1], [0, 2, 3, 7], ’0’)
nan 0.2000 0.2000 1.0000

Three-dimension interpolation:

D = cat(3,[0,1;2,3],[4,5;6,7]);
interpn([0,1], [0,1], [0,1], D, 0.2, 0.7, 0.5)
3.1000

Image rotation (we define original coordinates between -0.5 and 0.5
in vector c and arrays X and Y, and the image as a linear gradient
between 0 and 1):

c = -0.5:0.01:0.5;
X = repmat(c, 101, 1);
Y = X’;
phi = 0.2;
Xi = cos(phi) * X - sin(phi) * Y;
Yi = sin(phi) * X + cos(phi) * Y;
D = 0.5 + X;
E = interpn(c, c, D, Xi, Yi);
E(isnan(E)) = 0.5;

See also

interp1

244 LyME User Manual ©1999-2008, Calerga Sàrl

intersect

Set intersection.

Syntax

c = intersect(a, b)
(c, ia, ib) = intersect(a, b)

Description

intersect(a,b) gives the intersection of sets a and b, i.e. it gives
the set of members of both sets a and b. Sets are any type of nu-
merical, character or logical arrays, or lists or cell arrays of character
strings. Multiple elements of input arguments are considered as single
members; the result is always sorted and has unique elements.

The optional second and third output arguments are vectors of in-
dices such that if (c,ia,ib)=intersect(a,b), then c is a(ia) as well
as b(ib).

Example

a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = intersect(a, b)
c =
{’bbb’,’bc’}

ia =
3 2

ib =
4 2

a(ia)
{’bbb’,’bc’}

b(ib)
{’bbb’,’bc’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also

unique, union, setdiff, setxor, ismember

LME Reference — arrays 245

ipermute

Inverse permutation of the dimensions of an array.

Syntax

B = ipermute(A, perm)

Description

ipermute(A,perm) returns an array with the same elements as A, but
where dimensions are permuted according to the vector of dimensions
perm. It performs the inverse permutation of permute. perm must
contain integers from 1 to n; dimension i in A becomes dimension
perm(i) in the result.

Example

size(ipermute(rand(3,4,5), [2,3,1]))
5 3 4

See also

permute, ndims, squeeze

isempty

Test for empty matrices or empty lists.

Syntax

b = isempty(M)
b = isempty(list)

Description

isempty(obj) gives true if obj is the empty array [], the empty string
’’, or the empty list {}, and false otherwise.

Examples

isempty([])
true

isempty(0)
false

isempty(’’)

246 LyME User Manual ©1999-2008, Calerga Sàrl

true
isempty({})
true

isempty({{}})
false

See also

size, length

iscell

Test for cell arrays.

Syntax

b = iscell(X)

Description

iscell(X) gives true if X is a cell array or a list, and false otherwise.

Examples

iscell({1;2})
true

iscell({1,2})
true

islist({1;2})
false

See also

islist

ismember

Test for set membership.

Syntax

b = ismember(m, s)

LME Reference — arrays 247

Description

ismember(m,s) tests if elements of array m are members of set s. The
result is a logical array the same size as m; each element is true if the
corresponding element of m is a member of s, or false otherwise. m
must be a numerical array or a cell array, matching type of set s.

Example

s = {’a’,’bc’,’bbb’,’de’};
m = {’d’,’a’,’x’;’de’,’a’,’z’};
b = ismember(m, s)
b =
F T F
T T F

See also

intersect, union, setdiff, setxor

length

Length of a vector or a list.

Syntax

n = length(v)
n = length(list)

Description

length(v) gives the length of vector v. length(A) gives the num-
ber of elements along the largest dimension of array A. length(list)
gives the number of elements in a list.

Examples

length(1:5)
5

length((1:5)’)
5

length(ones(2,3))
3

length({1, 1:6, ’abc’})
3

length({{}})
1

248 LyME User Manual ©1999-2008, Calerga Sàrl

See also

size, numel, end

magic

Magic square.

Syntax

M = magic(n)

Description

A magic square is a square array of size n-by-n which contains each
integer between 1 and n2, and whose sum of each column and of each
line is equal. magic(n) returns magic square of size n-by-n.

There is no 2-by-2 magic square. If the size is 2, the matrix [1,3;4,2]
is returned instead.

Example

magic(3)
8 1 6
3 5 7
4 9 2

See also

zeros, ones, eye, rand, randn

meshgrid

Arrays of X-Y coordinates.

Syntax

(X, Y) = meshgrid(x, y)
(X, Y) = meshgrid(x)

LME Reference — arrays 249

Description

meshgrid(x,y) produces two arrays of x and y coordinates suitable
for the evaluation of a function of two variables. The input argument
x is copied to the rows of the first output argument, and the input
argument y is copied to the columns of the second output argument,
so that both arrays have the same size. meshgrid(x) is equivalent to
meshgrid(x,x).

Example

(X, Y) = meshgrid(1:5, 2:4)
X =
1 2 3 4 5
1 2 3 4 5
1 2 3 4 5

Y =
2 2 2 2 2
3 3 3 3 3
4 4 4 4 4

Z = atan2(X, Y)
Z =
0.4636 0.7854 0.9828 1.1071 1.1903
0.3218 0.5880 0.7854 0.9273 1.0304
0.2450 0.4636 0.6435 0.7854 0.8961

See also

ndgrid, repmat

ndgrid

Arrays of N-dimension coordinates.

Syntax

(X1, ..., Xn) = ndgrid(x1, ..., xn)
(X1, ..., Xn) = ndgrid(x)

Description

ndgrid(x1,...,xn) produces n arrays of n dimensions. Array i is
obtained by reshaping input argument i as a vector along dimension
i and replicating it along all other dimensions to match the length of
other input vectors. All output arguments have the same size.

With one input argument, ndgrid reuses it to match the number of
output arguments.

250 LyME User Manual ©1999-2008, Calerga Sàrl

(Y,X)=ndgrid(y,x) is equivalent to (X,Y)=meshgrid(x,y).

Example

(X1, X2) = ndgrid(1:3)
X1 =
1 1 1
2 2 2
3 3 3

X2 =
1 2 3
1 2 3
1 2 3

See also

meshgrid, repmat

ndims

Number of dimensions of an array.

Syntax

n = ndims(A)

Description

ndims(A) returns the number of dimensions of array A, which is at
least 2. Scalars, row and column vectors, and matrices have 2 dimen-
sions.

Examples

ndims(magic(3))
2

ndims(rand(3,4,5))
3

See also

size, squeeze, permute, ipermute

nnz

Number of nonzero elements.

LME Reference — arrays 251

Syntax

n = nnz(A)

Description

nnz(A) returns the number of nonzero elements of array A.

See also

find

num2cell

Conversion from numeric array to cell array.

Syntax

C = num2cell(A)
C = num2cell(A, dims)

Description

num2cell(A) creates a cell array the same size as numeric array A.
The value of each cell is the corresponding elements of A.

num2cell(A,dims) cuts array A along dimensions dims and creates
a cell array with the result. Dimensions of cell array are the same as
dimensions of A for dimensions not in dims, and 1 for dimensions in
dims; dimensions of cells are the same as dimensions of A for dimen-
sions in dims, and 1 for dimensions not in dims.

Argument A can be a numerical array of any dimension and class,
a logical array, or a char array.

Examples

num2cell([1, 2; 3, 4])
{1, 2; 3, 4}

num2cell([1, 2; 3, 4], 1)
{[1; 3], [2; 4]}

num2cell([1, 2; 3, 4], 2)
{[1, 2]; [3, 4]}

See also

num2list, permute

252 LyME User Manual ©1999-2008, Calerga Sàrl

numel

Number of elements of an array.

Syntax

n = numel(A)

Description

numel(A) gives the number of elements of array A. It is equivalent to
prod(size(A)).

Examples

numel(1:5)
5

numel(ones(2, 3))
6

numel({1, 1:6; ’abc’, []})
4

numel({2, ’vwxyz’})
2

See also

size, length

ones

Array of ones.

Syntax

A = ones(n)
A = ones(n1, n2, ...)
A = ones([n1, n2, ...])
A = ones(..., type)

Description

ones builds an array whose elements are 1. The size of the array is
specified by one integer for a square matrix, or several integers (either
as separate arguments or in a vector) for an array of any size.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,

LME Reference — arrays 253

’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Example

ones(2,3)
1 1 1
1 1 1

ones(2, ’int32’)
2x2 int32 array
1 1
1 1

See also

zeros, eye, rand, randn, repmat

permute

Permutation of the dimensions of an array.

Syntax

B = permute(A, perm)

Description

permute(A,perm) returns an array with the same elements as A, but
where dimensions are permuted according to the vector of dimensions
perm. It is a generalization of the matrix transpose operator. perm
must contain integers from 1 to n; dimension perm(i) in A becomes
dimension i in the result.

Example

size(permute(rand(3,4,5), [2,3,1]))
4 5 3

See also

ndims, squeeze, ipermute, num2cell

rand

Uniformly-distributed random number.

254 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

x = rand
M = rand(n)
M = rand(n1, n2, ...)
M = rand([n1, n2, ...])
rand(’seed’, s);

Description

rand builds a scalar pseudo-random number uniformly distributed be-
tween 0 and 1. The lower bound 0 may be reached, but the upper
bound 1 is never. The current implementation is based on a scalar 64-
bit seed, which theoretically allows 2̂ 64 different numbers. This seed
can be set with the arguments rand(’seed’, s), where s is a scalar
or a vector of two components. rand(’seed’, s) returns the empty
array [] as output argument. To discard it, the statement should be
followed by a semicolon.

rand(n), rand(n1,n2,...) and rand([n1,n2,...]) return an n-
by-n square matrix or an array of arbitrary size whose elements are
pseudo-random numbers uniformly distributed between 0 and 1.

Examples

rand
0.2361

rand(1, 3)
0.6679 0.8195 0.2786

rand(’seed’,0);
rand
0.2361

See also

randn

randn

Normally-distributed random number

Syntax

x = randn
M = randn(n)
M = randn(n1, n2, ...)
M = randn([n1, n2, ...])
randn(’seed’, s);

LME Reference — arrays 255

Description

randn builds a scalar pseudo-random number chosen from a normal
distribution with zero mean and unit variance. The current imple-
mentation is based on a scalar 64-bit seed, which theoretically al-
lows 2̂ 64 different numbers. This seed can be set with the arguments
randn(’seed’, s), where s is a scalar or a vector of two components.
The seed is not the same as the seed of rand. randn(’seed’, s) re-
turns the empty array [] as output argument. To discard it, the state-
ment should be followed by a semicolon.

randn(n), randn(n1,n2,...) and randn([n1,n2,...]) return an
n-by-n square matrix or an array of arbitrary size whose elements are
pseudo-random numbers chosen from a normal distribution.

Examples

randn
1.5927

randn(1, 3)
0.7856 0.6489 -0.8141

randn(’seed’,0);
randn
1.5927

See also

rand

repmat

Replicate an array.

Syntax

A2 = repmat(A1, n)
A2 = repmat(A1, m, n)
A2 = repmat(A1, [n1,...])

Description

repmat creates an array with multiple copies of its first argument. It
can be seen as an extended version of ones, where 1 is replaced by an
arbitrary array. The number of copies is m in the vertical direction, and
n in the horizontal direction. The type of the first argument (number,
character or logical value) is preserved. With a vector as second argu-
ment, the array can be replicated along more than two dimensions.

256 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

repmat([1,2;3,4],1,2)
1 2 1 2
3 4 3 4

repmat(’abc’,3)
abcabcabc
abcabcabc
abcabcabc

See also

zeros, ones, operator :, kron, replist

reshape

Rearrange the elements of an array to change its shape.

Syntax

A2 = reshape(A1)
A2 = reshape(A1, n1, n2, ...)
A2 = reshape(A1, [n1, n2, ...])

Description

reshape(A1) gives a column vector with all the elements of array A1,
which is read row-wise. If A1 is a variable, reshape(A1) is the same
as A1(:).

reshape(A1,n1,n2,...) or reshape(A1,[n1,n2,...]) changes
the dimensions of array A1 so that the result has m rows and n columns.
A1 must have n1*n2*... elements; read line-wise, both A1 and the
result have the same elements.

When dimensions are given as separate elements, one of them can
be replaced with the empty array []; it is replaced by the value such
that the number of elements of the result matches the size of input
array.

Example

reshape([1,2,3;10,20,30], 3, 2)
1 2
3 10
20 30

reshape(1:12, 3, [])
1 2 3 4

LME Reference — arrays 257

5 6 7 8
9 10 11 12

See also

operator ()

rot90

Array rotation.

Syntax

A2 = rot90(A1)
A2 = rot90(A1, k)

Description

rot90(A1) rotates array A1 90 degrees counter-clockwise; the top left
element of A1 becomes the bottom left element of A2. If A1 is an array
with more than two dimensions, each plane corresponding to the first
two dimensions is rotated.

In rot90(A1,k), the second argument is the number of times the
array is rotated 90 degrees counter-clockwise. With k = 2, the array
is rotated by 180 degrees; with k = 3 or k = -1, the array is rotated
by 90 degrees clockwise.

Examples

rot90([1,2,3;4,5,6])
3 6
2 5
1 4

rot90([1,2,3;4,5,6], -1)
4 1
5 2
6 3

rot90([1,2,3;4,5,6], -1)
6 5 4
3 2 1

fliplr(flipud([1,2,3;4,5,6]))
6 5 4
3 2 1

See also

fliplr, flipud, reshape

258 LyME User Manual ©1999-2008, Calerga Sàrl

setdiff

Set difference.

Syntax

c = setdiff(a, b)
(c, ia) = setdiff(a, b)

Description

setdiff(a,b) gives the difference between sets a and b, i.e. the set
of members of set a which do not belong to b. Sets are any type of nu-
merical, character or logical arrays, or lists or cell arrays of character
strings. Multiple elements of input arguments are considered as single
members; the result is always sorted and has unique elements.

The optional second output argument is a vector of indices such
that if (c,ia)=setdiff(a,b), then c is a(ia).

Example

a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia) = setdiff(a, b)
c =
{’a’,’de’}

ia =
1 4

a(ia)
{’a’,’de’}

See also

unique, union, intersect, setxor, ismember

setxor

Set exclusive or.

Syntax

c = setxor(a, b)
(c, ia, ib) = setxor(a, b)

LME Reference — arrays 259

Description

setxor(a,b) performs an exclusive or operation between sets a and
b, i.e. it gives the set of members of sets a and b which are not mem-
bers of the intersection of a and b. Sets are any type of numerical,
character or logical arrays, or lists or cell arrays of character strings.
Multiple elements of input arguments are considered as single mem-
bers; the result is always sorted and has unique elements.

The optional second and third output arguments are vectors of
indices such that if (c,ia,ib)=setxor(a,b), then c is the union of
a(ia) and b(ib).

Example

a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = setxor(a, b)
c =
{’a’,’aa’,’de’,’z’}

ia =
1 4

ib =
3 1

union(a(ia),b(ib))
{’a’,’aa’,’de’,’z’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

See also

unique, union, intersect, setdiff, ismember

size

Size of an array.

Syntax

v = size(A)
(m, n) = size(A)
m = size(A, i)

260 LyME User Manual ©1999-2008, Calerga Sàrl

Description

size(A) returns the number of rows and the number of elements
along each dimension of array A, either in a row vector or as scalars if
there are two output arguments or more.

size(A,i) gives the number of elements in array A along dimen-
sion i: size(A,1) gives the number of rows and size(A,2) the num-
ber of columns.

Examples

M = ones(3, 5);
size(M)
3 5

(m, n) = size(M)
m =
3

n =
5

size(M, 1)
3

size(M, 2)
5

See also

length, numel, ndims, end

sort

Array sort.

Syntax

(A_sorted, ix) = sort(A)
(A_sorted, ix) = sort(A, dim)
(A_sorted, ix) = sort(A, dir)
(A_sorted, ix) = sort(A, dim, dir)
(list_sorted, ix) = sort(list)
(list_sorted, ix) = sort(list, dir)

Description

sort(A) sorts separately the elements of each column of array A, or
the elements of A if it is a row vector. The result has the same size as
A. Elements are sorted in ascending order, with NaNs at the end. For
complex arrays, numbers are sorted by magnitude.

LME Reference — arrays 261

The optional second output argument gives the permutation array
which transforms A into the sorted array. It can be used to reorder
elements in another array or to sort the rows of a matrix with respect
to one of its columns, as shown in the last example below. Order of
consecutive identical elements is preserved.

If a second numeric argument dim is provided, the sort is performed
along dimension dim (columns if dim is 1, rows if 2, etc.)

An additional argument can specify the ordering direction. It
must be the string ’ascending’ (or ’a’) for ascending order, or
’descending’ (or ’d’) for descending order. In both cases, NaNs are
moved to the end.

sort(list) sorts the elements of a list, which must be strings. Cell
arrays are sorted like lists, not column-wise like numeric arrays. The
second output argument is a row vector. The direction can be specified
with a second input argument.

Examples

sort([3,6,2,3,9,1,2])
1 2 2 3 3 6 9

sort([2,5,3;nan,4,2;6,1,1])
2 1 1
6 4 2
nan 5 3

sort([2,5,3;nan,4,2;6,1,1], ’d’)
6 5 3
2 4 2
nan 1 1

sort({’def’, ’abcd’, ’abc’})
{’abc’, ’abcd’, ’def’}

To sort the rows of an array after the first column, one can obtain the
permutation vector by sorting the first column, and use it as subscripts
on the array rows:

M = [2,4; 5,1; 3,9; 4,0]
2 4
5 1
3 9
4 0

(Ms, ix) = sort(M(:,1));
M(ix,:)
2 4
3 9
4 0
5 1

262 LyME User Manual ©1999-2008, Calerga Sàrl

Algorithm

Shell sort.

See also

unique

squeeze

Suppression of singleton dimensions of an array.

Syntax

B = squeeze(A)

Description

squeeze(A) returns an array with the same elements as A, but where
dimensions equal to 1 are removed. The result has at least 2 dimen-
sions; row and column vectors keep their dimensions.

Examples

size(squeeze(rand(1,2,3,1,4)))
2 3 4

size(squeeze(1:5))
1 5

See also

permute, ndims

sub2ind

Conversion from row/column subscripts to single index.

Syntax

ind = sub2ind(size, i, j)

LME Reference — arrays 263

Description

sub2ind(size,i,j) gives the single index which can be used to re-
trieve the element corresponding to the i:th row and the j:th column
of an array whose size is specified by size. size must be either a
scalar for square matrices or a vector of two elements or more for
other arrays. If i and j are arrays, they must have the same size:
the result is calculated separately for each element and has the same
size.

Example

M = [3, 6; 8, 9];
M(2, 1)
8

sub2ind(size(M), 2, 1)
7

M(3)
8

See also

ind2sub, size

tril

Extraction of the lower triangular part of a matrix.

Syntax

L = tril(M)
L = tril(M,k)

Description

tril(M) extracts the lower triangular part of a matrix; the result is
a matrix of the same size where all the elements above the main di-
agonal are set to zero. A second argument can be used to specify
another diagonal: 0 is the main diagonal, positive values are above
and negative values below.

Examples

M = magic(3)
M =
8 1 6

264 LyME User Manual ©1999-2008, Calerga Sàrl

3 5 7
4 9 2

tril(M)
8 0 0
3 5 0
4 9 2

tril(M,1)
8 1 0
3 5 7
4 9 2

See also

triu, diag

triu

Extraction of the upper triangular part of a matrix.

Syntax

U = triu(M)
U = triu(M,k)

Description

tril(M) extracts the upper triangular part of a matrix; the result is
a matrix of the same size where all the elements below the main di-
agonal are set to zero. A second argument can be used to specify
another diagonal; 0 is the main diagonal, positive values are above
and negative values below.

Examples

M = magic(3)
M =
8 1 6
3 5 7
4 9 2

triu(M)
8 1 6
0 5 7
0 0 2

triu(M,1)
0 1 6
0 0 7
0 0 0

LME Reference — arrays 265

See also

tril, diag

union

Set union.

Syntax

c = union(a, b)
(c, ia, ib) = union(a, b)

Description

union(a,b) gives the union of sets a and b, i.e. it gives the set of
members of sets a or b or both. Sets are any type of numerical, char-
acter or logical arrays, or lists or cell arrays of character strings. Mul-
tiple elements of input arguments are considered as single members;
the result is always sorted and has unique elements.

The optional second and third output arguments are vectors of in-
dices such that if (c,ia,ib)=union(a,b), then elements of c are the
elements of a(ia) or b(ib); the intersection of a(ia) and b(ib) is
empty.

Example

a = {’a’,’bc’,’bbb’,’de’};
b = {’z’,’bc’,’aa’,’bbb’};
(c, ia, ib) = union(a, b)
c =
{’a’,’aa’,’bbb’,’bc’,’de’,’z’}

ia =
1 3 2 4

ib =
3 1

a(ia)
{’a’,’bbb’,’bc’,’de’}

b(ib)
{’aa’,’z’}

Set exclusive or can also be computed as the union of a and b minus
the intersection of a and b:

setdiff(union(a, b), intersect(a, b))
{’a’,’aa’,’de’,’z’}

266 LyME User Manual ©1999-2008, Calerga Sàrl

See also

unique, intersect, setdiff, setxor, ismember

unique

Keep unique elements.

Syntax

v2 = unique(v1)
list2 = unique(list1)
(b, ia, ib) = unique(a)

Description

With an array argument, unique(v1) sorts its elements and removes
duplicate elements. Unless v1 is a row vector, v1 is considered as a
column vector.

With an argument which is a list of strings, unique(list) sorts its
elements and removes duplicate elements.

The optional second output argument is set to a vector of indices
such that if (b,ia)=unique(a), then b is a(ia).

The optional third output argument is set to a vector of indices such
that if (b,ia,ib)=unique(a), then a is b(ib).

Examples

(b,ia,ib) = unique([4,7,3,8,7,1,3])
b =
1 3 4 7 8

ia =
6 3 1 2 4

ib =
3 4 2 5 4 1 2

unique({’def’, ’ab’, ’def’, ’abc’})
{’ab’, ’abc’, ’def’}

See also

sort, union, intersect, setdiff, setxor, ismember

zeros

Null array.

LME Reference — triangulation 267

Syntax

A = zeros(n)
A = zeros(n1,n2,...)
A = zeros([n1,n2,...])
A = zeros(..., type)

Description

zeros builds an array whose elements are 0. The size of the array is
specified by one integer for a square matrix, or several integers (either
as separate arguments or in a vector) for an array of any size.

An additional input argument can be used to specify the type of the
result. It must be the string ’double’, ’single’, ’int8’, ’int16’,
’int32’, ’int64’, ’uint8’, ’uint16’, ’uint32’, or ’uint64’ (64-
bit arrays are not supported on all platforms).

Examples

zeros([2,3])
0 0 0
0 0 0

zeros(2)
0 0
0 0

zeros(1, 5, ’uint16’)
1x5 uint16 array
0 0 0 0 0

See also

ones, cell, eye, rand, randn, repmat

3.16 Triangulation Functions

delaunay

2-d Delaunay triangulation.

Syntax

t = delaunay(x, y)
(t, e) = delaunay(x, y)

268 LyME User Manual ©1999-2008, Calerga Sàrl

Description

delaunay(x,y) calculates the Delaunay triangulation of 2-d points
given by arrays x and y. Both arrays must have the same number
of values, m. The result is an array of three columns. Each row corre-
sponds to a triangle; values are indices in x and y.

The second output argument, if requested, is a logical vector of size
m-by-1; elements are true if the corresponding point in x and y belongs
to the convex hull of the set of points.

The Delaunay triangulation is a net of triangles which link all the
starting points in such a way that no point is included in the circum-
scribed circle of any other triangle. Triangles are "as equilateral" as
possible.

Example

Delaunay triangulation of 20 random points:

x = rand(20, 1);
y = rand(20, 1);
(t, e) = delaunay(x, y);

With Sysquake graphical functions, points belonging to the convex hull
are displayed as crosses and interior points as circles:

clf;
scale equal;
plot(x(e), y(e), ’x’);
plot(x(̃ e), y(̃ e), ’o’);

Array of vertex indices is modified to have closed triangles:

t = [t, t(:, 1)];

Triangles are displayed:

plot(x(t), y(t));

See also

delaunayn, voronoi

delaunayn

N-d Delaunay triangulation.

LME Reference — triangulation 269

Syntax

t = delaunayn(x)
(t, e) = delaunayn(x)

Description

delaunayn(x) calculates the Delaunay triangulation of points given
by the rows of array x in a space of dimension size(x,2). The result
is an array with one more column. Each row corresponds to a simplex;
values are row indices in x and give the vertices of each polyhedron.

The second output argument, if requested, is a logical vector with
as many elements as rows in x; elements are true if the corresponding
point in x belongs to the convex hull of the set of points.

See also

delaunay, tsearchn, voronoin

griddata

Data interpolation in 2-d plane.

Syntax

vi = griddata(x, y, v, xi, yi)
vi = griddata(x, y, v, xi, yi, method)

Description

griddata(x,y,v,xi,yi) interpolates values at coordinates given by
the corresponding elements of arrays xi and yi in a 2-dimension
plane. Original data are defined by corresponding elements of ar-
rays x, y, and v (which must have the same size), such that the
value at coordinate [x(i);y(i)] is v(i). The result is an array with
the same size as xi and yi where vi(j) is the value interpolated at
[xi(j);yi(j)].

All coordinates are real (imaginary components are ignored). Val-
ues v and vi can be real or complex. The result for coordinates outside
the convex hull defined by x and y is NaN.

griddata is based on Delaunay triangulation. The interpolation
method used in each triangle is linear by default, or can be specified
with an additional input argument, a string:

270 LyME User Manual ©1999-2008, Calerga Sàrl

Argument Meaning
’0’ or ’nearest’ nearest value
’1’ or ’linear’ linear

See also

delaunay, tsearch, griddatan, interpn

griddatan

Data interpolation in N-d space.

Syntax

vi = griddatan(x, v, xi)
vi = griddatan(x, v, xi, method)

Description

griddatan(x,v,xi) interpolates values at coordinates given by the
p rows of p-by-n array xi in an n-dimension space. Original data are
defined by m-by-n array x and m-by-1 column vector v, such that the
value at coordinate x(i,:)’ is v(i). The result is a p-by-1 column
vector vi where vi(j) is the value interpolated at xi(j,:)’.

Coordinates x and xi are real (imaginary components are ignored).
Values v and vi can be real or complex. The result for coordinates
outside the convex hull defined by x is NaN.

griddatan is based on Delaunay triangulation. The interpolation
method used in each simplex is linear by default, or can be specified
with an additional input argument, a string:

Argument Meaning
’0’ or ’nearest’ nearest value
’1’ or ’linear’ linear

See also

delaunayn, tsearchn, griddata, interpn

tsearch

Search of points in triangles.

LME Reference — triangulation 271

Syntax

ix = tsearch(x, y, t, xi, yi)

Description

tsearch(x,y,t,xi,yi) searches in which triangle is located each
point given by the corresponding elements of arrays xi and yi.
Corresponding elements of arrays x and y represent the vertices of
the triangles, and rows of array t represent their indices in x and y;
array t is usually the result of delaunay. Dimensions of x and y, and
of xi and yi, must be equal. The result is an array with the same size
as xi and yi where each element is the row index in t of the first
triangle which contains the point, or NaN if the point is outside all
triangles (i.e. outside the convex hull of points defined by x and y if t
is a proper triangulation such as the one computed with delaunay).

Example

Search for triangles containing points [0,0] and [0,1] corresponding to
Delauny triangulation of 20 random points:

x = randn(20, 1);
y = randn(20, 1);
t = delaunay(x, y);
xi = [0, 0];
yi = [0, 1];
ix = tsearch(x, y, t, xi, yi);

See also

tsearchn, delaunay, voronoi

tsearchn

Search of points in triangulation simplices.

Syntax

ix = tsearchn(x, t, xi)

Description

tsearchn(x,t,xi) searches in which simplex each point given by the
rows of array xi is located. Rows of array x represent the vertices of
the simplices, and rows of array t represent their indices in x; array t

272 LyME User Manual ©1999-2008, Calerga Sàrl

is usually the result of delaunayn. Dimensions must match: in a space
of n dimensions, x and xi have n columns, and t has n+1 columns. The
result is a column vector with one element for each row of xi, which
is the row index in t of the first simplex which contains the point, or
NaN if the point is outside all simplices (i.e. outside the convex hull of
points x if t is a proper triangulation of x such as the one computed
with delaunayn).

Example

Search for simplices containing points [0,0] and [0,1] corresponding to
Delauny triangulation of 20 random points:

x = randn(20, 2);
t = delaunayn(x);
xi = [0, 0; 0, 1];
ix = tsearchn(x, t, xi);

See also

delaunayn, voronoin

voronoi

2-d Voronoi tessalation.

Syntax

(v, p) = voronoi(x, y)

Description

voronoi(x,y) calculates the Voronoi tessalation of the set of 2-d
points given by arrays x and y. Both arrays must have the same
number of values, m. The first output argument v is an array of two
columns which contains the coordinates of the vertices of the Voronoi
cells, one row per vertex. The first row contains infinity and is used as
a marker for unbounded Voronoi cells. The second output argument p
is a list of vectors of row indices in v; each element describes the
Voronoi cell corresponding to a point in x. In each cell, vertices are
sorted counterclockwise.

Voronoi tessalation is a tessalation (a partition of the plane) such
that each region is the set of points closer to one of the initial point
than to any other one. Two regions are in contact if and only if their
initial points are linked in the corresponding Delaunay triangulation.

LME Reference — triangulation 273

Example

Voronoi tessalation of 20 random points:

x = rand(20, 1);
y = rand(20, 1);
(v, p) = voronoi(x, y);

These points are displayed as crosses with Sysquake graphical func-
tions. The scale is fixed, because Voronoi polygons can have vertices
which are far away from the points.

clf;
scale(’equal’, [0,1,0,1]);
plot(x, y, ’x’);

Voronoi polygons are displayed in a loop, skipping unbounded poly-
gons. The first vertex is repeated to have closed polygons. Since plot
expects row vectors, vertex coordinates are transposed.

for p1 = p
if ãny(p1 == 1)

p1 = [p1, p1(1)];
plot(v(p1,1)’, v(p1,2)’);

end
end

See also

voronoin, delaunay

voronoin

N-d Voronoi tessalation.

Syntax

(v, p) = voronoin(x)

Description

voronoin(x) calculates the Voronoi tessalation of the set of points
given by the rows of arrays x in a space of dimension n=size(x,2).
The first output argument v is an array of n columns which contains
the coordinates of the vertices of the Voronoi cells, one row per vertex.
The first row contains infinity and is used as a marker for unbounded
Voronoi cells. The second output argument p is a list of vectors of row
indices in v; each element describes the Voronoi cell corresponding to
a point in x. In each cell, vertices are sorted by index.

274 LyME User Manual ©1999-2008, Calerga Sàrl

See also

voronoi, delaunayn

3.17 Integer Functions

uint8 uint16 uint32 uint64 int8 int16 int32 int64

Conversion to integer types.

Syntax

B = uint8(A)
B = uint16(A)
B = uint32(A)
B = uint64(A)
B = int8(A)
B = int16(A)
B = int32(A)
B = int64(A)

Description

The functions convert a number or an array to unsigned or signed
integers. The name contains the size of the integer in bits.

To avoid a conversion from double to integer, constant literal num-
bers should be written with a type suffix, such as 12int32. This is the
only way to specify large 64-bit numbers, because double-precision
floating-point numbers have a mantissa of 56 bits.

uint64 and int64 are not supported on platforms with tight mem-
ory constraints.

Examples

uint8(3)
3uint8

3uint8
3uint8

uint8([50:50:400])
1x8 uint8 array
50 100 150 200 250 44 94 144

int8([50:50:400])
1x8 int8 array
50 100 -106 -56 -6 44 94 -112

LME Reference — integers 275

See also

double, single, char, logical, map2int

intmax

Largest integer.

Syntax

i = intmax
i = intmax(type)

Description

Without input argument, intmax gives the largest signed 32-bit inte-
ger. intmax(type) gives the largest integer of the type specified by
string type, which can be ’uint8’, ’uint16’, ’uint32’, ’uint64’,
’int8’, ’int16’, ’int32’, or ’int64’ (64-bit integers are not sup-
ported on all platforms). The result has the corresponding integer
type.

Examples

intmax
2147483647int32

intmax(’uint16’)
65535uint16

See also

intmin, realmax, uint8 and related functions, map2int

intmin

Smallest integer.

Syntax

i = intmin
i = intmin(type)

276 LyME User Manual ©1999-2008, Calerga Sàrl

Description

Without input argument, intmin gives the smallest signed 32-bit inte-
ger. intmin(type) gives the largest integer of the type specified by
string type, which can be ’uint8’, ’uint16’, ’uint32’, ’uint64’,
’int8’, ’int16’, ’int32’, or ’int64’ (64-bit integers are not sup-
ported on all platforms). The result has the corresponding integer
type.

Examples

intmin
-2147483648int32

intmin(’uint16’)
0uint16

See also

intmax, realmin, uint8 and related functions, map2int

map2int

Mapping of a real interval to an integer type.

Syntax

B = map2int(A)
B = map2int(A, vmin, vmax)
B = map2int(A, vmin, vmax, type)

Description

map2int(A,vmin,vmax) converts number or array A to 8-bit unsigned
integers. Values between vmin and vmax in A are mapped linearly
to values 0 to 255. With a single input argument, the default input
interval is 0 to 1.

map2int(A,vmin,vmax,type) converts A to the specified type,
which can be any integer type given as a string: ’uint8’, ’uint16’,
’uint32’, ’uint64’, ’int8’, ’int16’, ’int32’, or ’int64’ (64-bit
integers are not supported on all platforms). The input interval is
mapped to its full range.

In all cases, input values outside the interval are clipped to the
minimum or maximum values.

LME Reference — non-linear numerical functions 277

Examples

map2int(-0.2:0.2:1.2)
1x5 uint8 array
0 0 51 102 153 204 255 255

map2int([1,3,7], 0, 10, ’uint16’)
1x3 uint16 array
6553 19660 45875

map2int([1,3,7], 0, 10, ’int16’)
1x3 int16 array
-26214 -13107 13107

See also

uint8 and related functions.

3.18 Non-Linear Numerical Functions

fminbnd

Minimum of a function.

Syntax

(x, y) = fminbnd(fun, x0)
(x, y) = fminbnd(fun, [xlow,xhigh])
(x, y) = fminbnd(..., options)
(x, y) = fminbnd(..., options, ...)
(x, y, didConverge) = fminbnd(...)

Description

fminbnd(fun,...) finds numerically a local minimum of function fun.
fun is either specified by its name or given as an anonymous or inline
function or a function reference. It has at least one input argument x,
and it returns one output argument, also a real number. fminbnd finds
the value x such that fun(x) is minimized.

Second argument tells where to search; it can be either a starting
point or a pair of values which must bracket the minimum.

The optional third argument may contain options. It is either the
empty array [] for default options, or the result of optimset.

Remaining input arguments of fminbnd, if any, are given as addi-
tional input arguments to function fun. They permit to parameterize
the function. For example fminbnd(’fun’,x0,[],2,5) calls fun as
fun(x,2,5) and minimizes its value with respect to x.

278 LyME User Manual ©1999-2008, Calerga Sàrl

The first output argument of fminbnd is the value of x at optimum.
The second output argument, if it exists, is the value of fun(x) at op-
timum. The third output argument, if it exists, is set to true if fminbnd
has converged to an optimum, or to false if it has not; in that case,
other output arguments are set to the best value obtained. With one
or two output arguments, fminbnd throws an error if it does not con-
verge.

Examples

Minimum of a sine near 2, displayed with 15 digits:

fprintf(’%.15g\n’, fminbnd(@sin, 2));
4.712389014989218

To find the minimum of ce−sin between -1 and 10 with c = 0.1, the
expression is written as an inline function stored in variable fun:

fun = inline(’c*exp(x)-sin(x)’, ’x’, ’c’);

Then fminbnd is used, with the value of c passed as an additional
argument:

x = fminbnd(fun,[-1,10],[],0.1)
x =
1.2239

With an anonymous function, this becomes

c = 0.1;
fun = @(x) c*exp(x)-sin(x);
x = fminbnd(fun,[-1,10])
x =
1.2239

Attempt to find the minimum of an unbounded function:

(x,y,didConverge) = fminbnd(@exp,10)
x =
-inf

y =
0

didConverge =
false

See also

optimset, fminsearch, fzero, inline, operator @

LME Reference — non-linear numerical functions 279

fminsearch

Minimum of a function in R n̂.

Syntax

x = fminsearch(fun, x0)
x = fminsearch(..., options)
x = fminsearch(..., options, ...)
(x, y, didConverge) = fminsearch(...)

Description

fminsearch(fun,x0,...) finds numerically a local minimum of func-
tion fun. fun is either specified by its name or given as an anonymous
or inline function or a function reference. It has at least one input
argument x, a real scalar, vector or array, and it returns one output
argument, a scalar real number. fminsearch finds the value x such
that fun(x) is minimized, starting from point x0.

The optional third input argument may contain options. It is either
the empty array [] for default options, or the result of optimset.

Remaining input arguments of fminsearch, if any, are given as ad-
ditional input arguments to function fun. They permit to parameterize
the function. For example fminsearch(’fun’,x0,[],2,5) calls fun
as fun(x,2,5) and minimizes its value with respect to x.

The first output argument of fminsearch is the value of x at opti-
mum. The second output argument, if it exists, is the value of fun(x)
at optimum. The third output argument, if it exists, is set to true if
fminsearch has converged to an optimum, or to false if it has not; in
that case, other output arguments are set to the best value obtained.
With one or two output arguments, fminsearch throws an error if it
does not converge.

Algorithm

fminsearch implements the Nelder-Mead simplex method. It starts
from a polyhedron centered around x0 (the "simplex"). Then at each it-
eration, either vertex x_i with the maximum value fun(x_i) is moved
to decrease it with a reflexion-expansion, a reflexion, or a contraction;
or the simplex is shrinked around the vertex with minimum value. It-
erations stop when the simplex is smaller than the tolerance, or when
the maximum number of iterations or function evaluations is reached
(then an error is thrown).

280 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

Minimum of a sine near 2, displayed with 15 digits:

fprintf(’%.15g\n’, fminsearch(@sin, 2));
4.712388977408411

Maximum of e−
2y2y − 0.12 The function if defined as an anony-

mous function stored in variable fun:

fun = @(x,y) x.*exp(-(x.*y).̂ 2).*x.*y-0.1*x.̂ 2;

In Sysquake, the contour plot can be displayed with the following com-
mands:

[X,Y] = meshgrid(0:0.02:3, 0:0.02:3);
contour(feval(fun, X, Y), [0,3,0,3], 0.1:0.05:0.5);

The maximum is obtained by minimizing the opposite of the function,
rewritten to use as input a single variable in R2:

mfun = @(X) -(X(1)*exp(-(X(1)*X(2))̂ 2)*X(1)*X(2)-0.1*X(1)̂ 2);
fminsearch(mfun, [1, 2])
2.1444 0.3297

For the same function with a constraint  < 1, the objective function
can be modified to return +∞ for inputs outside the feasible region
(note that we can start on the constraint boundary, but starting from
the infeasible region would probably fail):

mfunc = @(X) ...
X(1) < 1 ...
? -(X(1)*exp(-(X(1)*X(2))̂ 2)*X(1)*X(2) - 0.1*X(1)̂ 2) ...
: inf;

fminsearch(mfunc, [1, 2])
1 0.7071

See also

optimset, fminbnd, fzero, inline, operator @

fzero

Zero of a function.

Syntax

x = fzero(fun,x0)
x = fzero(fun,[xlow,xhigh])
x = fzero(...,options)
x = fzero(...,options,...)

LME Reference — non-linear numerical functions 281

Description

fzero(fun,...) finds numerically a zero of function fun. fun is either
specified by its name or given as an anonymous or inline function or a
function reference. It has at least one input argument x, and it returns
one output argument, also a real number. fzero finds the value x such
that fun(x)==0, up to some tolerance.

Second argument tells where to search; it can be either a starting
point or a pair of values xlow and xhigh which must bracket the zero,
such that fun(xlow) and fun(xhigh) have opposite sign.

The optional third argument may contain options. It is either the
empty array [] for the default options, or the result of optimset.

Additional input arguments of fzero are given as additional input
arguments to the function specified by fun. They permit to parame-
terize the function.

Examples

Zero of a sine near 3, displayed with 15 digits:

fprintf(’%.15g\n’, fzero(@sin, 3));
3.141592653589793

To find the solution of e = c +
p
 between 0 and 100 with c = 10, a

function f whose zero gives the desired solution is written:

function y = f(x,c)
y = exp(x) - c - sqrt(x);

Then fsolve is used, with the value of c passed as an additional argu-
ment:

x = fzero(@f,[0,100],[],10)
x =
2.4479

f(x,10)
1.9984e-15

An anonymous function can be used to avoid passing 10 as an ad-
ditional argument, which can be error-prone since a dummy empty
option arguments has to be inserted.

x = fzero(@(x) f(x,10), [0,100])
x =
2.4479

See also

optimset, fminsearch, inline, operator @, roots

282 LyME User Manual ©1999-2008, Calerga Sàrl

ode23 ode45

Ordinary differential equation integration.

Syntax

(t,y) = ode23(fun,[t0,tend],y0)
(t,y) = ode23(fun,[t0,tend],y0,options)
(t,y) = ode23(fun,[t0,tend],y0,options,...)
(t,y,te,ye,ie) = ode23(...)
(t,y) = ode45(fun,[t0,tend],y0)
(t,y) = ode45(fun,[t0,tend],y0,options)
(t,y) = ode45(fun,[t0,tend],y0,options,...)
(t,y,te,ye,ie) = ode45(...)

Description

ode23(fun,[t0,tend],y0) and ode45(fun,[t0,tend],y0) integrate
numerically an ordinary differential equation (ODE). Both functions are
based on a Runge-Kutta algorithm with adaptive time step; ode23 is
low-order and ode45 high-order. In most cases for non-stiff equations,
ode45 is the best method. The function to be integrated is either spec-
ified by its name or given as an anonymous or inline function or a
function reference. It should have at least two input arguments and
exactly one output argument:

function yp = f(t,y)

The function calculates the derivative yp of the state vector y at time
t.

Integration is performed over the time range specified by the sec-
ond argument [t0,tend], starting from the initial state y0. It may
stop before reaching tend if the integration step cannot be reduced
enough to obtain the required tolerance. If the function is continuous,
you can try to reduce MinStep in the options argument (see below).

The optional fourth argument may contain options. It is either the
empty array [] for the default options, or the result of odeset (the use
of a vector of option values is deprecated.)

Events generated by options Events or EventTime can be obtained
by three additional output arguments: (t,y,te,ye,ie)=... returns
event times in te, the corresponding states in ye and the correspond-
ing event identifiers in ie.

Additional input arguments of ode45 are given as additional input
arguments to the function specified by fun. They permit to parame-
terize the ODE.

LME Reference — non-linear numerical functions 283

0 20

-2

0

2

Van der Pol equation, mu=1

Figure 3.1 Van der Pol equation with μ = 1 integrated with ode45

Example

Let us integrate the following ordinary differential equation (Van Der
Pol equation), parameterized by μ:

′′ = μ
�

1− 2
�

′ − 

Let y1 =  and y2 = ′; their derivatives are

y′1 = y2

y′2 = μ
�

1− y21
�

y2 − y1

and can be computed by the following function:

function yp = f(t,y,mu)
yp = [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)];

The following ode45 call integrates the Van Der Pol equation from 0 to
10 with the default options, starting from (0) = 2 and ′(0) = 0, with
μ = 1 (see Fig. 3.1):

(t,y)=ode45(@f,[0,10],[2;0],[],1);

The plot command expects traces along the second dimension; con-
sequently, the result of ode45 should be transposed.

plot(t’, y’);

284 LyME User Manual ©1999-2008, Calerga Sàrl

See also

odeset, quad, inline, operator @, expm

odeset

Options for ordinary differential equation integration.

Syntax

options = odeset
options = odeset(name1, value1, ...)
options = odeset(options0, name1, value1, ...)

Description

odeset(name1,value1,...) creates the option argument used by
ode23 and ode45. Options are specified with name/value pairs, where
the name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a de-
fault value. The result is a structure whose fields correspond to each
option. Without any input argument, odeset creates a structure with
all the default options. Note that ode23 and ode45 also interpret the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, odeset adds or
changes fields which correspond to the name/value pairs which
follow.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
AbsTol 1e-6 maximum absolute error
Events [] (none) state-based event function
EventTime [] (none) time-based event function
InitialStep [] (10*MinStep) initial time step
MaxStep [] (time range/10) maximum time step
MinStep [] (time range/1e6) minimum time step
NormControl false error control on state norm
OnEvent [] (none) event function
OutputFcn [] (none) output function
Past false provide past times and states
PreArg {} list of prepended input arguments
Refine [] (1, 4 for ode45) refinement factor
RelTol 1e-3 maximum relative error
Stats false statistics display

LME Reference — non-linear numerical functions 285

Time steps and output

Several options control how the time step is tuned during the numeri-
cal integration. Error is calculated separately on each element of y if
NormControl is false, or on norm(y) if it is true; time steps are chosen
so that it remains under AbsTol or RelTol times the state, whichever
is larger. If this cannot be achieved, for instance if the system is stiff
and requires an integration step smaller than MinStep, integration is
aborted.

’Refine’ specifies how many points are added to the result for
each integration step. When it is larger than 1, additional points are
interpolated, which is much faster than reducing MaxStep.

The output function OutputFcn, if defined, is called after each step.
It is a function name in a string, a function reference, or an anonymous
or inline function, which can be defined as

function stop = outfun(tn, yn)

where tn is the time of the new samples, yn their values, and stop
a logical value which is false to continue integrating or true to stop.
The number of new samples is given by the value of Refine; when
multiple values are provided, tn is a row vector and yn is a matrix
whose columns are the corresponding states. The output function can
be used for incremental plots, for animations, or for managing large
amounts of output data without storing them in variables.

Events

Events are additional time steps at controlled time, to change instan-
taneously the states, and to base the termination condition on the
states. Time instants where events occur are either given explicitly
by EventTime, or implicitly by Events. There can be multiple streams
of events, which are checked independently and are identified by a
positive integer for Events, or a negative integer for EventTime. For
instance, for a ball which bounces between several walls, the inter-
section between each wall and the ball trajectory would be a different
event stream.

For events which occur at regular times, EventTime is an n-by-two
matrix: for each row, the first column gives the time step ts, and the
second column gives the offset to. Non-repeating events are specified
with an infinite time step ts. Events occur at time t=to+k*ts, where
k is an integer.

When event time is varying, EventTime is a function which can be
defined as

function eventTime = eventtimefun(t, y, ...)

286 LyME User Manual ©1999-2008, Calerga Sàrl

where t is the current time, y the current state, and the ellipsis stand
for additional arguments passed to ode*. The function returns a (col-
umn) vector whose elements are the times where the next event oc-
curs. In both cases, each row corresponds to a different event stream.

For events which are based on the state, the value of a function
which depends on the time and the states is checked; the event occurs
when its sign changes. Events is a function which can be defined as

function (value, isterminal, direction) ...
= eventsfun(t, y, ...)

Input arguments are the same as for EventTime. Output arguments
are (column) vectors where each element i corresponds to an event
stream. An event occurs when value(i) crosses zero, in either
direction if direction(i)==0, from negative to nonnegative if
direction(i)>0, or from positive to nonpositive if direction(i)<0.
The event terminates integration if isterminal(i) is true. The
Events function is evaluated for each state obtained by integration;
intermediate time steps obtained by interpolation when Refine is
larger than 1 are not considered. When an event occurs, the
integration time step is reset to the initial value, and new events are
disabled during the next integration step to avoid shattering.
MaxStep should be used if events are missed when the result of
Events is not monotonous between events.

When an event occurs, function OnEvent is called if it exists. It can
be defined as

function yn = onevent(t, y, i, ...)

where i identifies the event stream (positive for events produced by
Events or negative for events produced by EventTime); and the out-
put yn is the new value of the state, immediately after the event.

The primary goal of ode* functions is to integrate states. However,
there are systems where some states are constant between events,
and are changed only when an event occurs. For instance, in a relay
with hysteresis, the output is constant except when the input over-
shoots some value. In the general case, ni states are integrated and
n-ni states are kept constant between events. The total number of
states n is given by the length of the initial state vector y0, and the
number of integrated states ni is given by the size of the output of the
integrated function. Function OnEvent can produce a vector of size n
to replace all the states, of size n-ni to replace the non-integrated
states, or empty to replace no state (this can be used to display re-
sults or to store them in a file, for instance).

Event times are computed after an integration step has been ac-
cepted. If an event occurs before the end of the integration step, the
step is shortened; event information is stored in the output arguments

LME Reference — non-linear numerical functions 287

of ode* te, ie and ye; and the OnEvent function is called. The output
arguments t and y of ode* contain two rows with the same time and
the state right before the event and right after it. The time step used
for integration is not modified by events.

Additional arguments

Past is a logical value which, if it is true, specifies that the time and
state values computed until now (what will eventually be the result of
ode23 or ode45) are passed as additional input arguments to functions
called during intergration. This is especially useful for delay differen-
tial equations (DDE), where the state at some time point in the past
can be interpolated from the integration results accumulated until now
with interp1. Assuming no additional parameters or PreArg (see be-
low), functions must be defined as

function yp = f(t,y,tpast,ypast)
function stop = outfun(tn,yn,tpast,ypast)
function eventTime = eventtimefun(t,y,tpast,ypast)
function (value, isterminal, direction) ...

= eventsfun(t,y,tpast,ypast)
function yn = onevent(t,y,tpast,ypast,i)

PreArg is a list of additional input arguments for all functions called
during integration; they are placed before normal arguments. For ex-
ample, if its value is {1,’abc’}, the integrated function is called with
fun(1,’abc’,t,y), the output function as outfun(1,’abc’,tn,yn),
and so on.

Examples

Default options

odeset
AbsTol: 1e-6
Events: []
EventTime: []
InitialStep: []
MaxStep: []
MinStep: []
NormControl: false
OnEvent: []
OutputFcn: []
PreArg: {}
Refine: []
RelTol: 1e-3
Stats: false

288 LyME User Manual ©1999-2008, Calerga Sàrl

0 5

-2

0

2

Figure 3.2 Van der Pol equation with Refine set to 1 and 4

Option ’refine’

ode45 is typically able to use large time steps to achieve the requested
tolerance. When plotting the output, however, interpolating it with
straight lines produces visual artifacts. This is why ode45 inserts 3
interpolated points for each calculated point, based on the fifth-order
approximation calculated for the integration (Refine is 4 by default).
In the following code, curves with and without interpolation are com-
pared (see Fig. 3.2). Note that the numbers of evaluations of the func-
tion being integrated are the same.

mu = 1;
fun = @(t,y) [y(2); mu*(1-y(1)̂ 2)*y(2)-y(1)];
(t, y) = ode45(fun, [0,5], [2;0], ...

odeset(’Refine’,1,’Stats’,true));
Number of function evaluations: 289
Successful steps: 42
Failed steps (error too large): 6

size(y)
43 2

(ti, yi) = ode45(fun, [0,5], [2;0], ...
odeset(’Stats’,true));

Number of function evaluations: 289
Successful steps: 42
Failed steps (error too large): 6

size(yi)
169 2

LME Reference — non-linear numerical functions 289

plot(ti’, yi’, ’g’);
plot(t’, y’);

State-based events

For simulating a ball bouncing on the ground, an event is generated
every time the ball hits the ground, and its speed is changed instan-
taneously. Let y(1) be the height of the ball above the ground, and
y(2) its speed (SI units are used). The state-space model is

y’ = [y(2); -9.81];

An event occurs when the ball hits the ground:

value = y(1);
isterminal = false;
direction = -1;

When the event occurs, a new state is computed:

yn = [0; -damping*y(2)];

To integrate this, the following functions are defined:

function yp = ballfun(t, y, damping)
yp = [y(2); -9.81];

function (v, te, d) = ballevents(t, y, damping)
v = y(1); // event when the height becomes negative
te = false; // do not terminate
d = -1; // only for negative speeds

function yn = ballonevent(t, y, i, damping)
yn = [0; -damping*y(2)];

Ball state is integrated during 5 s (see Fig. 3.3) with

opt = odeset(’Events’, @ballevents, ...
’OnEvent’, @ballonevent);

(t, y) = ode45(@ballfun, [0, 5], [2; 0], opt, 1);
plot(t’, y’);

Time events with discontinuous function

If the function being integrated has discontinuities at known time in-
stants, option EventTime can be used to insure an accurate switching
time. Consider a first-order filter with input (t), where (t) = 0 for
t < 1 and (t) = 1 for t ≥ 1. The following function is defined for the
state derivative:

function yp = filterfun(t, y)
yp = -y + (t <= 1 ? 0 : 1);

290 LyME User Manual ©1999-2008, Calerga Sàrl

0 5

-5

0

5

Bouncing ball integrated with events

Figure 3.3 Bouncing ball integrated with events

A single time event is generated at t = 1:

opt = odeset(’EventTime’, [inf, 1]);
(t, y) = ode45(@filterfun, [0, 5], 0, opt);
plot(t’, y’);

Function filterfun is integrated in the normal way until t = 1 inclu-
sive, with  = 0. This is why the conditional expression in filterfun
is less than or equal to and not less than. Then the event occurs, and
integration continues from t = 1+ ε with  = 0.

Non-integrated state

For the last example, we will consider a system made of an integrator
and a relay with hysteresis in a loop. Let y(1) be the output of the
integrator and y(2) the output of the relay. Only y(1) is integrated:

yi’ = y(2);

An event occurs when the integrator is larger or smaller than the hys-
teresis:

value = y(1) - y(2);
isTerminal = false;
direction = sign(y(2));

When the event occurs, a new value is computed for the 2nd state:

LME Reference — non-linear numerical functions 291

0 5
-1

0

1
Relay with hysteresis

Figure 3.4 Relay with hysteresis integrated with events

yn = -y(2);

To integrate this, the following functions are defined:

function yp = relayfun(t, y)
yp = y(2);

function (v, te, d) = relayevents(t, y)
v = y(1) - y(2);
te = false;
d = sign(y(2));

function yn = relayonevent(t, y, i)
yn = -y(2);

The initial state is [0;1]; 0 for the integrator, and 1 for the output of
the relay. State is integrated during 5 s (see Fig. 3.4) with

(t, y) = ode45(@relayfun, [0, 5], [0; 1], ...
odeset(’Events’, @relayevents, ’OnEvent’, @relayonevent));
plot(t’, y’);

Delay differential equation

A system whose Laplace transform is Y(s)/U(s) = e−ds/(s2 + s) (first
order + integrator + delay d) is simulated with unit negative feedback.
The reference signal is 1 for t > 0. First, the open-loop system is con-
verted from transfer function to state-space, such that ′(t) = A(t) +

292 LyME User Manual ©1999-2008, Calerga Sàrl

B(t) and y(t) = C(t − d). The closed-loop state-space model is ob-
tained by setting (t) = 1−y(t), which gives ′(t) = A(t)+BC(t−d).

Delayed state is interpolated from past results with interp1. Note
that values for t < 0 (extrapolated) are set to 0, and that values more
recent than the last result are interpolated with the state passed to f
for current t.

(A,B,C) = tf2ss(1,[1,1,0]);
d = 0.1;
x0 = zeros(length(A),1);
tmax = 10;
f = @(t,x,tpast,xpast) ...

A*x+B*(1-C*interp1([tpast;t],[xpast;x.’],t-d,’1’,0).’);
(t,x) = ode45(f, [0,tmax], x0, odeset(’Past’,true));

Output y can be computed from the state:

y = C * interp1(t,x,t-d,’1’,0).’;

See also

ode23, ode45, optimset, interp1

optimset

Options for minimization and zero finding.

Syntax

options = optimset
options = optimset(name1, value1, ...)
options = optimset(options0, name1, value1, ...)

Description

optimset(name1,value1,...) creates the option argument used by
fminbnd, fminsearch, and fzero. Options are specified with
name/value pairs, where the name is a string which must match
exactly the names in the table below. Case is significant. Options
which are not specified have a default value. The result is a structure
whose fields correspond to each option. Without any input argument,
optimset creates a structure with all the default options. Note that
fminbnd, fminsearch, and fzero also interpret the lack of an option
argument, or the empty array [], as a request to use the default
values.

LME Reference — non-linear numerical functions 293

When its first input argument is a structure, optimset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options (empty arrays mean "auto-
matic"):

Name Default Meaning
Display false detailed display
MaxFunEvals 1000 maximum number of evaluations
MaxIter 500 maximum number of iterations
TolX [] maximum relative error

The default value of TolX is eps for fzero and sqrt(eps) for
fminbnd and fminsearch.

Examples

Default options:

optimset
Display: false
MaxFunEvals: 1000
MaxIter: 500
TolX: []

Display of the steps performed to find the zero of cos between 1 and
2:

fzero(@cos, [1,2], optimset(’Display’,true))
Checking lower bound
Checking upper bound
Inverse quadratic interpolation 2,1.5649,1
Inverse quadratic interpolation 1.5649,1.571,2
Inverse quadratic interpolation 1.571,1.5708,1.5649
Inverse quadratic interpolation 1.5708,1.5708,1.571
Inverse quadratic interpolation 1.5708,1.5708,1.571

ans =
1.5708

See also

fzero, fminbnd, fminsearch, odeset

quad

Numerical integration.

294 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

y = quad(fun, a, b)
y = quad(fun, a, b, tol)
y = quad(fun, a, b, tol, trace)
y = quad(fun, a, b, tol, trace, ...)

Description

quad(fun,a,b) integrates numerically function fun between a and b.
fun is either specified by its name or given as an anonymous or inline
function or a function reference.

The optional fourth argument is the requested relative tolerance of
the result. It is either a positive real scalar number or the empty ma-
trix (or missing argument) for the default value, which is sqrt(eps).
The optional fifth argument, if true or nonzero, makes quad displays
information at each step.

Additional input arguments of quad are given as additional input
arguments to function fun. They permit to parameterize the function.

Example

∫ 2

0
te−tdt

quad(@(t) t*exp(-t), 0, 2)
0.5940

See also

sum, ode45, inline, operator @

3.19 String Functions

base64decode

Decode base64-encoded data.

Syntax

strb = base64decode(strt)

LME Reference — strings 295

Description

base64decode(strt) decodes the contents of string strt which rep-
resents data encoded with base64. Characters which are not ’A’-’Z’,
’a’-’z’, ’0’-’9’, ’+’, ’/’, or ’=’ are ignored. Decoding stops at the end of
the string or when ’=’ is reached.

See also

base64encode

base64encode

Encode data using base64.

Syntax

strt = base64encode(strb)

Description

base64encode(strb) encodes the contents of string strb which rep-
resents binary data. The result contains only characters ’A’-’Z’, ’a’-’z’,
’0’-’9’, ’+’, ’/’, and ’=’; it is suitable for transmission or storage on
media which accept only text.

Each character of encoded data represents 6 bits of binary data;
i.e. one needs four characters for three bytes. The six bits represent
64 different values, encoded with the characters ’A’ to ’Z’, ’a’ to ’z’,
’0’ to ’9’, ’+’, and ’/’ in this order. When the binary data have a length
which is not a multiple of 3, encoded data are padded with one or two
characters ’=’ to have a multiple of 4.

Base64 encoding is an Internet standard described in RFC 1521.

Example

s = base64encode(char(0:10))
s =
AAECAwQFBgcICQo=

double(base64decode(s))
0 1 2 3 4 5 6 7 8 9 10

See also

base64decode

296 LyME User Manual ©1999-2008, Calerga Sàrl

char

Convert an array to a character array (string).

Syntax

s = char(A)
S = char(s1, s2, ...)

Description

char(A) converts the elements of matrix A to characters, resulting in
a string of the same size. Characters are stored in unsigned 16-bit
words. The shape of A is preserved. Even if most functions ignore the
string shape, you can force a row vector with char(A(:).’).

char(s1,s2,...) concatenates vertically the arrays given as ar-
guments to produce a string matrix. If the strings do not have the
same number of columns, blanks are added to the right.

Examples

char(65:70)
ABCDEF

char([65, 66; 67, 68](:).’)
ABCD

char(’ab’,’cde’)
ab
cde

char(’abc’,[’de’;’fg’])
abc
de
fg

See also

setstr, uint16, operator :, operator .’, ischar, logical, double,
single

deblank

Remove trailing blank characters from a string.

Syntax

s2 = deblank(s1)

LME Reference — strings 297

Description

deblank(s1) removes the trailing blank characters from string s1.
Blank characters are spaces (code 32), tabulators (code 9), carriage
returns (code 13), line feeds (code 10), and null characters (code 0).

Example

double(’ \tAB CD\r\n\0’)
32 9 65 66 32 32 67 68 13 10 0

double(deblank(’ \tAB CD\n\r\0’)))
32 9 65 66 32 32 67 68

See also

strtrim

findstr

Find a substring in a string.

Syntax

pos = findstr(str, sub)

Description

findstr(str,sub) finds occurrences of string sub in string str and
returns a vector of the positions of all occurrences, or the empty vector
[] if there is none. Occurrences may overlap.

Examples

findstr(’ababcdbaaab’,’ab’)
1 3 10

findstr(’ababcdbaaab’,’ac’)
[]

findstr(’aaaaaa’,’aaa’)
1 2 3

See also

find, strcmp, strmatch, strtok

298 LyME User Manual ©1999-2008, Calerga Sàrl

ischar

Test for a string object.

Syntax

b = ischar(obj)

Description

ischar(obj) is true if the object obj is a character string, false other-
wise. Strings can have more than one line.

Examples

ischar(’abc’)
true

ischar(0)
false

ischar([])
false

ischar(’’)
true

ischar([’abc’;’def’])
true

See also

isletter, isspace, isnumeric, islogical, isinteger, islist,
isstruct, setstr, char

isdigit

Test for decimal digit characters.

Syntax

b = isdigit(s)

Description

For each character of string s, isdigit(s) is true if it is a digit (’0’ to
’9’) and false otherwise.

LME Reference — strings 299

Examples

isdigit(’a123bAB12* ’)
F T T T F F F T T F F

See also

isletter, isspace, lower, upper, ischar

isletter

Test for letter characters.

Syntax

b = isletter(s)

Description

For each character of string s, isletter(s) is true if it is a letter and
false otherwise. Letters with diacritical signs are not considered as
letters.

Examples

isletter(’abAB12* ’)
T T T T F F F F

See also

isdigit, isspace, lower, upper, ischar

isspace

Test for space characters.

Syntax

b = isspace(s)

Description

For each character of string s, isspace(s) is true if it is a space, a
tabulator, a carriage return or a line feed, and false otherwise.

300 LyME User Manual ©1999-2008, Calerga Sàrl

Example

isspace(’a\tb c\nd’)
0 1 0 1 0 1 0

See also

isletter, isdigit, ischar

lower

Convert all uppercase letters to lowercase.

Syntax

s2 = lower(s1)

Description

lower(s1) converts all the uppercase letters of string s1 to lowercase.
Currently, only ASCII letters (without diacritic) are converted.

Example

lower(’abcABC123’)
abcabc123

See also

upper, isletter

md5

Calculate MD5 digest.

Syntax

digest = md5(strb)
digest = md5(fd)

LME Reference — strings 301

Description

md5(strb) calculates the MD5 digest of strb which represents binary
data. strb can be a string (only the least-significant byte of each
character is considered) or an array of bytes of class uint8 or int8.
The result is a string of 32 hexadecimal digits. It is believed to be hard
to create the input to get a given digest, or to create two inputs with
the same digest.

md5(fd) calculates the MD5 digest of the bytes read from file de-
scriptor fd until the end of the file. The file is left open.

MD5 digest is an Internet standard described in RFC 1321.

Examples

MD5 of the three characters ’a’, ’b’, and ’c’:

md5(’abc’)
900150983cd24fb0d6963f7d28e17f72

This can be compared to the result of the command tool md5 found on
many unix systems:

$ echo -n abc | md5
900150983cd24fb0d6963f7d28e17f72

The following statements calculate the digest of the file ’somefile’:

fd = fopen(’somefile’);
digest = md5(fd);
fclose(fd);

See also

sha1

setstr

Conversion of an array to a string.

Syntax

str = setstr(A)

Description

setstr(A) converts the elements of array A to characters, resulting
in a string of the same size. Characters are stored in unsigned 16-bit
words.

302 LyME User Manual ©1999-2008, Calerga Sàrl

Example

setstr(65:75)
ABCDEFGHIJK

See also

char, uint16, logical, double

sha1

Calculate SHA1 digest.

Syntax

digest = sha1(strb)
digest = sha1(fd)

Description

sha1(strb) calculates the SHA1 digest of strb which represents bi-
nary data. strb can be a string (only the least-significant byte of each
character is considered) or an array of bytes of class uint8 or int8.
The result is a string of 40 hexadecimal digits. It is believed to be hard
to create the input to get a given digest, or to create two inputs with
the same digest.

sha1(fd) calculates the SHA1 digest of the bytes read from file
descriptor fd until the end of the file. The file is left open.

SHA1 digest is an Internet standard described in RFC 3174.

Example

SHA1 digest of the three characters ’a’, ’b’, and ’c’:

sha1(’abc’)
a9993e364706816aba3e25717850c26c9cd0d89d

See also

md5

strcmp

String comparison.

LME Reference — strings 303

Syntax

b = strcmp(s1, s2)
b = strcmp(s1, s2, n)

Description

strcmp(s1, s2) is true if the strings s1 and s2 are equal (i.e. same
length and corresponding characters are equal). strcmp(s1, s2, n)
compares the strings up to the n:th character. Note that this function
does not return the same result as the strcmp function of the standard
C library.

Examples

strcmp(’abc’,’abc’)
true

strcmp(’abc’,’def’)
false

strcmp(’abc’,’abd’,2)
true

strcmp(’abc’,’abc’,5)
false

See also

strcmpi, operator ===, operator =̃=, operator ==, findstr, strmatch

strcmpi

String comparison with ignoring letter case.

Syntax

b = strcmpi(s1, s2)
b = strcmpi(s1, s2, n)

Description

strcmpi compares strings for equality, ignoring letter case. In every
other respect, it behaves like strcmp.

304 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

strcmpi(’abc’,’aBc’)
true

strcmpi(’Abc’,’abd’,2)
true

See also

strcmp, operator ===, operator =̃=, operator ==, findstr, strmatch

strmatch

String match.

Syntax

i = strmatch(str, strMatrix)
i = strmatch(str, strList)
i = strmatch(..., ’exact’)

Description

strmatch(str,strMatrix) compares string str with each row of the
character matrix strMatrix; it returns the index of the first row whose
beginning is equal to str, or 0 if no match is found. Case is significant.

strmatch(str,strList) compares string str with each element
of list strList, which must be strings.

With a third argument, which must be the string ’exact’, str must
match the complete row or element of the second argument, not only
the beginning.

Examples

strmatch(’abc’,[’axyz’;’uabc’;’abcd’;’efgh’])
3

strmatch(’abc’,[’axyz’;’uabc’;’abcd’;’efgh’],’exact’)
0

strmatch(’abc’,{’ABC’,’axyz’,’abcdefg’,’ab’,’abcd’})
3

See also

strcmp, findstr

LME Reference — strings 305

strtok

Token search in string.

Syntax

(token, remainder) = strtok(str)
(token, remainder) = strtok(str, separators)

Description

strtok(str) gives the first token in string str. A token is defined as
a substring delimited by separators or by the beginning or end of the
string; by default, separators are spaces, tabulators, carriage returns
and line feeds. If no token is found (i.e. if str is empty or contains
only separator characters), the result is the empty string.

The optional second output is set to what follows immediately the
token, including separators. If no token is found, it is the same as str.

An optional second input argument contains the separators in a
string.

Examples

Strings are displayed with quotes to show clearly the separators.

strtok(’ ab cde ’)
’ab’

(t, r) = strtok(’ ab cde ’)
t =
’ab’

r =
’ cde ’

(t, r) = strtok(’2, 5, 3’)
t =
’2’

r =
’, 5, 3’

See also

strmatch, findstr, strtrim

strtrim

Remove leading and trailing blank characters from a string.

306 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

s2 = strtrim(s1)

Description

strtrim(s1) removes the leading and trailing blank characters from
string s1. Blank characters are spaces (code 32), tabulators (code 9),
carriage returns (code 13), line feeds (code 10), and null characters
(code 0).

Example

double(’ \tAB CD\r\n\0’)
32 9 65 66 32 32 67 68 13 10 0

double(strtrim(’ \tAB CD\n\r\0’)))
65 66 32 32 67 68

See also

deblank, strtok

upper

Convert all lowercase letters to lowercase.

Syntax

s2 = upper(s1)

Description

upper(s1) converts all the lowercase letters of string s1 to uppercase.
Currently, only ASCII letters (without diacritic) are converted.

Example

upper(’abcABC123’)
ABCABC123

See also

lower, isletter

LME Reference — strings 307

utf8decode

Decode Unicode characters encoded with UTF-8.

Syntax

str = utf8decode(b)

Description

utf8decode(b) decodes the contents of uint8 or int8 array b which
represents Unicode characters encoded with UTF-8. Each Unicode
character corresponds to one, two, or three bytes of UTF-8 code. The
result is a standard character array with a single row. Invalid codes (for
example when the beginning of the decoded data does not correspond
to a character boundary) are ignored.

See also

utf8encode

utf8encode

Encode a string of Unicode characters using UTF-8.

Syntax

b = utf8encode(str)

Description

utf8encode(b) encodes the contents of character array str using
UTF-8. Each Unicode character in str corresponds to one, two, or
three bytes of UTF-8 code. The result is an array of unsigned 8-bit
integers.

If the input string does not contain Unicode characters, the output
is invalid.

Example

b = utf8encode([’abc’, 200, 2000, 20000])
b =
1x10 uint8 array
97 98 99 195 136 223 144 228 184 160

str = utf8decode(b);
+str

308 LyME User Manual ©1999-2008, Calerga Sàrl

1x6 uint16 array
97 98 99 200 2000 20000

See also

utf8decode

3.20 List Functions

apply

Function evaluation with arguments in lists.

Syntax

listout = apply(fun, listin)
listout = apply(fun, listin, nargout)

Description

listout=apply(fun,listin) evaluates function fun with input argu-
ments taken from the elements of list listin. Output arguments are
grouped in list listout. Function fun is specified either by its name
as a string or by an inline function.

The number of expected output arguments can be specified with
an optional third input argument nargout. By default, the maximum
number of output arguments is requested, up to 256; this limit exists
to prevent functions with an unlimited number of output arguments,
such as deal, from filling memory.

Examples

apply(’min’, {5, 7})
{5}

apply(’size’,{magic(3)},2)
{3, 3}

apply(inline(’2*x+3*y’,’x’,’y’), {5, 10})
{40}

See also

map, feval, inline, operator @

LME Reference — lists 309

join

List concatenation.

Syntax

list = join(l1, l2, ...)

Description

join(l1,l2,...) joins elements of lists l1, l2, etc. to make a larger
list.

Examples

join({1,’a’,2:5}, {4,2}, {{’xxx’}})
{1,’a’,[2,3,4,5],4,2,{’xxx’}}

See also

operator ,, operator ;, replist

islist

Test for a list object.

Syntax

b = islist(obj)

Description

islist(obj) is true if the object obj is a list, false otherwise.

Examples

islist({1, 2, ’x’})
true

islist({})
true

islist([])
false

ischar(’’)
false

310 LyME User Manual ©1999-2008, Calerga Sàrl

See also

isstruct, isnumeric, ischar, islogical, isempty

list2num

Conversion from list to numeric array.

Syntax

A = list2num(list)

Description

list2num(list) takes the elements of list, which must be numbers
or arrays, and concatenates them on a row (along second dimension)
as if they were placed inside brackets and separated with commas.
Element sizes must be compatible.

Example

list2num({1, 2+3j, 4:6})
1 2+3j 4 5 6

See also

num2list, operator [], operator ,

map

Function evaluation for each element of a list

Syntax

(listout1,...) = map(fun, listin1, ...)

Description

map(fun,listin1,...) evaluates function fun successively for each
corresponding elements of the remaining arguments, which must be
lists or cell arrays. It returns the result(s) of the evaluation as list(s)
or cell array(s) with the same size as inputs. Input lists which contain
a single element are repeated to match other arguments if necessary.
fun is the name of a function as a string, a function reference, or an
inline function.

LME Reference — lists 311

Examples

map(’max’, {[2,6,4], [7,-1], 1:100})
{6, 7, 100}

map(inline(’x+10’), {3,7,16})
{13, 17, 26}

(nr, nc) = map(@size, {1,’abc’,[4,7;3,4]})
nr =
{1,1,2}

nc =
{1,3,2}

s = map(@size, {1,’abc’,[4,7;3,4]})
s =
{[1,1], [1,3], [2,2]}

map(@disp, {’hello’, ’lme’})
hello
lme

map(@atan2, {1}, {2,3})
{0.4636,0.3218}

See also

apply, cellfun, for, inline, operator @

num2list

Conversion from array to list.

Syntax

list = num2list(A)
list = num2list(A, dim)

Description

num2list(A) creates a list with the elements of non-cell array A.
num2list(A,dim) cuts array A along dimension dim and creates a

list with the result.

Examples

num2list(1:5)
{1, 2, 3, 4, 5}

num2list([1,2;3,4])
{1, 2, 3, 4}

num2list([1, 2; 3, 4], 1)
{[1, 2], [3, 4]}

312 LyME User Manual ©1999-2008, Calerga Sàrl

num2list([1, 2; 3, 4], 2)
{[1; 3], [2; 4]}

See also

list2num, num2cell

replist

Replicate a list.

Syntax

listout = replist(listin, n)

Description

replist(listin,n) makes a new list by concatenating n copies of list
listin.

Example

replist({1, ’abc’}, 3)
{1,’abc’,1,’abc’,1,’abc’}

See also

join, repmat

3.21 Structure Functions

cell2struct

Convert a cell array to a structure array.

Syntax

SA = cell2struct(CA, fields)
SA = cell2struct(CA, fields, dim)

LME Reference — structures 313

Description

cell2struct(CA,fields) converts a cell array to a structure
array. The size of the result is size(SA)(2:end), where nf is the
number of fields. Field SA(i1,i2,...).f of the result contains cell
CA{j,i1,i2,...}, where f is field field{j}. Argument fields
contains the field names as strings.

With a third input argument, cell2struct(CA,fields,dim) picks
fields of each element along dimension dim. The size of the result is
the size of CA where dimension dim is removed.

Examples

SA = cell2struct({1, ’ab’; 2, ’cde’}, {’a’, ’b’});
SA = cell2struct({1, 2; ’ab’, ’cde’}, {’a’, ’b’}, 2);

See also

struct2cell

fieldnames

List of fields of a structure.

Syntax

fields = fieldnames(strct)

Description

fieldnames(strct) returns the field names of structure strct as a
list of strings.

Example

fieldnames(struct(’a’, 1, ’b’, 1:5))
{’a’, ’b’}

See also

struct, isfield, orderfields, rmfield

getfield

Value of a field in a structure.

314 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

value = getfield(strct, name)

Description

getfield(strct,name) gets the value of field name in structure
strct. It is an error if the field does not exist. getfield(s,’f’)
gives the same value as s.f. getfield is especially useful when the
field name is not fixed, but is stored in a variable or is the result of an
expression.

See also

operator ., struct, setfield, rmfield

isfield

Test for the existence of a field in a structure.

Syntax

b = isfield(strct, name)

Description

isfield(strct, name) is true if the structure strct has a field whose
name is the string name, false otherwise.

Examples

isfield(struct(’a’, 1:3, ’x’, ’abc’), ’x’)
true

isfield(struct(’a’, 1:3, ’x’, ’abc’), ’X’)
false

See also

isstruct, struct

isstruct

Test for a structure object.

LME Reference — structures 315

Syntax

b = isstruct(obj)

Description

isstruct(obj) is true if its argument obj is a structure or structure
array, false otherwise.

Examples

isstruct(struct(’a’, 123))
true

isstruct({1, 2, ’x’})
false

a.f = 3;
isstruct(a)
true

See also

struct, isfield, isa, islist, ischar, isobject, islogical

orderfields

Reorders the fields of a structure.

Syntax

strctout = orderfields(strctin)
strctout = orderfields(strctin, structref)
strctout = orderfields(strctin, names)
strctout = orderfields(strctin, perm)
(strctout, perm) = orderfields(...)

Description

With a single input argument, orderfields(strctin) reorders struc-
ture fields by sorting them by field names.

With two input arguments, orderfields reorders the fields of the
first argument after the second argument. Second argument can be
a permutation vector containing integers from 1 to length(strctin),
another structure with the same field names, or a list of names. In the
last cases, all the fields of the structure must be present in the second
argument.

316 LyME User Manual ©1999-2008, Calerga Sàrl

The (first) output argument is a structure with the same fields and
the same value as the first input argument; the only difference is the
field order. An optional second output argument is set to the permu-
tation vector.

Examples

s = struct(’a’,123,’c’,1:3,’b’,’123’)
s =
a: 123
c: real 1x3
b: ’abcde’

(t, p) = orderfields(s)
t =
a: 123
b: ’abcde’
c: real 1x3

p =
1
3
2

t = orderfields(s, {’c’, ’b’, ’a’})
t =
c: real 1x3
b: ’abcde’
a: 123

See also

struct, fieldnames

rmfield

Deletion of a field in a structure.

Syntax

strctout = rmfield(strctin, name)

Description

strctout=rmfield(strctin,name) makes a structure strctout with
the same fields as strctin, except for field named name which is re-
moved. If field name does not exist, strctout is the same as strctin.

LME Reference — structures 317

Example

x = rmfield(struct(’a’, 1:3, ’b’, ’abc’), ’a’);
fieldnames(x)
b

See also

struct, setfield, getfield, orderfields

setfield

Assignment to a field in a structure.

Syntax

strctout = setfield(strctin, name, value)

Description

strctout=setfield(strctin,name,value) makes a structure
strctout with the same fields as strctin, except that field
named name is added if it does not exist yet and is set to
value. s=setfield(s,’f’,v) has the same effect as s.f=v;
s=setfield(s,str,v) has the same effect as s.(str)=v.

See also

operator ., struct, getfield, rmfield

struct

Creation of a structure

Syntax

strct = struct(fieldname1, value1, fieldname2, value2, ...)

Description

struct builds a new structure. Input arguments are used by pairs to
create the fields; for each pair, the first argument is the field name,
provided as a string, and the second one is the field value.

318 LyME User Manual ©1999-2008, Calerga Sàrl

Example

x = struct(’a’, 1, ’b’, 2:5);
x.a
1

x.b
2 3 4 5

See also

structarray, isstruct, isfield, rmfield, fieldnames, operator {}

struct2cell

Convert a structure array to a cell array.

Syntax

CA = struct2cell(SA)

Description

struct2cell(SA) converts a structure or structure array to a cell
array. The size of the result is [nf,size(SA)], where nf is the
number of fields. Cell CA{j,i1,i2,...} of the result contains field
SA(i1,i2,...).f, where f is the j:th field.

Example

SA = cell2struct({1, ’ab’; 2, ’cde’}, {’a’, ’b’});
CA = struct2cell(SA);

See also

cell2struct

structarray

Create a structure array.

Syntax

SA = structarray(fieldname1, A1, fieldname2, A2, ...)

LME Reference — objects 319

Description

structarray builds a new structure array. Input arguments are used
by pairs to create the fields; for each pair, the first argument is the
field name, provided as a string, and the second one is the field values
as a cell array. All cell arrays must have the same size; the resulting
structure array has the same size.

Example

SA = structarray(’a’, {1,2;3,4}, ’b’, {’a’, 1:3; ’def’, true});

See also

struct, cell2struct

3.22 Object Functions

class

Object creation.

Syntax

object = class(strct, ’classname’)
object = class(strct, ’classname’, parent1, ...)
str = class(object)

Description

class(strct,’classname’) makes an object of the specified class
with the data of structure strct. Object fields can be accessed
only from methods of that class, i.e. functions whose name is
classname::methodname. Objects must be created by the class
constructor classname::classname.

class(strct,’classname’,parent1,...) makes an object of the
specified class which inherits fields and methods from one or several
other object(s) parent1, ... Parent objects are inserted as additional
fields in the object, with the same name as the class. Fields of parent
objects cannot be directly accessed by the new object’s methods, only
by the parent’s methods.

class(object) gives the class of object as a string. The table
below gives the name of native types.

320 LyME User Manual ©1999-2008, Calerga Sàrl

Class Native type
double real, complex, or logical scalar or array
char character or character array
list list or structure
inline inline function
funref function reference

Examples

o1 = class(struct(’fld1’, 1, ’fld2’, rand(4)), ’c1’);
o2 = class(struct(’fld3’, ’abc’), ’c2’, o1);
class(o2)
c2

See also

map, isa, isobject, methods

isa

Test for an object of a given class.

Syntax

b = isa(object,’classname’)

Description

isa(object,’classname’) returns true of object is an object of class
class, directly or by inheritance.

Example

isa(pi,’double’)
true

See also

class, isobject, methods

isobject

Test for an object.

LME Reference — logical functions 321

Syntax

b = isobject(a)

Description

object(a) returns true if a is an object created with class.

See also

class, isa, isstruct

methods

List of methods for a class.

Syntax

methods classname
list = methods(’classname’)

Description

methods classname displays the list of methods defined for class
classname. Inherited methods and private methods are ignored.
With an output argument, methods gives produces a list of strings.

See also

class, info

3.23 Logical Functions

all

Check whether all the elements are true.

Syntax

v = all(A)
v = all(A,dim)
b = all(v)

322 LyME User Manual ©1999-2008, Calerga Sàrl

Description

all(A) performs a logical AND on the elements of the columns of array
A, or the elements of a vector. If a second argument dim is provided,
the operation is performed along that dimension.

all can be omitted if its result is used by if or while, because
these statements consider an array to be true if all its elements are
nonzero.

Examples

all([1,2,3] == 2)
false

all([1,2,3] > 0)
true

See also

any, operator &, bitall

any

Check whether any element is true.

Syntax

v = any(A)
v = any(A,dim)
b = any(v)

Description

any(A) performs a logical OR on the elements of the columns of array
A, or the elements of a vector. If a second argument dim is provided,
the operation is performed along that dimension.

Examples

any([1,2,3] == 2)
true

any([1,2,3] > 5)
false

See also

all, operator |, bitany

LME Reference — logical functions 323

bitall

Check whether all the corresponding bits are true.

Syntax

v = bitall(A)
v = bitall(A,dim)
b = bitall(v)

Description

bitall(A) performs a bitwise AND on the elements of the columns
of array A, or the elements of a vector. If a second argument dim is
provided, the operation is performed along that dimension. A can be
a double or an integer array. For double arrays, bitall uses the 32
least-significant bits.

Examples

bitall([5, 3])
1

bitall([7uint8, 6uint8; 3uint8, 6uint8], 2)
2x1 uint8 array
6
2

See also

bitany, all, bitand

bitand

Bitwise AND.

Syntax

c = bitand(a, b)

Description

Each bit of the result is the binary AND of the corresponding bits of the
inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If the input arguments are of type double, so is the result,
and the operation is performed on 32 bits.

324 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

bitand(1,3)
1

bitand(1:6,1)
1 0 1 0 1 0

bitand(7uint8, 1234int16)
2int16

See also

bitor, bitxor, bitall, bitget

bitany

Check whether any of the corresponding bits is true.

Syntax

v = bitany(A)
v = bitany(A,dim)
b = bitany(v)

Description

bitany(A) performs a bitwise OR on the elements of the columns of
array A, or the elements of a vector. If a second argument dim is
provided, the operation is performed along that dimension. A can be
a double or an integer array. For double arrays, bitany uses the 32
least-significant bits.

Examples

bitany([5, 3])
7

bitany([0uint8, 6uint8; 3uint8, 6uint8], 2)
2x1 uint8 array
6
7

See also

bitall, any, bitor

bitcmp

Bit complement (bitwise NOT).

LME Reference — logical functions 325

Syntax

b = bitcmp(i)
b = bitcmp(a, n)

Description

bitcmp(i) gives the 1-complement (bitwise NOT) of the integer i.
bitcmp(a,n), where a is an integer or a double, gives the

1-complement of the n least-significant bits. The result has the same
type as a.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If a is of type double, so is the result, and the operation is
performed on at most 32 bits.

Examples

bitcmp(1,4)
14

bitcmp(0, 1:8)
1 3 7 15 31 63 127 255

bitcmp([0uint8, 1uint8, 255uint8])
1x3 uint8 array
255 254 0

See also

bitxor, operator ˜

bitget

Bit extraction.

Syntax

b = bitget(a, n)

Description

bitget(a, n) gives the n:th bit of integer a. a can be an integer or
a double. The result has the same type as a. n=1 corresponds to the
least significant bit.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If a is of type double, so is the result, and n is limited to 32.

326 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

bitget(123,5)
1

bitget(7, 1:8)
1 1 1 0 0 0 0 0

bitget(5uint8, 2)
0uint8

See also

bitset, bitand, bitshift

bitor

Bitwise OR.

Syntax

c = bitor(a, b)

Description

The input arguments are converted to 32-bit unsigned integers; each
bit of the result is the binary OR of the corresponding bits of the inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array. If the input arguments are of type double, so is the result,
and the operation is performed on 32 bits.

Examples

bitor(1,2)
3

bitor(1:6,1)
1 3 3 5 5 7

bitor(7uint8, 1234int16)
1239int16

See also

bitand, bitxor, bitany, bitget

bitset

Bit assignment.

LME Reference — logical functions 327

Syntax

b = bitset(a, n)
b = bitset(a, n, v)

Description

bitset(a,n) sets the n:th bit of integer a to 1. a can be an integer or
a double. The result has the same type as a. n=1 corresponds to the
least significant bit. With 3 input arguments, bitset(a,n,v) sets the
bit to 1 if v is nonzero, or clears it if v is zero.

The inputs can be scalar, arrays of the same size, or a mix of them.
If a is of type double, so is the result, and n is limited to 32.

Examples

bitset(123,10)
635

bitset(123, 1, 0)
122

bitset(7uint8, 1:8)
1x8 uint8 array
7 7 7 15 23 39 71 135

See also

bitget, bitand, bitor, bitxor, bitshift

bitshift

Bit shift.

Syntax

b = bitshift(a, shift)

b = bitshift(a, shift, n)

Description

The first input argument is converted to a 32-bit unsigned integer, and
shifted by shift bits, to the left if shift is positive or to the right if it
is negative. With a third argument n, only n bits are retained.

The inputs can be scalar, arrays of the same size, or a mix of both.

328 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

bitshift(1,3)
8

bitshift(8, -2:2)
2 4 8 16 32

bitshift(15, 0:3, 4)
15 14 12 8

See also

bitget

bitxor

Bitwise exclusive OR.

Syntax

c = bitxor(a, b)

Description

The input arguments are converted to 32-bit unsigned integers; each
bit of the result is the binary exclusive OR of the corresponding bits of
the inputs.

The inputs can be scalar, arrays of the same size, or a scalar and
an array.

Examples

bitxor(1,3)
2

bitxor(1:6,1)
0 3 2 5 4 7

bitxor(7uint8, 1234int16)
1237int16

See also

bitcmp, bitand, bitor, bitget

false

Boolean constant false.

LME Reference — logical functions 329

Syntax

b = false
B = false(n)
B = false(n1, n2, ...)
B = false([n1, n2, ...])

Description

The boolean constant false can be used to set the value of a variable.
It is equivalent to logical(0). The constant 0 is equivalent in many
cases; indices (to get or set the elements of an array) are an important
exception.

With input arguments, false builds a logical array whose elements
are false. The size of the array is specified by one integer for a square
matrix, or several integers (either as separate arguments or in a vec-
tor) for an array of any size.

Examples

false
false

islogical(false)
true

false(2,3)
F F F
F F F

See also

true, logical, zeros

graycode

Conversion to Gray code.

Syntax

g = graycode(n)

Description

graycode(n) converts the integer number n to Gray code. The argu-
ment n can be an integer number of class double (converted to an
unsigned integer) or any integer type. If it is an array, conversion is

330 LyME User Manual ©1999-2008, Calerga Sàrl

performed on each element. The result has the same type and size as
the input.

Gray code is an encoding which maps each integer of s bits to
another integer of s bits, such that two consecutive codes (i.e.
graycode(n) and graycode(n+1) for any n) have only one bit which
differs.

Example

graycode(0:7)
0 1 3 2 6 7 5 4

See also

igraycode

igraycode

Conversion from Gray code.

Syntax

n = igraycode(g)

Description

igraycode(n) converts the Gray code g to the corresponding integer.
It is the inverse of graycode. The argument n can be an integer num-
ber of class double (converted to an unsigned integer) or any integer
type. If it is an array, conversion is performed on each element. The
result has the same type and size as the input.

Example

igraycode(graycode(0:7))
0 1 2 3 4 5 6 7

See also

graycode

islogical

Test for a boolean object.

LME Reference — logical functions 331

Syntax

b = islogical(obj)

Description

islogical(obj) is true if obj is a logical value, and false otherwise.
The result is always a scalar, even if obj is an array. Logical values are
obtained with comparison operators, logical operators, test functions,
and the function logical.

Examples

islogical(eye(10))
false

islogical(̃ eye(10))
true

See also

logical, isnumeric, isinteger, ischar

logical

Transform a number into a boolean.

Syntax

B = logical(A)

Description

logical(x) converts array or number A to logical (boolean) type. All
nonzero elements of A are converted to true, and zero elements to
false.

Logical values are stored as 0 for false or 1 for true in unsigned
8-bit integers. They differ from the uint8 type when they are used to
select the elements of an array or list.

Examples

a=1:3; a([1,0,1])
Index out of range
a=1:3; a(logical([1,0,1]))
1 3

332 LyME User Manual ©1999-2008, Calerga Sàrl

See also

islogical, uint8, double, char, setstr, operator ()

true

Boolean constant true.

Syntax

b = true
B = true(n)
B = true(n1, n2, ...)
B = true([n1, n2, ...])

Description

The boolean constant true can be used to set the value of a variable.
It is equivalent to logical(1). The constant 1 is equivalent in many
cases; indices (to get or set the elements of an array) are an important
exception.

With input arguments, true builds a logical array whose elements
are true. The size of the array is specified by one integer for a square
matrix, or several integers (either as separate arguments or in a vec-
tor) for an array of any size.

Examples

true
true

islogical(true)
true

true(2)
T T
T T

See also

false, logical, ones

xor

Exclusive or.

LME Reference — dynamical systems 333

Syntax

b3 = xor(b1,b2)

Description

xor(b1,b2) performs the exclusive or operation between the corre-
sponding elements of b1 and b2. b1 and b2 must have the same size
or one of them must be a scalar.

Examples

xor([false false true true],[false true false true])
F T T F

xor(pi,8)
false

See also

operator &, operator |

3.24 Dynamical System Functions

This section describes functions related to linear time-invariant dy-
namical systems.

c2dm

Continuous-to-discrete-time conversion.

Syntax

(numd,dend) = c2dm(numc,denc,Ts)
dend = c2dm(numc,denc,Ts)
(numd,dend) = c2dm(numc,denc,Ts,method)
dend = c2dm(numc,denc,Ts,method)
(Ad,Bd,Cd,Dd) = c2dm(Ac,Bc,Cc,Dc,Ts,method)

Description

(numd,dend) = c2dm(numc,denc,Ts) converts the continuous-time
transfer function numc/denc to a discrete-time transfer function
numd/dend with sampling period Ts. The continuous-time transfer
function is given by two polynomials in s, and the discrete-time

334 LyME User Manual ©1999-2008, Calerga Sàrl

transfer function is given by two polynomials in z, all as vectors of
coefficients with highest powers first.

c2dm(numc,denc,Ts,method) uses the specified conversion
method. method is one of

’zoh’ or ’z’ zero-order hold (default)
’foh’ or ’f’ first-order hold
’tustin’ or ’t’ Tustin (bilinear transformation)
’matched’ or ’m’ Matched zeros, poles and gain

The input and output arguments numc, denc, numd, and dend can
also be matrices; in that case, the conversion is applied separately on
each row with the same sampling period Ts.

c2dm(Ac,Bc,Cc,Dc,Ts,method) performs the conversion from
continuous-time state-space model (Ac,Bc,Cc,Dc) to discrete-time
state-space model (Ad,Bd,Cd,Dd), defined by

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) +Dc(t)

and

(k + 1) = Ad(k) + Bd(k)
y(k) = Cd(k) +Dd(k)

Method ’matched’ is not supported for state-space models.

Examples

(numd, dend) = c2dm(1, [1, 1], 0.1)
numd =
0.0952

dend =
1 -0.9048

(numd, dend) = c2dm(1, [1, 1], 0.1, ’foh’)
numd =
0.0484

dend =
1 -0.9048

(numd, dend) = c2dm(1, [1, 1], 0.1, ’tustin’)
numd =
0.0476 0.0476

dend =
1 -0.9048

LME Reference — dynamical systems 335

See also

d2cm

d2cm

Discrete-to-continuous-time conversion.

Syntax

(numc,denc) = d2cm(numd,dend,Ts)
denc = d2cm(numd,dend,Ts)
(numc,denc) = d2cm(numd,dend,Ts,method)
denc = d2cm(numd,dend,Ts,method)

Description

(numc,denc) = d2cm(numd,dend,Ts,method) converts the
discrete-time transfer function numd/dend with sampling period Ts to
a continuous-time transfer function numc/denc. The continuous-time
transfer function is given by two polynomials in s, and the
discrete-time transfer function is given by two polynomials in z, all as
vectors of coefficients with highest powers first.

Method is
tustin or ’t’ Tustin (bilinear transformation) (default)

The input and output arguments numc, denc, numd, and dend can
also be matrices; in that case, the conversion is applied separately on
each row with the same sampling period Ts.

d2cm(Ad,Bd,Cd,Dd,Ts,method) performs the conversion from
discrete-time state-space model (Ad,Bd,Cd,Dd) to continuous-time
state-space model (Ac,Bc,Cc,Dc), defined by

(k + 1) = Ad(k) + Bd(k)
y(k) = Cd(k) +Dd(k)

and

d

dt
(t) = Ac(t) + Bc(t)

y(t) = Cc(t) +Dc(t)

336 LyME User Manual ©1999-2008, Calerga Sàrl

Example

(numd, dend) = c2dm(1, [1, 1], 5, ’t’)
numd =
0.7143 0.7143

dend =
1 0.4286

(numc, denc) = d2cm(numd, dend)
numc =
-3.8858e-17 1

denc =
1 1

See also

c2dm

dmargin

Robustness margins of a discrete-time system.

Syntax

(gm,psi,wc,wx) = dmargin(num,den,Ts)
(gm,psi,wc,wx) = dmargin(num,den)

Description

The open-loop discrete-time transfer function is given by the two poly-
nomials num and den, with sampling period Ts (default value is 1). If
the closed-loop system (with negative feedback) is unstable, all out-
put arguments are set to an empty matrix. Otherwise, dmargin calcu-
lates the gain margins gm, which give the interval of gain for which
the closed-loop system remains stable; the phase margin psi, al-
ways positive if it exists, which defines the symmetric range of phases
which can be added to the open-loop system while keeping the closed-
loop system stable; the critical frequency associated to the gain mar-
gins, where the open-loop frequency response intersects the real axis
around -1; and the cross-over frequency associated to the phase mar-
gin, where the open-loop frequency response has a unit magnitude.
If the Nyquist diagram does not cross the unit circle, psi and wx are
empty.

Examples

Stable closed-loop, Nyquist inside unit circle:

LME Reference — dynamical systems 337

(gm,psi,wc,wx) = dmargin(0.005,poly([0.9,0.9]))
gm = [-2, 38]
psi = []
wc = [0, 0.4510]
wx = []

Stable closed-loop, Nyquist crosses unit circle:

(gm,psi,wc,wx) = dmargin(0.05,poly([0.9,0.9]))
gm = [-0.2, 3.8]
psi = 0.7105
wc = [0, 0.4510]
wx = 0.2112

Unstable closed-loop:

(gm,psi,wc,wx) = dmargin(1,poly([0.9,0.9]))
gm = []
psi = []
wc = []
wx = []

Caveats

Contrary to many functions, dmargin cannot be used with several
transfer functions simultaneously, because not all of them may cor-
respond simultaneously to either stable or unstable closed-loop sys-
tems.

See also

margin

margin

Robustness margins of a continuous-time system.

Syntax

(gm,psi,wc,wx) = margin(num,den)

Description

The open-loop continuous-time transfer function is given by the two
polynomials num and den. If the closed-loop system (with negative
feedback) is unstable, all output arguments are set to an empty ma-
trix. Otherwise, margin calculates the gain margins gm, which give the

338 LyME User Manual ©1999-2008, Calerga Sàrl

interval of gain for which the closed-loop system remains stable; the
phase margin psi, always positive if it exists, which defines the sym-
metric range of phases which can be added to the open-loop system
while keeping the closed-loop system stable; the critical frequency as-
sociated to the gain margins, where the open-loop frequency response
intersects the real axis around -1; and the cross-over frequency asso-
ciated to the phase margin, where the open-loop frequency response
has a unit magnitude. If the Nyquist diagram does not cross the unit
circle, psi and wx are empty.

Examples

Stable closed-loop, Nyquist inside unit circle:

(gm,psi,wc,wx) = margin(0.5,poly([-1,-1,-1]))
gm = [-2, 16]
psi = []
wc = [0, 1.7321]
wx = []

Stable closed-loop, Nyquist crosses unit circle:

(gm,psi,wc,wx) = margin(4,poly([-1,-1,-1]))
gm = [-0.25 2]
psi = 0.4737
wc = [0, 1.7321]
wx = 1.2328

Unstable closed-loop:

(gm,psi,wc,wx) = margin(10,poly([-1,-1,-1]))
gm = []
psi = []
wc = []
wx = []

Caveats

Contrary to many functions, margin cannot be used with several trans-
fer functions simultaneously, because not all of them may correspond
simultaneously to either stable or unstable closed-loop systems.

See also

dmargin

ss2tf

Conversion from state space to transfer function.

LME Reference — dynamical systems 339

Syntax

(num,den) = ss2tf(A,B,C,D)
den = ss2tf(A,B,C,D)
(num,den) = ss2tf(A,B,C,D,iu)
den = ss2tf(A,B,C,D,iu)

Description

A continuous-time linear time-invariant system can be represented by
the state-space model

d

dt
(t) = A(t) + B(t)

y(t) = C(t) +D(t)

where (t) is the state, (t) the input, y(t) the output, and ABCD
four constant matrices which characterize the model. If it is a single-
input single-output system, it can also be represented by its trans-
fer function nm/den. (num,den) = ss2tf(A,B,C,D) converts the
model from state space to transfer function. If the state-space model
has multiple outputs, num is a matrix whose lines correspond to each
output (the denominator is the same for all outputs). If the state-space
model has multiple inputs, a fifth input argument is required and spec-
ifies which one to consider.

For a sampled-time model, exactly the same function can be used.
The derivative is replaced by a forward shift, and the variable s of the
Laplace transform is replaced by the variable z of the z transform. But
as long as coefficients are concerned, the conversion is the same.

The degree of the denominator is equal to the number of states,
i.e. the size of A. The degree of the numerator is equal to the number
of states if D is not null, and one less if D is null.

Example

(num, den) = ss2tf(-1, 1, 1, 0)
num =
1

den =
1 1

See also

tf2ss

340 LyME User Manual ©1999-2008, Calerga Sàrl

tf2ss

Conversion from transfer function to state space.

Syntax

(A,B,C,D) = tf2ss(num,den)

Description

tf2ss(num,den) returns the state-space representation of the trans-
fer function num/den, which is given as two polynomials. The transfer
function must be causal, i.e. num must not have more columns than
den. Systems with several outputs are specified by a num having one
row per output; the denominator den must be the same for all the
outputs.

tf2ss applies to continuous-time systems (Laplace transform) as
well as to discrete-time systems (z transform or delta transform).

Example

(A,B,C,D) = tf2ss([2,5],[2,3,8])
A =
-1.5 -4
1 0

B =
1
0

C =
1 2.5

D =
0

See also

ss2tf

3.25 Input/Output Functions

bwrite

Store data in an array of bytes.

LME Reference — input/output 341

Syntax

s = bwrite(data)
s = bwrite(data, precision)

Description

bwrite(data) stores the contents of the matrix data into an array of
class uint8. The second parameter is the precision, whose meaning
is the same as for fread. Its default value is ’uint8’.

Examples

bwrite(12345, ’uint32;l’)
1x4 uint8 array
57 48 0 0

bwrite(12345, ’uint32;b’)
1x4 uint8 array

0 0 48 57

See also

swrite, sread, fwrite, sprintf

clc

Clear the text window or panel.

Syntax

clc
clc(fd)

Description

clc (clear console) clears the contents of the command-line window
or panel.

clc(fd) clears the contents of the window or panel associated with
file descriptor fd.

disp

Simple display on the standard output.

342 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

disp(obj)

Description

disp(obj) displays the object obj. Command format may be used to
control how numbers are formatted.

Example

disp(’hello’)
hello

See also

format, fprintf

fclose

Close a file.

Syntax

fclose(fd)
fclose(’all’)

Description

fclose(fd) closes the file descriptor fd which was obtained with
functions such as fopen. Then fd should not be used anymore.
fclose(’all’) closes all the open file descriptors.

feof

Check end-of-file status.

Syntax

b = feof(fd)

Description

feof(fd) is false if more data can be read from file descriptor fd, and
true if the end of the file has been reached.

LME Reference — input/output 343

Example

Count the number of lines and characters in a file (fopen and fclose
are not available in all LME applications):

fd = fopen(’data.txt’);
lines = 0;
characters = 0;
while f̃eof(fd)
str = fgets(fd);
lines = lines + 1;
characters = characters + length(str);

end
fclose(fd);

See also

ftell

fflush

Flush the input and output buffers.

Syntax

fflush(fd)

Description

fflush(fd) discards all the data in the input buffer and forces data
out of the output buffer, when the device and their driver permits it.
fflush can be useful to recover from errors.

fgetl

Reading of a single line.

Syntax

line = fgetl(fd)
line = fgetl(fd, n)

Description

A single line (of at most n characters) is read from a text file. The end
of line character is discarded. Upon end of file, fgetl gives an empty
string.

344 LyME User Manual ©1999-2008, Calerga Sàrl

See also

fgets, fscanf

fgets

Reading of a single line.

Syntax

line = fgets(fd)
line = fgets(fd, n)

Description

A single line (of at most n characters) is read from a text file. Unless
the end of file is encountered before, the end of line (always a single
line feed) is preserved. Upon end of file, fgets gives an empty string.

See also

fgetl, fscanf

format

Default output format.

Syntax

format
format short
format short e
format short eng
format short g
format long
format long e
format long eng
format long g
format int
format int d
format int u
format int x
format int o
format int b
format bank
format ’+’
format i

LME Reference — input/output 345

format j
format loose
format compact

Description

format changes the format used by command disp and for output
produced with expressions which do not end with a semicolon. The
following arguments are recognized:

Arguments Meaning
(none) fixed format with 0 or 4 digits, loose spacing
short fixed format with 0 or 4 digits
short e exponential format with 4 digits
short eng engineering format with 4 digits
short g general format with up to 4 digits
long fixed format with 0 or 15 digits
long e exponential format with 15 digits
long eng engineering format with 15 digits
long g general format with up to 15 digits
int signed decimal integer
int d signed decimal integer
int u unsigned decimal integer
int x hexadecimal integer
int o octal integer
int b binary integer
bank fixed format with 2 digits (for currencies)
+ ’+’, ’-’ or ’I’ for nonzero, space for zero
i symbol i to represent the imaginary unit
j symbol j to represent the imaginary unit
loose empty lines to improve readability
compact no empty line

Format for numbers, for imaginary unit symbol and for spacing is
set separately. Format ’+’ displays compactly numeric and boolean
arrays: positive numbers and complex numbers with a positive real
part are displayed as +, negative numbers or complex numbers with
a negative real part as -, pure imaginary nonzero numbers as I, and
zeros as spaces. The default format is format short g, format j,
and format compact.

See also

disp, fprintf

346 LyME User Manual ©1999-2008, Calerga Sàrl

fprintf

Formatted output.

Syntax

n = fprintf(fd,format,a,b,...)
n = fprintf(format,a,b,...)

Description

fprintf(format,a,b,...) converts its arguments to a string and
writes it to the standard output. fprintf(fd,format,a,b,...) spec-
ifies the output file descriptor. See sprintf for a description of the
conversion process.

Example

fprintf(’%d %.2f %.3E %g\n’,1:3,pi)
1 2.00 3.000E0 3.1416
22

Caveat

Same limitations as sprintf

See also

sprintf, fwrite

fread

Raw input.

Syntax

(a, count) = fread(fd)
(a, count) = fread(fd, size)
(a, count) = fread(fd, size, precision)

LME Reference — input/output 347

Description

fread(fd) reads signed bytes from the file descriptor fd until it
reaches the end of file. It returns a column vector whose elements
are signed bytes (between -128 and 127), and optionally in the
second output argument the number of bytes it has read.

fread(fd,size) reads the number of bytes specified by size. If
size is a scalar, that many bytes are read and result in a column
vector. If size is a vector of two elements [m,n], m*n elements are
read row by row and stored in an m-by-n matrix. If the end of the file
is reached before the specified number of elements have been read,
the number of rows is reduced without throwing an error. The optional
second output argument always gives the number of elements in the
result.

With a third argument, fread(fd, size, precision) reads inte-
ger words of 1, 2, or 4 bytes, or IEEE floating-point numbers of 4 bytes
(single precision) or 8 bytes (double precision). The meaning of the
string precision is described in the table below.

precision meaning
int8 signed 8-bit integer (-128 ≤ x ≤ 127)
char signed 8-bit integer (-128 ≤ x ≤ 127)
int16 signed 16-bit integer (-32768 ≤ x ≤ 32767)
int32 signed 32-bit integer (-2147483648 ≤ x ≤ 2147483647)
int64 signed 64-bit integer (-9.223372e18 ≤ x ≤ 9.223372e18)
uint8 unsigned 8-bit integer (0 ≤ x ≤ 255)
uchar unsigned 8-bit integer (0 ≤ x ≤ 255)
uint16 unsigned 16-bit integer (0 ≤ x ≤ 65535)
uint32 unsigned 32-bit integer (0 ≤ x ≤ 4294967295)
uint64 unsigned 64-bit integer (0 ≤ x ≤ 18.446744e18)
single 32-bit IEEE floating-point
double 64-bit IEEE floating-point

By default, multibyte words are encoded with the least significant
byte first (little endian). The characters ’;b’ can be appended to spec-
ify that they are encoded with the most significant byte first (big en-
dian) (for symmetry, ’;l’ is accepted and ignored).

By default, the output is a double array. To get an output which has
the same type as what is specified by precision, the character * can
be inserted at the beginning. For instance ’*uint8’ reads bytes and
stores them in an array of class uint8, ’*int32;b’ reads signed 32-
bit words and stores them in an array of class int32 after performing
byte swapping if necessary, and ’*char’ reads bytes and stores them
in a character row vector (i.e. a plain string).

348 LyME User Manual ©1999-2008, Calerga Sàrl

See also

fwrite, sread

fscanf

Reading of formatted numbers.

Syntax

r = fscanf(fd, format)
(r, count) = fscanf(fd, format)

Description

A single line is read from a text file, and numbers, characters and
strings are decoded according to the format string. The format string
follows the same rules as sscanf.

The optional second output argument is set to the number of ele-
ments decoded successfully (may be different than the length of the
first argument if decoding strings).

Example

Read a number from a file (fopen and fclose are not available in all
LME applications):

fd = fopen(’test.txt’, ’rt’);
fscanf(fd, ’%f’)
2.3

fclose(fd);

See also

sscanf

fseek

Change the current read or write position in a file.

Syntax

status = fseek(fd, position)
status = fseek(fd, position, mode)

LME Reference — input/output 349

Description

fseek(fd,position,mode) changes the position in an open file where
the next input/output commands will read or write data. The first ar-
gument fd is the file descriptor returned by fopen or similar functions
(fopen is not available in all LME applications). The second argument
is the new position. The third argument mode specifies how the posi-
tion is used:

b absolute position from the beginning of the file
c relative position from the current position
e offset from the end of the file (must be ≤ 0)

The default value is ’b’. Only the first character is checked, so
’beginning’ is a valid alternative for ’b’. fseek returns 0 if success-
ful or -1 if the position is outside the limits of the file contents.

See also

ftell

ftell

Get the current read or write position in a file.

Syntax

position = ftell(fd)

Description

ftell(fd) gives the current file position associated with file descriptor
fd. The file position is the offset (with respect to the beginning of
the file) at which the next input function will read or the next output
function will write. The offset is expressed in bytes. With text files,
ftell may not always correspond to the number of characters read or
written.

See also

fseek, feof

fwrite

Raw output.

350 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

count = fwrite(fd, data)
count = fwrite(fd, data, precision)

Description

fwrite(fd, data) writes the contents of the matrix data to the out-
put referenced by the file descriptor fd. The third parameter is the
precision, whose meaning is the same as for fread. Its default value
is ’uint8’.

See also

fread, swrite, bwrite

redirect

Redirect or copy standard output or error to another file descriptor.

Syntax

redirect(fd, fdTarget)
redirect(fd, fdTarget, copy)
redirect(fd)
R = redirect(fd)
redirect
R = redirect

Description

redirect(fd,fdTarget) redirects output from file descriptor fd to
fdTarget. fd must be 1 for standard output or 2 for standard error. If
fdTarget==fd, the normal behavior is restored.

redirect(fd,fdTarget,copy) copies output to both fd and
fdTarget if copy is true, instead of redirecting it only to fdTarget. If
copy is false, the result is the same as with two input arguments.

With zero or one input argument and without output argument,
redirect displays the current redirection for the specified file descrip-
tor (1 or 2) or for both of them. Note that the redirection itself may
alter where the result is displayed.

With an output argument, redirect returns a 1-by-2 row vector if
the file descriptor is specified, or a 2-by-2 matrix otherwise. The first
column contains the target file descriptor and the second column, 1
for copy mode and 0 for pure redirection mode.

LME Reference — input/output 351

Examples

Create a new file diary.txt and copy to it both standard output and
error:

fd = fopen(’diary.txt’, ’w’);
redirect(1, fd, true);
redirect(2, fd, true);

Stop copying standard output and error and close file:

redirect(1, 1);
redirect(2, 2);
fclose(fd);

Redirect standard error to standard output and get the redirection
state:

redirect(2, 1)
redirect
stdout (fd=1) -> fd=1
stderr (fd=2) -> fd=1

redirect(2)
stderr (fd=2) -> fd=1

R = redirect
R =
1 0
1 0

R = redirect(2)
R =
1 0

sprintf

Formatted conversion of objects into a string.

Syntax

s = sprintf(format,a,b, ...)

Description

sprintf converts its arguments to a string. The first parameter is
the format string. All the characters are copied verbatim to the out-
put string, except for the control sequences which all begin with the
character ’%’. They have the form

%fn.dt

352 LyME User Manual ©1999-2008, Calerga Sàrl

where f is zero, one or more of the following flags:

Flag Meaning
- left alignment (default is right alignment)
+ display of a + sign for positive numbers
0 zero padding instead of spaces
alternate format (see below)
space sign replaced with space for positive numbers

n is the optional width of the field as one or more decimal digits
(default is the minimum width to display the data), d is the number
of digits after the decimal separator for a number displayed with a
fractional part, the minimum number of displayed digits for a number
displayed as an integer, or the number of characters for a string (one
or more decimal digits; by default, it is 4 for a number or the length of
the string for a string), and t is a single character denoting the type of
conversion. In most cases, each control sequence corresponds to an
additional argument. All elements of arrays are used sequentially as if
they were provided separately; strings are used as a whole. The table
below gives the valid values of t.

Char. Conversion
% single %
d decimal number as an integer
i same as d
x hexadecimal number (for integers between 0 and 2̂ 32-1)
X same as x, with uppercase digits
o octal number (for integers between 0 and 2̂ 32-1)
f fixed number of decimals (exp. notation if abs(x)>1e18)
F same as f, with an uppercase E
e scientific notation such as 1e5
E scientific notation such as 1E5
n engineering notation such as 100e3
N engineering notation such as 100E3
g decimal or scientific notation
G same as g, with an uppercase E
k same as g, with as few characters as possible
K same as k, with an uppercase E
c character
s string

The # flag forces octal numbers to begin with 0, nonzero hexadec-
imal numbers to begin with 0x, and floating-point numbers to always
have a decimal point even if they do not have a fractional part.

Instead of decimal digits, the width n and/or the precision d can be
replaced with character *; then one or two additional arguments (or
elements of an array) are consumed and used as the width or preci-
sion.

LME Reference — input/output 353

Examples

sprintf(’%d %.2f %.2e %.2E %.2g’,pi*ones(1,5))
3 3.14 3.14e0 3.14E0 3.14

sprintf(’%.1k ’, 0.001, 0.11, 111, 1000)
1e-3 0.11 111 1e3

sprintf(’*%8.3f*%8.6s*%-8.6s*’,pi,’abcdefgh’,’abcdefgh’)
* 3.142* abcdef*abcdef *

sprintf(’%c_’,’a’:’z’)
a_b_c_d_e_f_g_h_i_j_k_l_m_n_o_p_q_r_s_t_u_v_w_x_y_z_

sprintf(’%*.*f’, 15, 7, pi)
3.1415927

sprintf(’%.3d,%.3d’, 12, 12345)
012,12345

Caveat

Exotic formats unsupported.

See also

fprintf, sscanf, swrite

sread

Raw input from a string or an array of bytes.

Syntax

(a, count) = sread(str, size, precision)
(a, count) = sread(str, [], precision)
(a, count) = sread(bytes, ...)

Description

sread(str) reads data from string str or array of class uint8 or int8
the same way as fread reads data from a file.

Examples

(data, count) = sread(’abc’)
data =
97
98
99

count =
3

354 LyME User Manual ©1999-2008, Calerga Sàrl

(data, count) = sread(’abcdef’,[2,2])
data =
97 98
99 100

count =
4

(data, count) = sread(’abcd’,[inf,3])
data =
97 98 99

count =
3

See also

swrite, bwrite, fread

sscanf

Decoding of formatted numbers.

Syntax

r = sscanf(str, format)
(r, count) = scanf(str, format)
(r, count, nchar) = scanf(str, format)

Description

Numbers, characters and strings are extracted from the first argu-
ment. Exactly what is extracted is controlled by the second argument,
which can contain the following elements:

Substring in format Meaning
%c single character
%s string
%d integer number in decimal
%x unsigned integer number in hexadecimal
%o unsigned integer number in octal
%i integer number
%f floating-point number
%e floating-point number
%g floating-point number
%% %
other character exact match

%i recognizes an optional sign followed by a decimal number, an
hexadecimal number prefixed with 0x or 0X, a binary number prefixed
with 0b or 0B, or an octal number prefixed with 0.

LME Reference — input/output 355

The decoded elements are accumulated in the output argument,
either as a column vector if the format string contains %d, %o, %x, %i,
%f, %e or %g, or a string if the format string contains only %c, %s or
literal values. If a star is inserted after the percent character, the
value is decoded and discarded. A width (as one or more decimal
characters) can be inserted before s, d, x, o, i, f, e or g; it limits the
number of characters to be decoded. In the input string, spaces and
tabulators are skipped before decoding %s, %d, %x, %o, %i, %f, %e or %g.

The format string is recycled as many times as necessary to de-
code the whole input string. The decoding is interrupted if a mismatch
occurs.

The optional second output argument is set to the number of ele-
ments decoded successfully (may be different than the length of the
first argument if decoding strings). The optional third output argument
is set to the number of characters which were consumed in the input
string.

Examples

sscanf(’f(2.3)’, ’f(%f)’)
2.3

sscanf(’12a34x778’, ’%d%c’)
12
97
34

120
778
sscanf(’abc def’, ’%s’)
abcdef
sscanf(’abc def’, ’%c’)
abc def
sscanf(’12,34’,’%*d,%d’)
34

sscanf(’0275a0ff’, ’%2x’)
2

117
160
255

See also

sprintf

swrite

Store data in a string.

356 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

s = swrite(data)
s = swrite(data, precision)

Description

swrite(fd, data) stores the contents of the matrix data in a string.
The third parameter is the precision, whose meaning is the same as
for fread. Its default value is ’uint8’.

Examples

swrite(65:68)
ABCD

double(swrite([1,2], ’int16’))
1 0 2 0

double(swrite([1,2], ’int16;b’))
0 1 0 2

See also

bwrite, fwrite, sprintf

3.26 Palm Database Functions

On Palm OS, databases are the most common way to store data. They
replace files on computers. Databases are identified by a name, and
have a four-character creator which links them to an application, and
a four-character type. They contain multiple records, identified by an
index; the first record has index 0.

Functions specific to databases are described in this section. Input,
output, and control are done with the following generic functions:

Function Description
fclose close the record
feof check end-of-record status
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
fscanf read formatted data
fseek change the current I/O position
ftell get the current I/O position
fwrite write data
redirect redirect output

LME Reference — Palm database 357

dbdeldb

Delete a database.

Syntax

dbdeldb(dbName)

Description

dbdelrec(dbName) deletes a database identified by its name dbName.
All its records are discarded.

See also

dbnewdb, dbdir, dbdelrec

dbdelrec

Delete a database record.

Syntax

dbdelrec(dbName, index)
dbdelrec(dbName, index, delBackup)

Description

dbdelrec(dbName,index) deletes a record from the database identi-
fied by its name dbName. The record itself is identified by its index; the
first record has index 0.

With a third argument delBackup, dbdelrec marks the record as
deleted, so that the record will also be deleted from the backup the
next time the Palm device is synchronized.

See also

dbdeldb, dbdir, dbnumrec

dbdir

List of databases.

358 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

dbdir
dbdir(’type’)
dbdir(’type/creator’)
dblist = dbdir(...)

Description

dbdir displays the list of databases with their types and creators.
Types and creators are strings of four characters; the type character-
izes the kind of data, and the creator identifies the application which
owns the database. Without argument, databases with type ’appl’,
’libr’, ’neti’, ’ovly’, or ’panl’ are not displayed.

To filter the databases which are displayed, a string argument may
be provided. It contains the type, and optionally a slash character
and the creator. The type or the creator can be replaced with the star
character, which stands for any value.

With an output argument, dbdir returns a list of structures with
fields name, type, and creator.

Examples

dbdir(’DATA’)
AddressDB DATA/addr
DatebookDB DATA/date
MailDB DATA/mail
MemoDB DATA/memo
ConnectionDB DATA/modm
NetworkDB DATA/netw
ToDoDB DATA/todo

db = dbdir(’*/LyME’);
dumpvar(’db1’, db{1});
db1 = struct(’name’,’LyMELibDB’, ...
’type’,’Lml ’, ...
’creator’,’LyME’);

See also

dbnumrec

dbinfo

Get info about a database.

LME Reference — Palm database 359

Syntax

s = dbinfo(dbName)
dbinfo(dbName, s)

Description

dbinfo(dbName) gets the attributes of the database identified by its
name dbName and returns them in a structure. Atrributes are the same
as options of dbset.

dbinfo(dbName,s) changes the attributes database dbName with
the fields of structure s.

Example

dbinfo(’TestDB’, struct(’ReadOnly’, true));

See also

dbset

dbnewdb

Create a new database.

Syntax

dbnewdb(dbName)
dbnewdb(dbName, ’type/creator’)

Description

dbnewdb(dbName) creates a new database identified by its name
dbName. The four-character type of the database is DATA and its
four-character creator is LyME. The new database has no records;
dbnewrec can be used to populate it.

The second output argument, if present, specifies the database
type and creator. It is a string of two four-characters codes separated
by a slash.

Example

Creation of a new database with type TEXT and creator test:

dbnewdb(’TestDB’, ’TEXT/test’);

360 LyME User Manual ©1999-2008, Calerga Sàrl

See also

dbset, dbnewrec, dbdeldb

dbnewrec

Create a new database record.

Syntax

fd = dbnewrec(dbName)
(fd, index) = dbnewrec(dbName)

Description

dbnewrec(dbName) adds a new record to the database identified by its
name dbName. It returns a file descriptor which should be saved and
used with functions such as fprintf and fwrite. Once the record is
written, fclose should be called to terminate the record creation.

The second output argument, if present, is set to the index of the
record. The first record has index 0.

Example

Creation of a new note for the Memo Pad application. Note that the
record ends with a null byte.

fd = dbnewrec(’MemoDB’);
fprintf(fd, ’Sine between 0 and 90 deg\n’);
for a = 0:15:90
fprintf(fd, ’sin(%d) = %g\n’, a, sin(a));

end
fwrite(fd, 0);
fclose(fd);

See also

fclose, dbopenrec

dbnumrec

Number of records in a database.

Syntax

n = dbnumrec(dbName)

LME Reference — Palm database 361

Description

dbnumrec(dbName) gives the number of records in the database iden-
tified by its name dbName.

See also

dbdir

dbopenrec

Open an existing database record.

Syntax

fd = dbopenrec(dbName, index)
fd = dbopenrec(dbName, index, mode)

Description

dbopenrec(dbName,index) opens a record from the database identi-
fied by its name dbName in read-only mode. The record itself is iden-
tified by its index; the first record has index 0. dbopenrec returns a
file descriptor which should be saved and used with functions such as
fgets, fscanf and fread. Once the record has been read, fclose
should be called.

A third input argument can be used to specify the access mode:

Mode Description
’r’ read
’w’ write after discarding the previous contents
’a’ append to the end of the previous contents

The functions which can be used in write or append mode include
fprintf, fwrite and dumpvar.

Example

Reading of the first line of the first note for the Memo Pad application.

fd = dbopenrec(’MemoDB’, 0);
line = fgets(fd);
fclose(fd);

See also

fclose, dbnewrec

362 LyME User Manual ©1999-2008, Calerga Sàrl

dbset

Set options for dbnewdb.

Syntax

options = dbset
options = dbset(name1, value1, ...)
options = dbset(options0, name1, value1, ...)

Description

dbset(name1,value1,...) creates the option argument used by
dbnewdb. Options are specified with name/value pairs, where the
name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to
each option. Without any input argument, dbset creates a structure
with all the default options. Note that dbnewdb also interprets the
lack of an option argument, or the empty array [], as a request to
use the default values.

When its first input argument is a structure, dbset adds or changes
fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
Backup true should be backed up
Bundle false bundled with its application
CopyPrevention false cannot be copied
Hidden false hidden in the launcher
OKToInstallNewer false if open, the backup may install a newer db
ReadOnly false cannot be modified
Recyclable false deleted when closed or upon reset

See also

dbnewdb, dbinfo

3.27 Palm File Streaming Functions

Palm OS provides a set of functions to simulate files on top of
databases. Function filestreamingopen is used to create or open
these files. Input, output, and control are done with the following
generic functions:

LME Reference — file streaming 363

Function Description
fclose close the file
feof check end of file status
fflush flush I/O buffers
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
fscanf read formatted data
fseek change the current I/O position
ftell get the current I/O position
fwrite write data
redirect redirect output

filestreamingopen

Open a file.

Syntax

fd = filestreamingopen(filename, mode)
fd = filestreamingopen(filename, mode, creator)
fd = filestreamingopen(card, filename, mode)
fd = filestreamingopen(card, filename, mode, creator)

Description

filestreamingopen(filename,mode) opens the file whose name is
filename for reading and/or writing. Mode is a single-character string,
whose meaning is described below.

Mode Meaning
’r’ read-only
’w’ read/write (reset file contents)
’u’ update (keep file contents, seek to beginning)
’a’ add (keep file contents, seek to end)

filestreamingopen(filename,mode,creator) sets the creator to
the four-character string creator. The default is ’LyME’.

filestreamingopen(card,...), where card is an integer number,
specifies the card where the file is stored. The default is 0 (internal
memory).

See also

fclose

364 LyME User Manual ©1999-2008, Calerga Sàrl

3.28 Palm VFS Functions

The Virtual File System (VFS) enables the operating system to support
different kinds of file systems. It is available in Palm OS 4 and later.
For flash memory cards, the VFAT format is used. Multiple formats can
coexist on the same handheld.

VFS files and directories are identified with two strings: the volume
name and the full path. This differs from other file systems where the
path contains enough information to identify the volume. LyME pro-
vides two functions for opening a file: vfsopen, with separate volume
name and path; and fopen, compatible with other LME applications
like Sysquake.

Functions directly related to VFS are described below. Input, output,
and control are done with the following generic functions:

Function Description
fclose close the file
feof check end of file status
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
fscanf read formatted data
fseek change the current I/O position
ftell get the current I/O position
fwrite write data
redirect redirect output

fopen

Open a VFS file.

Syntax

fd = fopen(path)
fd = fopen(path, mode)

Description

fopen(path) opens the file specified by string path on the first vol-
ume, in read-only mode. The argument contains either the full path
of the file on the first volume, or the volume name and the full path
separated with a colon (e.g. ’card:/dir/file.txt’).

fopen(path,mode) opens a file in read-only mode if mode is ’r’, or
in read-write mode if mode is ’w’. mode can have a second character
which is ignored, for compatibility with other versions of fopen.

LME Reference — VFS 365

Example

fd = fopen(’Data:/Measures/data.txt’, ’w’);
for i = 1:size(data, 1)
fprintf(’%g\t’, data(i,:));
fprintf(’\n’);

end
fclose(fd)

See also

vfsopen, fclose, vfsgetvolumes, vfsdir

vfsdelete

Delete a file or an empty directory.

Syntax

vfsdelete(volume, path)

Description

vfsdelete(volume,path) deletes a file or an empty directory whose
absolute path is path on volume volume. Both arguments are strings.

See also

vfsdir

vfsdir

Get the list of files and directories.

Syntax

vfsdir(volume)
vfsdir(volume, directorypath)
list = vfsdir(...)

366 LyME User Manual ©1999-2008, Calerga Sàrl

Description

vfsdir(volume) displays the list of files and directories at the root
level of volume volume. Hidden files are not displayed. Directories are
followed with a slash (’/’); read-only files, with ’ro’; system files,
with ’s’; and links, with ’l’.

vfsdir(volume,directorypath) displays the list of files and di-
rectories in the directory directorypath of volume volume. Both ar-
guments are strings. The directory path must be absolute (it begins
with a slash).

With an output argument, vfsdir returns the result in a list of struc-
tures. Each element corresponds to a file or a directory in the spec-
ified location. Hidden elements are also included. Structure fields
include name, the file or directory name (a string), and logical values
for the element attributes: readonly, hidden, system, volumelabel,
directory, archive, and link.

Example

vfsdir(’Music’, ’/classic’)
Bach/
Brahms/
5th.mp3 ro

See also

vfsgetvolumes, vfsmkdir

vfsgetvolumes

Get the list of volumes.

Syntax

list = vfsgetvolumes

Description

vfsgetvolumes gets the list of all volumes available on the handheld.
Volumes are identified by their name (a string). They are used with
the path to identify a directory or a file in VFS.

Example

vfsgetvolumes
{’Music’}

LME Reference — VFS 367

See also

vfsdir

vfsmkdir

Make a new directory.

Syntax

vfsmkdir(volume, path)

Description

vfsmkdir(volume,path) creates a new directory whose absolute path
is path on volume volume. Both arguments are strings.

Example

vfsmkdir(’Music’, ’/mp3/classic/Bach’);

See also

vfsdir

vfsopen

Open a VFS file.

Syntax

fd = vfsopen(volume, path)
fd = vfsopen(volume, path, mode)

Description

vfsopen(volume,path) opens the file whose absolute path is path on
volume volume, in read-only mode. Both arguments are strings.

vfsopen(volume,path,mode) opens a file in read-only mode if
mode is ’r’, or in read-write mode if mode is ’w’.

368 LyME User Manual ©1999-2008, Calerga Sàrl

Example

fd = vfsopen(’Data’, ’/Measures/data.txt’, ’w’);
for i = 1:size(data, 1)
fprintf(’%g\t’, data(i,:));
fprintf(’\n’);

end
fclose(fd)

See also

fopen, fclose, vfsgetvolumes, vfsdir

vfsrename

Rename a file or a directory.

Syntax

vfsrename(volume, path, newname)

Description

vfsrename(volume,path,newname) changes the name of the file or
directory whose absolute path is path on volume volume to newname.
All arguments are strings.

Example

vfsrename(’Pictures’, ’/DCIM/0003.jpg’, ’jean.jpg’);

See also

vfsdir

3.29 Time Functions

clock

Current date and time.

Syntax

t = clock

LME Reference — time functions 369

Description

clock returns a 1x6 row vector, containing the year (four digits), the
month, the day, the hour, the minute and the second of the current
date and time. All numbers are integers, except for the seconds which
are fractional. The absolute precision is plus or minus one second with
respect to the computer’s clock; the relative precision is plus or minus
1 microsecond on a Macintosh, and plus or minus 1 millisecond on
Windows.

Example

clock
1999 3 11 15 37 34.9167

See also

tic, toc

tic

Start stopwatch.

Syntax

tic

Description

tic resets the stopwatch. Typically, tic is used once at the beginning
of the block to be timed.

See also

toc, clock

toc

Elapsed time of stopwatch.

Syntax

elapsed_time = toc

370 LyME User Manual ©1999-2008, Calerga Sàrl

Description

toc gets the time elapsed since the last execution of tic. Typically,
toc is used at the end of the block of statements to be timed.

On multi-tasking operating systems like Windows, Mac OS X and
Unix, toc measures only the time spent in the LME application. Other
processes do not have a large impact. For instance, typing tic at the
command-line prompt, waiting 5 seconds, and typing toc will show a
value much smaller than 5.

Example

tic; x = eig(rand(200)); toc
0.3046

See also

tic, clock

3.30 Date Conversion Functions

Date functions perform date and time conversions between the calen-
dar date and the julian date.

The calendar date is the date of the proleptic Gregorian calendar,
i.e. the calendar used in most countries today where centennial years
are not leap unless they are a multiple of 400. This calendar was
introduced by Pope Gregory XIII on October 5, 1582 (Julian Calendar,
the calendar used until then) which became October 15. The calendar
used in this library is proleptic, which means the rule for leap years is
applied back to the past, before its introduction. Negative years are
permitted; the year 0 does exist.

The julian date is the number of days since the reference point,
January 1st -4713 B.C. (Julian calendar) at noon. The fractional part
corresponds to the fraction of day after noon: a fraction of 0.25, for
instance, is 18:00 or 6 P.M. The julian date is used by astronomers with
GMT; but using a local time zone is fine as long as an absolute time is
not required.

cal2julian

Calendar to julian date conversion.

LME Reference — date conversion 371

Syntax

jd = cal2julian(datetime)
jd = cal2julian(year, month, day)
jd = cal2julian(year, month, day, hour, minute, second)

Description

cal2julian(datetime) converts the calendar date and time to the
julian date. Input arguments can be a vector of 3 components (year,
month and day) or 6 components (date and hour, minute and sec-
onds), or scalar values provided separately. The result of clock can
be used directly.

Example

Number of days between October 4 1967 and April 18 2005:

cal2julian(2005, 4, 18) - cal2julian(1967, 10, 4)
14624

See also

julian2cal, clock

julian2cal

Julian date to calendar conversion.

Syntax

datetime = julian2cal(jd)
(year, month, day, hour, minute, second) = julian2cal(jd)

Description

julian2cal(jd) converts the julian date to calendar date and time.
With a single output, the result is given a a row vector of 6 values
for the year, month, day, hour, minute and second; with more output
arguments, values are given separately.

Example

Date 1000 days after April 18 2005:

julian2cal(cal2julian(2005, 4, 18) + 1000)
2006 11 14 0 0 0

372 LyME User Manual ©1999-2008, Calerga Sàrl

See also

cal2julian

3.31 Quaternions

Quaternion functions support scalar and arrays of quaternions. Basic
arithmetic operators and functions are overloaded to support expres-
sions with the same syntax as for numbers and matrices.

Quaternions are numbers similar to complex numbers, but with four
components instead of two. The unit imaginary parts are named , j,
and k. A quaternion can be written  +  + jy + kz. The following
relationships hold:

2 = j2 = k2 = jk = −1

It follows that the product of two quaternions is not commutative;
for instance, j = k but j = −k.

Quaternions are convenient to represent arbitrary rotations in the
3d space. They are more compact than matrices and are easier to
normalize. This makes them suitable to simulation and control of me-
chanical systems and vehicles, such as flight simulators and robotics.

Functions below are specific to quaternions:

Function Purpose
isquaternion test for quaternion type
q2mat conversion to rotation matrix
q2rpy conversion to attitude angles
q2str conversion to string
qimag imaginary parts
qinv element-wise inverse
qnorm scalar norm
qslerp spherical linear interpolation
quaternion quaternion creation
rpy2q conversion from attitude angles

Operators below accept quaternions as arguments:

Quaternions 373

Function Operator Purpose
ctranspose ’ conjugate transpose
eq == element-wise equality
horzcat [,] horizontal array concatenation
ldivide .\ left division
ne =̃ element-wise inequality
minus - difference
mldivide \ matrix left division
mrdivide / matrix right division
mtimes * matrix multiplication
plus + addition
rdivide ./ division
times .* multiplication
transpose .’ transpose
uminus - unary minus
uplus + unary plus
vertcat [;] vertical array concatenation

Most of these operators work as expected, like with complex scalars
and matrices. Multiplication and left/right division are not commuta-
tive. Matrix operations are not supported: operators *, /, \, and ˆ are
defined as a convenience (they are equivalent to .*, ./, .\, and .̂
respectively) and work only element-wise with scalar arguments.

Mathematical functions below accept quaternions as arguments;
with arrays of quaternions, they are applied to each element sepa-
rately.

Function Purpose
abs absolute value
conj conjugate
cos cosine
exp exponential
log natural logarithm
real real part
sign quaternion sign (normalization)
sin sine
sqrt square root

Functions below performs computations on arrays of quaternions.

374 LyME User Manual ©1999-2008, Calerga Sàrl

Function Purpose
cumsum cumulative sum
diff differences
double conversion to array of double
mean arithmetic mean
sum sum

Functions below are related to array size.

Function Purpose
beginning first subscript
cat array concatenation
end last subscript
flipdim flip array
fliplr flip left-right
flipud flip upside-down
ipermute dimension inverse permutation
isempty test for empty array
length length of vector
ndims number of dimensions
numel number of elements
permute dimension permutation
repmat array replication
reshape array reshaping
rot90 array rotation
size array size
squeeze remove singleton dimensions

Finally, functions below are related to output and assignment.

Function Purpose
disp display
dumpvar conversion to string
subsasgn assignment to subarrays or to quaternion parts
subsref reference to subarrays or to quaternion parts

Function imag is replaced with qimag which gives a quaternion with
the real part set to zero, because there are three imaginary compo-
nents instead of one with complex numbers.

Operators and functions which accept multiple arguments convert
automatically double arrays to quaternions, ignoring the imaginary
part of complex numbers.

Conversion to numeric arrays with double adds a dimension for
the real part and the three imaginary parts. For example, converting a
scalar quaternion gives a 4-by-1 double column vector and converting
a 2-by-2 quaternion array gives a 2-by-2-by-4 double array. Real and

Quaternions 375

imaginary components can be accessed with the field access notation:
q.w is the real part of q, q.x, q.y, and q.z are its imaginary parts, and
q.v is its imaginary parts as an array similar to the result of double
but without the real part.

Compatibility note: native functions for quaternions replace library
quaternion which defined quaternion scalars and matrices. It is much
faster and supports arrays of more than two dimensions; on the other
hand, matrix-oriented functions are not supported anymore, and the
result of dumpvar is not directly compatible.

isquaternion

Test for a quaternion.

Syntax

b = isquaternion(q)

Description

isquaternion(q) is true if the input argument is a quaternion and
false otherwise.

Examples

isquaternion(2)
false

isquaternion(quaternion(2))
true

See also

quaternion, isnumeric

q2mat

Conversion from quaternion to rotation matrix.

Syntax

R = q2mat(q)

376 LyME User Manual ©1999-2008, Calerga Sàrl

Description

R=q2mat(q) gives the 3x3 orthogonal matrix R corresponding to the
rotation given by scalar quaternion q. For a vector a=[x;y;z] and
its representation as a pure quaternion aq=quaternion(x,y,z), the
rotation can be performed with quaternion multiplication bq=q*aq/q
or matrix multiplication b=R*a.

Input argument q does not have to be normalized; a quaternion cor-
responding to a given rotation is defined up to a multiplicative factor.

Example

q = rpy2q(0.1, 0.3, 0.2);
R = q2mat(q)
R =
0.9363 -0.1688 0.3080
0.1898 0.9810 0.0954

-0.2955 0.0954 0.9506
aq = quaternion(1, 2, 3);
q * aq / q
1.5228i+2.0336j+2.7469k

a = [1; 2; 3];
R * a
1.5228
2.4380
2.7469

See also

q2rpy, rpy2q, quaternion

q2rpy

Conversion from quaternion to attitude angles.

Syntax

(pitch, roll, yaw) = q2rpy(q)

Description

q2rpy(q) gives the pitch, roll, and yaw angles corresponding to the
rotation given by quaternion q. It is the inverse of rpy2q. All angles
are given in radians.

If the input argument is a quaternion array, the results are arrays
of the same size; conversion from quaternion to angles is performed
independently on corresponding elements.

Quaternions 377

See also

rpy2q, q2mat, quaternion

q2str

Conversion from quaternion to string.

Syntax

str = q2str(q)

Description

q2str(q) converts quaternion q to its string representation, with the
same format as disp.

See also

quaternion, format

qimag

Quaternion imaginary parts.

Syntax

b = qimag(q)

Description

qimag(q) gives the imaginary parts of quaternion q as a quaternion,
i.e. the same quaternion where the real part is set to zero. real(q)
gives the real part of quaternion q as a double number.

Example

q = quaternion(1,2,3,4)
q =
1+2i+3j+4k

real(q)
1

qimag(q)
2i+3j+4k

378 LyME User Manual ©1999-2008, Calerga Sàrl

See also

quaternion

qinv

Quaternion element-wise inverse.

Syntax

b = qinv(q)

Description

qinv(q) gives the inverse of quaternion q. If its input argument is a
quaternion array, the result is an quaternion array of the same size
whose elements are the inverse of the corresponding elements of the
input.

The inverse of a normalized quaternion is its conjugate.

Example

q = quaternion(0.4,0.1,0.2,0.2)
q =
0.4+0.1i+0.2j+0.2k

p = qinv(q)
p =
1.6-0.4i-0.8j-0.8k

abs(q)
0.5

abs(p)
2

See also

quaternion, qnorm, conj

qnorm

Quaternion scalar norm.

Syntax

n = qnorm(q)

Quaternions 379

Description

qnorm(q) gives the norm of quaternion q, i.e. the sum of squares of
its components, or the square of its absolute value. If q is an array of
quaternions, qnorm gives a double array of the same size where each
element is the norm of the corresponding element of q.

See also

quaternion, abs

qslerp

Quaternion spherical linear interpolation.

Syntax

q = qslerp(q1, q2, t)

Description

qslerp(q1,q2,t) performs spherical linear interpolation between
quaternions q1 and q2. The result is on the smallest great circle arc
defined by normalized q1 and q2 for values of real number t between
0 and 1.

If q1 or q2 is 0, the result is NaN. If they are opposite, the great
circle arc going through 1, or 1i, is picked.

If input arguments are arrays of compatible size (same size or
scalar), the result is a quaternion array of the same size; conversion
from angles to quaternion is performed independently on
corresponding elements.

Example

q = qslerp(1, rpy2q(0, 1, -1.5), [0, 0.33, 0.66, 1]);
(roll, pitch, yaw) = q2rpy(q)
roll =
0.0000 0.1843 0.2272 0.0000

pitch =
0.0000 0.3081 0.6636 1.0000

yaw =
0.0000 -0.4261 -0.8605 -1.5000

See also

quaternion, rpy2q, q2rpy

380 LyME User Manual ©1999-2008, Calerga Sàrl

quaternion

Quaternion creation.

Syntax

q = quaternion
q = quaternion(w)
q = quaternion(c)
q = quaternion(x, y, z)
q = quaternion(w, x, y, z)
q = quaternion(w, v)

Description

With a real argument, quaternion(x) creates a quaternion object
whose real part is w and imaginary parts are 0. With a complex
argument, quaternion(c) creates the quaternion object
real(c)+i*imag(c).

With four real arguments, quaternion(w,x,y,z) creates the
quaternion object w+i*x+j*y+k*z.

With three real arguments, quaternion(x,y,z) creates the pure
quaternion object i*x+j*y+k*z.

In all these cases, the arguments may be scalars or arrays of the
same size.

With two arguments, quaternion(w,v) creates a quaternion object
whose real part is w and imaginary parts is array v. v must have one
more dimension than w for the three imaginary parts.

Without argument, quaternion returns the zero quaternion object.
The real or imaginary parts of a quaternion can be accessed with

field access, such as q.w, q.x, q.y, q.z, and q.v.

Examples

q = quaternion(1, 2, 3, 4)
q =
1+2i+3j+4k

q + 5
6+2i+3j+4k

q * q
-28+4i+6j+8k

Q = [q, 2; 2*q, 5]
2x2 quaternion array

Q.y
3 0
6 0

q = quaternion(1, [5; 3; 7])

Quaternions 381

q =
1+5i+3j+7k

q.v
5
3
7

See also

real, qimag, q2str, rpy2q

rpy2q

Conversion from attitude angles to quaternion.

Syntax

q = rpy2q(pitch, roll, yaw)

Description

rpy2q(pitch,roll,yaw) gives the quaternion corresponding to a
rotation of angle yaw around the z axis, followed by a rotation of
angle pitch around the y axis, followed by a rotation of angle roll
round the x axis. All angles are given in radians. The result is a
normalized quaternion whose real part is cos(ϑ/2) and imaginary part
sin(ϑ/2)

�

+ yj+ zk
�

, for a rotation of ϑ around unit vector
�

 y z
�T

. The rotation is applied to a point [ y z]T given as a
pure quaternion  =  + yj + zk, giving point  also as a pure
quaternion; then b=q*a/q and a=q\b*q. The rotation can also be seen
as changing coordinates from body to absolute, where the body’s
attitude is given by pitch, roll and yaw.

In order to have the usual meaning of pitch, roll and yaw, the x axis
must be aligned with the direction of motion, the y axis with the lateral
direction, and the z axis with the vertical direction, with the usual sign
conventions for cross products. Two common choices are x pointing
forward, y to the left, and z upward; or x forward, y to the right, and z
downward.

If input arguments are arrays of compatible size (same size or
scalar), the result is a quaternion array of the same size; conversion
from angles to quaternion is performed independently on
corresponding elements.

382 LyME User Manual ©1999-2008, Calerga Sàrl

Example

Conversion of two vectors from aircraft coordinates (x axis forward, y
axis to the left, z axis upward) to earth coordinates (x directed to the
north, y to the west, z to the zenith). In aircraft coordinates, vectors
are [2;0;0] (propeller position) and [0;5;0] (left wing tip). The air-
craft attitude has a pitch of 10 degrees upward, i.e. -10 degrees with
the choice of axis, and null roll and yaw.

q = rpy2q(0, -10*pi/180, 0)
q =
0.9962-0.0872j

q * quaternion(2, 0, 0) / q
1.9696i+0.3473k

q * quaternion(0, 5, 0) / q
5j

See also

q2rpy, q2mat, quaternion

3.32 Serial Port Functions

Serial port functions enable communication with devices connected to
the computer via an RS-232 interface. Such devices include modems,
printers, and many scientific instruments. The operating system can
also emulate RS-232 connections with other devices, such as built-in
modems or USB (Universal Serial Bus) devices.

Functions described in this section include only those required for
opening and configuring the connection. They correspond to fopen
for files. Input, output, and control are done with the following generic
functions:
Function Description
fclose close the file
fflush flush I/O buffers
fgetl read a line
fgets read a line
fprintf write formatted data
fread read data
fscanf read formatted data
fwrite write data
redirect redirect output

Functions opendevice, devicename, closedevice, and
flushdevice are obsolete and may be removed in the future. They
are replaced with serialdevopen and serialdevset to specify
configuration settings, serialdevname, fclose, and fflush.

Serial port 383

serialdevname

Serial device name.

Syntax

name = serialdevname(n)
list = serialdevname

Description

serialdevname(n) returns the name of the n:th serial device which
can be opened by serialdevopen. Argument n must be 1 or higher;
with other values, such as those larger than the number of serial de-
vices available on your computer, serialdevname returns the empty
string.

Without input argument, serialdevname gives the list of serial de-
vice names.

Examples

On a Macintosh with internal modem:

serialdevname(1)
Internal Modem

Under Windows:

serialdevname(1)
COM1

See also

serialdevopen

serialdevopen

Open a serial port.

Syntax

fd = serialdevopen(portname, options)
fd = serialdevopen(portname)

384 LyME User Manual ©1999-2008, Calerga Sàrl

Description

serialdevopen(portname) opens a connection to the serial
port whose name is portname and returns a file descriptor fd.
Names depend on the operating system and can be obtained with
serialdevname.

Some platforms do not provide a complete list of all ports;
serialdevopen may accept additional device names and pass them
directly to the corresponding function of the operating system.

The second argument of serialdevopen(portname,options) is a
structure which contains configuration settings. It is set with
serialdevset.

Once a connection has been opened, the file descriptor fd can be
used with functions such as fread, fwrite, fscanf, and fprintf. The
connection is closed with fclose.

Example

fd = serialdevopen(serialdevname(1), ...
serialdevset(’BPS’,19200,’TextMode’,true,’Timeout’,2));

fprintf(fd, ’L,%d,2\n’, 1);
reply = fgetl(fd)
fclose(fd);

See also

fclose, serialdevname, serialdevset, fflush, fread, fwrite,
fscanf, fgetl, fgets, fprintf

serialdevset

Configuration settings for serial port.

Syntax

options = serialdevset
options = serialdevset(name1, value1, ...)
options = serialdevset(options0, name1, value1, ...)

Description

serialdevset(name1,value1,...) creates the option argument
used by serialdevopen. Options are specified with name/value
pairs, where the name is a string which must match exactly the
names in the table below. Case is significant. Options which are not
specified have a default value. The result is a structure whose

Long integers 385

fields correspond to each option. Without any input argument,
serialdevset creates a structure with all the default settings. Note
that serialdevopen also interprets the lack of an option argument,
or the empty array [], as a request to use the default values.

When its first input argument is a structure, serialdevset adds or
changes fields which correspond to the name/value pairs which follow.

Here is the list of permissible options:

Name Default Meaning
BPS 19200 bit per seconds
Delay 0 delay after character output in seconds
Handshake false hardware handshake
StopBits 2 number of stop bits (1, 1.5, or 2)
TextMode false text mode
Timeout 1 timeout in seconds

Output operations wait for the specified delay after each character;
this can be useful with slow devices without handshake.

When text mode is set, input CR and CR/LF sequences are con-
verted to LF. Output CR and LF are not converted.

Depending on the platform, operations which use the timeout value
(such as input) can be interrupted with the platform-dependent abort
key(s) (typically Escape or Control-C) or are limited to 10 seconds.

Example

serialdevset
BPS: 19200
Handshake: false
StopBits: 2
TextMode: false
Timeout: 1

See also

serialdevopen, serialdevname

3.33 Long Integers

This section describes functions which support long integers (longint),
i.e. integer numbers with an arbitrary number of digits limited only
by the memory available. Some LME functions have been overloaded:
new definitions have been added and are used when at least one of
their arguments is of type longint. These functions are listed in the
table below.

386 LyME User Manual ©1999-2008, Calerga Sàrl

LME Operator Purpose
abs absolute value
char conversion to string
disp display
double conversion to floating-point
gcd greatest common divisor
lcm least common multiple
minus - subtraction
mldivide \ left division
mpower ˆ power
mrdivide / right division
mtimes * multiplication
plus + addition
rem remainder
uminus - negation
uplus + no operation

longint

Creation of a long integer.

Syntax

li = longint(i)
li = longint(str)

Description

longint(i) creates a long integer from a native LME floating-point
number. longint(str) creates a long integer from a string of decimal
digits.

Examples

longint(’1234567890’)
1234567890

longint(2)̂ 100
1267650600228229401496703205376

13th Mersenne prime:

longint(2)̂ 521-1
6864797660130609714981900799081393217269
4353001433054093944634591855431833976560
5212255964066145455497729631139148085803
7121987999716643812574028291115057151

LyME functions 387

Number of decimal digits in the 27th Mersenne prime:

length(char(longint(2)̂ 44497-1))
13395

3.34 LyME Functions

axis

Set the scale of the next graphics.

Syntax

axis([xmin,xmax,ymin,ymax])
axis equal
limits = axis

Description

With an input argument, the axis command, which should be placed
before any other graphical command, sets the scale and scale options.
The parameter is either a vector of 4 elements which sets the limits of
the plot for both x and y axis, or the string ’equal’ to make the scale
equal in both directions so that circles are really displayed as circles
and not ellipses.

With an output argument, axis gives the current limits of the plot
in a row vector [xmin,xmax,ymin,ymax].

See also

clf, hold

bar

Vertical bar plot.

Syntax

bar(y)
bar(x, y)
bar(x, y, w)
bar(..., kind)
bar(..., kind, color)

388 LyME User Manual ©1999-2008, Calerga Sàrl

Description

bar(x,y) plots the columns of y as vertical bars centered around the
corresponding value in x. If x is not specified, its default value is
1:size(y,2).

bar(x,y,w), where w is scalar, specifies the relative width of each
bar with respect to the horizontal distance between the bars; with
values smaller than 1, bars are separated with a gap, while with values
larger than 1, bars overlap. If w is a vector of two components [w1,w2],
w1 corresponds to the relative width of each bar in a group (columns
of y), and w2 to the relative width of each group. Default values, used
if w is missing or is the empty matrix [], is 0.8 for both w1 and w2.

bar(...,kind), where kind is a string, specifies the kind of bar
plot. The following values are recognized:

’grouped’ Columns of y are grouped horizontally (default)
’stacked’ Columns of y are stacked vertically
’interval’ Same as grouped, except that bars have min and max values

With ’interval’, intervals are defined by two consecutive rows of
y, which must have an even number of rows.

The optional argument color is a string made of one or several
color characters:
’k’ black
’w’ white with a black frame

First color is applied to first row of y, second color to second row,
and so on; if there are less colors than rows, colors are recycled.

Examples

bar([2,4,3,6;3,5,4,1]); % simple bar plot
bar(1:4, magic(4), [], ’stacked’); % stacked bar plot
bar(1:4, [2,4,3,1;5,6,4,6], [], ’interval’); % interval plot

See also

barh, plot

barh

Horizontal bar plot.

Syntax

barh(x)
barh(y, x)

LyME functions 389

barh(y, x, w)
barh(..., kind)
barh(..., kind, style)

Description

barh plots a bar plot with horizontal bars. Please see bar for a de-
scription of its behavior and arguments.

Examples

barh([2,4,3,6;3,5,4,1]); % simple bar plot
barh(1:4, magic(4), [], ’stacked’); % stacked bar plot
barh(1:4, [2,4,3,1;5,6,4,6], [], ’interval’); % interval plot

See also

bar, plot

beep

Play music.

Syntax

beep(freq)
beep([freq, duration])
beep([freq, duration, volume])

Description

The beep command plays one or several sounds. Argument is a m-
by-n matrix, with n between 1 and 3; first column is the frequency in
Hertz, second column is duration in seconds (default 0.1), and third
column is volume between 0 and 1 (default 1).

Example

beep(440 * 2.̂ ((0:12)’/12));

See also

audioplay, pause

390 LyME User Manual ©1999-2008, Calerga Sàrl

clf

Clear the figure window.

Syntax

clf

See also

close, clc, hold, plot

close

Discard the graphics output and display the text output window.

Syntax

close

See also

clf, clc

contour

Level curves.

Syntax

contour(z)
contour(z, [xmin, xmax, ymin, ymax])
contour(z, [xmin, xmax, ymin, ymax], levels)

Description

contour(z) plots seven contour lines corresponding to the surface
whose samples at equidistant points 1:size(z,2) in the x direction
and 1:size(z,1) on the y direction are given by z. Contour lines
are at equidistant levels. With a second non-empty argument [xmin,
xmax, ymin, ymax], the samples are at equidistant points between
xmin and xmax in the x direction and between ymin and ymax in the
y direction. The optional third argument levels, if non-empty, gives
the number of contour lines if it is a scalar or the levels themselves if
it is a vector.

LyME functions 391

-1 0 1
-1

0

1
contour

Figure 3.5 Example of contour

Example

A function is evaluated over a grid of two variables x and y, and is
drawn with contour (see Fig. 3.5):

(x, y) = meshgrid(-2 + (0:40) / 10);
z = exp(-((x-0.2).̂ 2+(y+0.3).̂ 2)) ...

- exp(-((x+0.5).̂ 2+(y-0.1).̂ 2)) + 0.1 * x;
axis equal;
contour(z, [-1,1,-1,1]);

See also

plot

fplot

Function plot.

Syntax

fplot(fun)
fplot(fun, limits)
fplot(fun, limits, style)
fplot(fun, limits, style, p1, p2, ...)

392 LyME User Manual ©1999-2008, Calerga Sàrl

Description

Command fplot(fun,limits) plots function fun, specified by its
name as a string, a function reference, or an inline function. The
function is plotted for x between limit(1) and limit(2); the default
limits are [-5,5].

The style of the plot can be specified with a third argument
(see plot for details). Remaining input arguments of fplot, if
any, are given as additional input arguments to function fun.
They permit to parameterize the function. For example
fplot(’fun’,[0,10],’’,2,5) calls fun as y=fun(x,2,5) and
displays its value for x between 0 and 10.

Examples

Plot a sine:

fplot(@sin);

Plot (+ 0.3)2 + exp−32 in red for  ∈ [−2,3] with  = 7.2 and an
identifier of 1:

fun = inline(’function y=f(x,a); y=(x+0.3)̂ 2+a*exp(-3*x̂ 2);’);
fplot(fun, [-2,3], ’r’, 7.2);

See also

plot, hold, clf, inline, operator @

hold

Graphic freeze.

Syntax

hold on
hold off

Description

Command hold controls whether the graphics window is cleared be-
fore graphical commands such as plot and text display new ele-
ments. hold on suspends the auto-clear feature, and hold off re-
sumes it. In any case, clf always resumes it.

LyME functions 393

Example

t = 0:0.1:2*pi;
plot(t, sin(t));
hold on;
plot(t, cos(t));
hold off;
pause(3);
plot(t, sin(t).*cos(t));

See also

plot, clf

image

Image plot.

Syntax

image(A)

Description

image(A) displays array A as an image. A is an array of two dimen-
sions for grayscale images or three dimensions for RGB images, with
size(A,3)==3. image accepts different types of data: double arrays
must contain numbers between 0 for black and 1 for maximum in-
tensity; uint8 arrays contain numbers between 0 for black and 255
for maximum intensity; and logical arrays contain false for black and
true for maximum intensity. Function map2int is useful for converting
double values in other ranges.

The image is displayed as a low density bitmap, centered in the
graphics area. The first value in the array corresponds to the top left
corner.

Availability

image requires Palm OS 4.0 or higher.

Example

x = meshgrid(-2:0.1:2); % coord for x (y is x.’)
A = cos(x.̂ 2 + x.’.̂ 2); % cos(r̂ 2), element-wise
image(map2int(A, -1, 1)); % double [-1,1] to uint8

394 LyME User Manual ©1999-2008, Calerga Sàrl

See also

plot, clf, map2int

loglog

Generic plot with a logarithmic scale along x and y axis.

Syntax

loglog(y)
loglog(x, y)
loglog(x, y, style)

Description

Command loglog is similar to plot, except that the scale along both
x and y axis is logarithmic.

See also

plot, semilogx, semilogy, hold, clf

pause

Put the handheld in low power mode.

Syntax

pause(t)

Description

pause(t) makes the handheld wait for t seconds in low-power mode.

plot

Generic plot.

Syntax

plot(y)
plot(x, y)
plot(x, y, style)

LyME functions 395

Description

Command plot displays graphical data. The data are given as two
vectors of coordinates x and y. Depending on the style, the points
are displayed as individual marks (style = ’x’, ’o’, or ’.’) or are
linked with lines (style = ’-’). The style may also specify the color:

Color Character
black k
blue b
green g
cyan c
red r
magenta m
yellow y
white w

The default style is ’-’.
If x and y are matrices, each row is considered as a separate line or

set of marks; if only one of them is a matrix, the other one, a vector,
is reused for each line. The style string may contain several styles
which are used for each line, and recycled if necessary.

The first argument x may be omitted; its default value is
1:size(y,2).

Example

Plot a sine in black and a cosine in light blue:

t = 0:0.1:2*pi;
plot(t,[sin(t); cos(t)], ’kc’);

See also

semilogx, semilogy, loglog, polar, fplot, hold, clf

polar

Polar plot.

Syntax

polar(phi, r)
polar(phi, r, style)

396 LyME User Manual ©1999-2008, Calerga Sàrl

Description

Command polar displays graphical data in polar coordinates. The
data are given as two vectors of polar coordinates phi and r; their
corresponding Cartesian coordinates are x=r*cos(phi) and
y=r*sin(phi). Several polar plots may be combined with hold;
however, other kinds of plots should not be mixed.

If phi and r are matrices, each row is considered as a separate line
or set of marks. Unlike plot, both matrices must have the same size.

See the description of plot for more information about the third
argument.

Example

phi = 2*pi*(0:100)/100;
polar(phi, 2+cos(5*phi), ’r’);

See also

plot, hold, clf

semilogx

Generic plot with a logarithmic scale along x axis.

Syntax

semilogx(y)
semilogx(x, y)
semilogx(x, y, style)

Description

Command semilogx is similar to plot, except that the scale along the
x axis is logarithmic.

See also

plot, semilogy, loglog, hold, clf

semilogy

Generic plot with a logarithmic scale along y axis.

Dialog functions 397

Syntax

semilogy(y)
semilogy(x, y)
semilogy(x, y, style)

Description

Command semilogy is similar to plot, except that the scale along the
y axis is logarithmic.

See also

plot, semilogx, loglog, hold, clf

text

Display formatted text in a figure.

Syntax

text(x, y, string)

Description

text displays a string centered at the specified position. Function
sprintf can be used to create a string and display numbers.

Example

The following code displays the string (1.2,3.7) centered around
these coordinates.

x = 1.2;
y = 3.7;
text(x, y, sprintf(’(%.1f,%.1f)’, x, y));

See also

disp, fprintf, sprintf

3.35 Dialog Functions

selectday

Display a dialog for choosing a date.

398 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

day = selectday(title, day0)
day = selectday(title)

Description

selectday(title,day0) displays a dialog box which lets the user
choose a date. First input argument title is the title of the dialog
box. The day which is selected by default is day0, given as a vector
of three integer numbers [year,month,day]; with a single input argu-
ment, the selected day is the current date. The result is either a date
as a 1-by-3 row vector, or the empty array if the user taps the Cancel
button.

Example

birthday = selectday(’Your birthday’)

See also

selecttime

selecttime

Display a dialog for choosing a time.

Syntax

time = selecttime(title, time0)
time = selecttime(title)

Description

selecttime(title,day0) displays a dialog box which lets the user
choose a time. First input argument title is the title of the dialog
box. The time which is selected by default is time0, given as a vector
of two integer numbers [hour,minute] (where hour between 0 and
23); with a single input argument, the selected time is the current
time. The result is either a time as a 1-by-2 row vector, or the empty
array if the user taps the Cancel button.

Example

t0 = selecttime(’Rocket launch time’, [12, 0]);

Extensions — audio output 399

See also

selectday

3.36 Audio output

This section describes functions which play sounds.

audioplay

Play audio samples.

Syntax

audioplay(samples)
audioplay(samples, options)

Description

audioplay(samples) plays the audio samples in array samples at a
sample rate of 44.1 kHz. Each column of samples is a channel (i.e.
samples is a column vector for monophonic sound and a two-column
array for stereophonic sound), and each row is a sample. Samples are
stored as double or single numbers between -1 and 1, int8 numbers
between -128 and 127, or int16 numbers between -32768 and 32767.

audioplay(samples,options) uses the specified options, which
are typically built with audioset.

Examples

A monophonic bell-like sound of two seconds with a frequency of 740
Hz and a damping time constant of 0.5 second:

t = (0:88200)’/44100;
samples = sin(2*pi*740*t).*exp(-t/0.5);
audioplay(samples);

Some white noise which oscillates 5 times between left and right:

t = (0:44099)’ / 44100;
noise = 0.1 * randn(length(t), 1);
left = cos(2 * pi * t) .* noise;
right = sin(2 * pi * t) .* noise;
opt = audioset(’Repeat’, 5);
audioplay([left, right], opt);

400 LyME User Manual ©1999-2008, Calerga Sàrl

See also

audioset

audioset

Options for audio.

Syntax

options = audioset
options = audioset(name1, value1, ...)
options = audioset(options0, name1, value1, ...)

Description

audioset(name1,value1,...) creates the option argument used by
audioplay. Options are specified with name/value pairs, where the
name is a string which must match exactly the names in the table
below. Case is significant. Options which are not specified have a
default value. The result is a structure whose fields correspond to each
option. Without any input argument, audioset creates a structure
with all the default options. Note that audioplay also interprets the
lack of an option argument, or the empty array [], as a request to use
the default values.

When its first input argument is a structure, audioset adds or
changes fields which correspond to the name/value pairs which fol-
low.

Here is the list of permissible options:

Name Default Meaning
Repeat 1 number of repetitions
SampleRate 44100 sample rate in Hz

Default values may be different on platforms with limited audio ca-
pabilities.

Example

Default options:

audioset
Repeat: 1
SampleRate: 44100

See also

audioplay

Machine code 401

3.37 Machine Code Functions

This chapter describes the functions which permit LyME to call arbi-
trary machine code. This may be useful to access features which are
not implemented directly in LyME, such as direct calls to Palm OS func-
tions or support for hardware.

Warning 1: Calling machine code is potentially dangerous. It eas-
ily leads to crashes which may need soft or hard resets. You should
backup your device first. The use of an emulator, if available, should
be considered.

Warning 2: Presenting Palm device hardware and software archi-
tecture is far beyond the scope of this reference manual.

Warning 3: Functions described in this chapter are experimental
and subject to change without notice.

3.38 Introduction

To support calls to machine code, a new data type is provided,
binarydata. Variables of this type contain a vector of 16-bit words.
Functions are provided to convert a string of hexadecimal digits or a
vector of numbers to binarydata, binarydata to a vector of integer
numbers or a string of bytes, and to execute as a machine-code
subroutine the contents of binarydata using another binarydata as
data.

As an example, we will develop a subroutine which fills some
binarydata with the numbers n, n-1, ..., 2, 1. Before the subroutine
is executed, the following registers are set:

Register Value
A5 Beginning of the data
D0 Length of the data in words

Here is the code of the subroutine:

moveq.w #0, d1
loop:
tst.w d0
beq end
move.w d0, (a5,d1)
subq.w #1, d0
addq.w #2, d1
bra loop
end:
rts

The data offset of the next word to set is stored in D1. As long as D0 is
not 0, D0 is stored in the data at offset D1 and decremented, and D1 is

402 LyME User Manual ©1999-2008, Calerga Sàrl

incremented by 2. The subroutine ends with rts. Note that absolute
addresses must be avoided; only relative jumps must be used.

An assembler converts this assembly code to the following machine
code:

72004A40670A3B8010005340544160F24E75

To store this code in a binarydata variable, we enter in LyME

> code = binarydata(’72004A40670A3B8010005340544160F24E75’);

To execute this code with data initialized to 10 null 16-bit words, we
use feval:

> dataout = feval(code, binarydata(zeros(10, 1)));

The result can be converted to a vector of numbers and displayed:

> double(dataout)
10
9
8
7
6
5
4
3
2
1

Words in binary data can also be accessed with subscripts, which must
be integer values based on 0. In subscript expressions, beginning
gives 0 (the first valid index) and end gives the number of words minus
one. Logical values are not supported.

> dataout(end-2:end)
3 2 1

> dataout(0:2) = 555;
> dataout(0:5)
555 555 555 7 6 5

3.39 Functions

binarydata

Create binary code or data.

Machine code 403

Syntax

d = binarydata(vec)
d = binarydata(’hexa’)

Description

binarydata(vec) creates a block of binary data from the elements of
vector vec converted to words (16-bits values). If vec is a vector of
class double, its elements converted directly to 16-bit words. If it is
a vector of integer numbers, the conversion takes their size
into account, with the most-significant word first: for instance,
binarydata(uint8([0,0,1,0]), binarydata(int16([0,256]), and
binarydata(uint32(256)) all produce the same binary data
containing the 16-bit words 0 and 256.

binarydata(str) creates a block of binary data whose value is
given by the string of hexadecimal digits str. The length of str must
be a multiple of 4, so that the block has an integer number of words.

See also

double, uint8, uint16, uint32, int8, int16, int32, char, feval

char

Convert binary data to a string of characters.

Syntax

str = char(d)

Description

char(d) converts binary data to a a string of characters. Each char-
acter corresponds to one byte.

See also

binarydata, double, uint8, uint16, uint32, int8, int16, int32

double

Convert binary data to a vector of double.

404 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

vec = double(d)

Description

double(d) converts binary data to a column vector of double num-
bers.

See also

char, uint8, uint16, uint32, int8, int16, int32, binarydata

feval

Call machine language in binary data.

Syntax

feval(code)
dataout = feval(code, datain)

Description

feval(code) calls code in binary data code with the following instruc-
tions:

movea #0, a5
clr.w d0
jsr code

feval(code,data) calls code in binary data code with the following
instructions:

lea (data), a5
move.l dataSize, d0
jsr code

The binary data data (possibly modified) is returned. In both cases,
the code should be a subroutine and end with rts.

Warning

feval has the potential of crashing LyME if its arguments do not cor-
respond to valid code and data.

Machine code 405

See also

binarydata, pcenativecall

uint8 uint16 uint32 int8 int16 int32

Convert binary data to a vector of integer numbers.

Syntax

vec = int8(d)
vec = int16(d)
vec = int32(d)
vec = uint8(d)
vec = uint16(d)
vec = uint32(d)

Description

int8(d), int16(d), and int32(d) convert binary data d to a column
vector of signed integer numbers of size 8, 16, or 32 respectively.
uint8(d), uint16(d), and uint32(d) convert binary data d to a col-
umn vector of unsigned integer numbers of size 8, 16, or 32 respec-
tively. Each 16-bit word in the binary data d corresponds to 2 8-bit
integers, 1 16-bit integer, or half a 32-bit integer.

See also

char, double, binarydata

length

Number of words in a binary data object.

Syntax

n = length(d)

Description

length(d) gives the number of words in a binary data object.

See also

binarydata

406 LyME User Manual ©1999-2008, Calerga Sàrl

pcenativecall

Call native (ARM) machine language in binary data.

Syntax

dataout = pcenativecall(code, data)
(dataout, result) = pcenativecall(code, datain)

Description

pcenativecall(code, datain) calls native ARM code in binary data
code with an argument pointing to datain. It returns the same block of
memory corresponding to datain, possibly modified by the execution
of the code. This call is available only on handhelds with an ARM
micro-processor. It relies on Palm OS function PceNativeCall.

The native function should have the following prototype, where
datain points to the argument of pcenativecall:

unsigned long fun(const void *emulStateP,
void *datain, Call68KFuncType *call68KFuncP);

Please refer to Palm OS documentation at http://www.palmos.com for
more informations.

Warning

pcenativecall has the potential of crashing LyME if its arguments do
not correspond to valid code and data.

See also

binarydata, feval, processorname

peek

Get a word anywhere in memory.

Syntax

value = peek(address)

Description

peek(address) reads a short word (two bytes) of memory at the ad-
dress specified, which must be even. Several words may be read in
one command if the argument is a vector or a matrix.

Machine code 407

See also

poke

poke

Store a word anywhere in memory.

Syntax

poke(address, value)

Description

poke(address,value) stores a short word (two bytes) of memory at
the address specified, which must be even. Several words may be
stored in one command if the arguments are vectors or matrices. The
size both arguments must be the same, or the second argument value
must be a scalar.

See also

peek

processorname

Get the name of the microprocessor.

Syntax

shortname = processorname
(shortname, fullname) = processorname

Description

processorname gets the name of the microprocessor of the hand-
held. The first output argument is the short name, such as ’68328’ or
’ARM720T’; the second output argument, if it exists, is the full name,
such as ’Motorola 68328 (Dragonball)’ or ’ARM 720T’.

Chapter 4

Libraries

Libraries are collections of functions which complement the set of
built-in functions and operators of LME, the programming language
of LyME and Sysquake. To use them, type (or add in the functions
block of the SQ files which rely on them) a use command, such as

use stdlib

bitfield bitfield implements constructors and methods for bit
fields (binary numbers). Standard operators are redefined to en-
able the use of & and | for bitwise operations, and subscripts for bit
extraction and assignment.

classes classes implements constructors and methods for poly-
nomial and rational functions. With them, you can use standard
operator notations such as + or *.

ratio ratio implements constructors and methods for rational
numbers based on long integers. Standard arithmetic and boolean
operators can be used.

constants constants defines common physical constants.

control control implements basic time- and frequency-domain
responses for dynamical systems.

date date implements functions for date and time manipulation
and conversion to and from strings.

filter filter provides functions for the design of analog and dig-
ital filters.

stat stat provides more advanced statistical functions.

stdlib stdlib is the standard library of general-purpose functions
for LME. Functions span from array creation and manipulation to
coordinates transform and basic statistics.

410 LyME User Manual ©1999-2008, Calerga Sàrl

4.1 stdlib

stdlib is a library which extends the native LME functions in the fol-
lowing areas:

– creation of matrices: blkdiag, compan, hankel, linspace,
logspace, toeplitz

– geometry: cart2sph, cart2pol, pol2cart, sph2cart, subspace

– functions on integers: primes

– statistics: corrcoef, median, perms

– data processing: circshift, cumtrapz, fftshift, filter2,
hist, ifftshift, polyfit, polyvalm, trapz

– other: isreal, sortrows

The following statement makes available functions defined in stdlib:

use stdlib

cart2pol

Cartesian to polar coordinates transform.

Syntax

use stdlib
(phi, r) = cart2pol(x, y)
(phi, r, z) = cart2pol(x, y, z)

Description

(phi,r)=cart2pol(x,y) transforms Cartesian coordinates x and y to
polar coordinates phi and r such that  = r cos(φ) and  = r sin(φ).

(phi,r,z)=cart2pol(x,y,z) transform Cartesian coordinates to
cylindrical coordinates, leaving z unchanged.

Example

use stdlib
(phi, r) = cart2pol(1, 2)
phi =
1.1071

r =
2.2361

Libraries — stdlib 411

See also

cart2sph, pol2cart, sph2cart

cart2sph

Cartesian to spherical coordinates transform.

Syntax

use stdlib
(phi, theta, r) = cart2sph(x, y, z)

Description

(phi,theta,r)=cart2sph(x,y,z) transforms Cartesian coordinates
x, y, and z to polar coordinates phi, theta, and r such that  =
r cos(φ) cos(ϑ), y = r sin(φ) cos(ϑ), and z = r sin(ϑ).

Example

use stdlib
(phi, theta, r) = cart2sph(1, 2, 3)
phi =
1.1071

theta =
0.9303

r =
3.7417

See also

cart2pol, pol2cart, sph2cart

circshift

Shift the elements of a matrix in a circular way.

Syntax

use stdlib
B = circshift(A, shift_vert)
B = circshift(A, [shift_vert, shift_hor])

412 LyME User Manual ©1999-2008, Calerga Sàrl

Description

circshift(A,sv) shifts the rows of matrix A downward by sv rows.
The sv bottom rows of the input matrix become the sv top rows of the
output matrix. sv may be negative to go the other way around.

circshift(A,[sv,sh]) shifts the rows of matrix A downward by sv
rows, and its columns to the right by sh columns. The sv bottom rows
of the input matrix become the sv top rows of the output matrix, and
the sh rightmost columns become the sh leftmost columns.

See also

rot90, fliplr, flipud

blkdiag

Block-diagonal matrix.

Syntax

use stdlib
X = blkdiag(B1, B2, ...)

Description

blkdiag(B1,B2,...) creates a block-diagonal matrix with matrix
blocks B1, B2, etc. Its input arguments do not need to be square.

Example

use stdlib
blkdiag([1,2;3,4], 5)
1 2 0
3 4 0
0 0 5

blkdiag([1,2], [3;4])
1 2 0
0 0 3
0 0 4

See also

diag

Libraries — stdlib 413

compan

Companion matrix.

Syntax

use stdlib
X = compan(pol)

Description

compan(pol) gives the companion matrix of polynomial pol, a square
matrix whose eigenvalues are the roots of pol.

Example

use stdlib
compan([2,3,4,5])
-1.5 -2.0 -2.5
1.0 0.0 0.0
0.0 1.0 0.0

See also

poly, eig

corrcoef

Correlation coefficients.

Syntax

use stdlib
S = corrcoef(X)
S = corrcoef(X1, X2)

Description

corrcoef(X) calculates the correlation coefficients of the columns of
the m-by-n matrix X. The result is a square n-by-n matrix whose diag-
onal is 1.

corrcoef(X1,X2) calculates the correlation coefficients of
X1 and X2 and returns a 2-by-2 matrix. It is equivalent to
corrcoef([X1(:),X2(:)]).

414 LyME User Manual ©1999-2008, Calerga Sàrl

Example

use stdlib
corrcoef([1, 3; 2, 5; 4, 4; 7, 10])
1 0.8915
0.8915 1

corrcoef(1:5, 5:-1:1)
1 -1

-1 1

See also

cov

cumtrapz

Cumulative numerical integration with trapezoidal approximation.

Syntax

use stdlib
S = cumtrapz(Y)
S = cumtrapz(X, Y)
S = cumtrapz(X, Y, dim)

Description

cumtrapz(Y) calculates an approximation of the cumulative integral
of a function given by the samples in Y with unit intervals. The trape-
zoidal approximation is used. If Y is neither a row nor a column vector,
integration is performed along its columns. The result has the same
size as Y. The first value(s) is (are) 0.

cumtrapz(X,Y) specifies the location of the samples. A third argu-
ment may be used to specify along which dimension the integration is
performed.

Example

use stdlib
cumtrapz([2, 3, 5])
0 2.5 6.5

cumtrapz([1, 2, 5], [2, 3, 5])
0 2.5 14.5

See also

cumsum, trapz

Libraries — stdlib 415

fftshift

Shift DC frequency of FFT from beginning to center of spectrum.

Syntax

use stdlib
Y = fftshift(X)

Description

fftshift(X) shifts halves of vector (1-d) or matrix (2-d) X to move
the DC component to the center. It should be used after fft or fft2.

See also

fft, ifftshift

filter2

Digital 2-d filtering of data.

Syntax

use stdlib
Y = filter2(F, X)
Y = filter2(F, X, shape)

Description

filter2(F,X) filters matrix X with kernel F with a 2-d correlation. The
result has the same size as X.

An optional third argument is passed to conv2 to specify another
method to handle the borders.

filter2 and conv2 have three differences: arguments F and X are
permuted, filtering is performed with a correlation instead of a con-
volution (i.e. the kernel is rotated by 180 degrees), and the default
method for handling the borders is ’same’ instead of ’full’.

See also

filter, conv2

hankel

Hankel matrix.

416 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use stdlib
X = hankel(c, r)

Description

hankel(c,r) creates a Hankel matrix whose first column contains the
elements of vector c and whose last row contains the elements of
vector r. A Hankel matrix is a matrix whose antidiagonals have the
same value. In case of conflict, the first element of r is ignored. The
default value of r is a zero vector the same length as c.

Example

use stdlib
hankel(1:3, 3:8)
1 2 3 4 5 6
2 3 4 5 6 7
3 4 5 6 7 8

See also

toeplitz, diag

hist

Histogram.

Syntax

use stdlib
(N, X) = hist(Y)
(N, X) = hist(Y, m)
(N, X) = hist(Y, m, dim)
N = hist(Y, X)
N = hist(Y, X, dim)

Description

hist(Y) gives the number of elements of vector Y in 10 equally-
spaced intervals. A second input argument may be used to specify
the number of intervals. The center of the intervals may be obtained
in a second output argument.

Libraries — stdlib 417

If Y is an array, histograms are computed along the dimension spec-
ified by a third argument or the first non-singleton dimension; the re-
sult N has the same size except along that dimension.

When the second argument is a vector, it specifies the centers of
the intervals.

Example

use stdlib
(N, X) = hist(logspace(0,1), 5)
N =
45 21 14 11 9

X =
1.9 3.7 5.5 7.3 9.1

ifftshift

Shift DC frequency of FFT from center to beginning of spectrum.

Syntax

use stdlib
Y = ifftshift(X)

Description

ifftshift(X) shifts halves of vector (1-d) or matrix (2-d) X to move
the DC component from the center. It should be used before ifft or
ifft2. It reverses the effect of fftshift.

See also

ifft, fftshift

isreal

Test for a real number.

Syntax

use stdlib
b = isreal(x)

418 LyME User Manual ©1999-2008, Calerga Sàrl

Description

isreal(x) is true if x is a real scalar or a matrix whose entries are all
real.

Examples

use stdlib
isreal([2,5])
true

isreal([2,3+2j])
false

isreal(exp(pi*1j))
true

See also

isnumeric, isfloat, isscalar

linspace

Sequence of linearly-spaced elements.

Syntax

use stdlib
v = linspace(x1, x2)
v = linspace(x1, x2, n)

Description

linspace(x1,x2) produces a row vector of 100 values spaced linearly
from x1 and x2 inclusive. With a third argument, linspace(x1,x2,n)
produces a row vector of n values.

Examples

use stdlib
linspace(1,10)
1.0000 1.0909 1.1818 ... 9.9091 10.0000

linspace(1,2,6)
1.0 1.2 1.4 1.6 1.8 2.0

See also

logspace, operator :

Libraries — stdlib 419

logspace

Sequence of logarithmically-spaced elements.

Syntax

use stdlib
v = logspace(x1, x2)
v = logspace(x1, x2, n)

Description

logspace(x1,x2) produces a row vector of 100 values spaced log-
arithmically from 10̂ x1 and 10̂ x2 inclusive. With a third argument,
logspace(x1,x2,n) produces a row vector of n values.

Example

logspace(0,1)
1.0000 1.0235 1.0476 ... 9.5455 9.7701 10.0000

See also

linspace, operator :

median

Median.

Syntax

use stdlib
x = median(v)
v = median(M)
v = median(M, dim)

Description

median(v) gives the median of vector v, i.e. the value x such that half
of the elements of v are smaller and half of the elements are larger.

median(M) gives a row vector which contains the median of the
columns of M. With a second argument, median(M,dim) operates along
dimension dim.

420 LyME User Manual ©1999-2008, Calerga Sàrl

Example

use stdlib
median([1, 2, 5, 6, inf])
5

See also

mean, sort

perms

Array of permutations.

Syntax

use stdlib
M = perms(v)

Description

perm(v) gives an array whose rows are all the possible permutations
of vector v.

Example

use stdlib
perms(1:3)
3 2 1
3 1 2
2 3 1
1 3 2
2 1 3
1 2 3

See also

sort

pol2cart

Polar to Cartesian coordinates transform.

Libraries — stdlib 421

Syntax

use stdlib
(x, y) = pol2cart(phi, r)
(x, y, z) = pol2cart(phi, r, z)

Description

(x,y)=pol2cart(phi,r) transforms polar coordinates phi and r to
Cartesian coordinates x and y such that  = r cos(φ) and  = r sin(φ).

(x,y,z)=pol2cart(phi,r,z) transforms cylindrical coordinates to
Cartesian coordinates, leaving z unchanged.

Example

use stdlib
(x, y) = pol2cart(1, 2)
x =
1.0806

y =
1.6829

See also

cart2pol, cart2sph, sph2cart

polyfit

Polynomial fit.

Syntax

use stdlib
pol = polyfit(x, y, n)

Description

polyfit(x,y,n) calculates the polynomial (given as a vector of de-
scending power coefficients) of order n which best fits the points given
by vectors x and y. The least-square algorithm is used.

422 LyME User Manual ©1999-2008, Calerga Sàrl

Example

use stdlib
pol = polyfit(1:5, [2, 1, 4, 5, 2], 3)
pol =
-0.6667 5.5714 -12.7619 9.8000

polyval(pol, 1:5)
1.9429 1.2286 3.6571 5.2286 1.9429

polyvalm

Value of a polynomial with square matrix argument.

Syntax

use stdlib
Y = polyvalm(pol, X)

Description

polyvalm(pol,X) evaluates the polynomial given by the coefficients
pol (in descending power order) with a square matrix argument.

Example

use stdlib
polyvalm([1,2,8],[2,1;0,1])
16 5
0 11

See also

polyval

primes

List of primes.

Syntax

use stdlib
v = primes(n)

Description

primes(n) gives a row vector which contains the primes up to n.

Libraries — stdlib 423

Example

use stdlib
primes(20)
2 3 5 7 11 13 17 19

sortrows

Sort matrix rows.

Syntax

use stdlib
(S, index) = sortrows(M)
(S, index) = sortrows(M, sel)
(S, index) = sortrows(M, sel, dim)

Description

sortrows(M) sort the rows of matrix M. The sort order is based on the
first column of M, then on the second one for rows with the same value
in the first column, and so on.

sortrows(M,sel) use the columns specified in sel for comparing
the rows of M. A third argument dim can be used to specify the dimen-
sion of the sort: 1 for sorting the rows, or 2 for sorting the columns.

The second output argument of sortrows gives the new order of
the rows or columns as a vector of indices.

Example

use stdlib
sortrows([3, 1, 2; 2, 2, 1; 2, 1, 2])
2 1 2
2 2 1
3 1 2

See also

sort

sph2cart

Spherical to Cartesian coordinates transform.

424 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use stdlib
(x, y, z) = sph2cart(phi, theta, r)

Description

(x,y,z)=sph2cart(phi,theta,r) transforms polar coordinates
phi, theta, and r to Cartesian coordinates x, y, and z such that
 = r cos(φ) cos(ϑ), y = r sin(φ) cos(ϑ), and z = r sin(ϑ).

Example

use stdlib
(x, y, z) = sph2cart(1, 2, 3)
x =
-0.6745

y =
-1.0505

z =
2.7279

See also

cart2pol, cart2sph, pol2cart

subspace

Angle between two subspaces.

Syntax

use stdlib
theta = subspace(A, B)

Description

subspace(A,B) gives the angle between the two subspaces spanned
by the columns of A and B.

Examples

Angle between two vectors in R 2̂:

Libraries — stdlib 425

use stdlib
a = [3; 2];
b = [1; 5];
subspace(a, b)
0.7854

Angle between the vector [1;1;1] and the plane spanned by [2;5;3]
and [7;1;0] in R 3̂:

subspace([1;1;1], [2,7;5,1;3,0])
0.2226

toeplitz

Toeplitz matrix.

Syntax

use stdlib
X = toeplitz(c, r)
X = toeplitz(c)

Description

toeplitz(c,r) creates a Toeplitz matrix whose first column contains
the elements of vector c and whose first row contains the elements of
vector r. A Toeplitz matrix is a matrix whose diagonals have the same
value. In case of conflict, the first element of r is ignored. With one
argument, toeplitz gives a symmetric square matrix.

Example

use stdlib
toeplitz(1:3, 1:5)
1 2 3 4 5
2 1 2 3 4
3 2 1 2 3

See also

hankel, diag

trapz

Numerical integration with trapezoidal approximation.

426 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use stdlib
s = trapz(Y)
s = trapz(X, Y)
s = trapz(X, Y, dim)

Description

trapz(Y) calculates an approximation of the integral of a function
given by the samples in Y with unit intervals. The trapezoidal approxi-
mation is used. If Y is an array, integration is performed along the first
non-singleton dimension.

trapz(X,Y) specifies the location of the samples. A third argument
may be used to specify along which dimension the integration is per-
formed.

Example

use stdlib
trapz([2, 3, 5])
6.5

trapz([1, 2, 5], [2, 3, 5])
14.5

See also

sum, cumtrapz

4.2 stat

stat is a library which adds to LME advanced statistical functions.
The following statement makes available functions defined in stat:

use stat

bootstrp

Bootstrap estimate.

Syntax

use stat
(stats, samples) = bootstrp(n, fun, D1, ...)

Libraries — stat 427

Description

bootstrp(n,fun,D) picks random observations from the rows of ma-
trix (or column vector) D to form n sets which have all the same size
as D; then it applies function fun (a function name or reference or an
inline function) to each set and returns the results in the columns of
stats. Up to three different set of data can be provided.

bootstrp gives an idea of the robustness of the estimate with re-
spect to the choice of the observations.

Example

use stat
D = rand(1000, 1);
bootstrp(5, @std, D)

0.2938
0.2878
0.2793
0.2859
0.2844

geomean

Geometric mean of a set of values.

Syntax

use stat
m = geomean(A)
m = geomean(A, dim)

Description

geomean(A) gives the geometric mean of the columns of array A or of
the row vector A. The dimension along which geomean proceeds may
be specified with a second argument.

The geometric mean of vector v of length n is defined as (
∏

 )
1/n.

Example

use stat
geomean(1:10)
4.5287

mean(1:10)
5.5

exp(mean(log(1:10)))
4.5287

428 LyME User Manual ©1999-2008, Calerga Sàrl

See also

harmmean, mean

harmmean

Harmonic mean of a set of values.

Syntax

use stat
m = harmmean(A)
m = harmmean(A, dim)

Description

harmmean(A) gives the harmonic mean of the columns of array A or of
the row vector A. The dimension along which harmmean proceeds may
be specified with a second argument.

The inverse of the harmonic mean is the arithmetic mean of the
inverse of the observations.

Example

use stat
harmmean(1:10)
3.4142

mean(1:10)
5.5

See also

geomean, mean

iqr

Interquartile range.

Syntax

use stat
m = iqr(A)
m = iqr(A, dim)

Libraries — stat 429

Description

iqr(A) gives the interquartile range of the columns of array A or of
the row vector A. The dimension along which iqr proceeds may be
specified with a second argument.

The interquartile range is the difference between the 75th per-
centile and the 25th percentile.

Example

use stat
iqr(rand(1,1000))
0.5158

See also

trimmean, prctile

mad

Mean absolute deviation.

Syntax

use stat
m = mad(A)
m = mad(A, dim)

Description

mad(A) gives the mean absolute deviation of the columns of array A
or of the row vector A. The dimension along which mad proceeds may
be specified with a second argument.

The mean absolute deviation is the mean of the absolute value of
the deviation between each observation and the arithmetic mean.

Example

use stat
mad(rand(1,1000))
0.2446

See also

trimmean, mean, iqr

430 LyME User Manual ©1999-2008, Calerga Sàrl

nancorrcoef

Correlation coefficients after discarding NaNs.

Syntax

use stat
S = nancorrcoef(X)
S = nancorrcoef(X1, X2)

Description

nancorrcoef(X) calculates the correlation coefficients of the columns
of the m-by-n matrix X. NaN values are ignored. The result is a square
n-by-n matrix whose diagonal is 1.

nancorrcoef(X1,X2) calculates the correlation coefficients of X1
and X2 and returns a 2-by-2 matrix, ignoring NaN values. It is equiva-
lent to nancorrcoef([X1(:),X2(:)]).

See also

nanmean, nanstd, nancov, corrcoef

nancov

Covariance after discarding NaNs.

Syntax

use stat
M = nancov(data)
M = nancov(data, 0)
M = nancov(data, 1)

Description

nancov(data) returns the best unbiased estimate m-by-m covariance
matrix of the n-by-m matrix data for a normal distribution. NaN values
are ignored. Each row of data is an observation where n quantities
were measured. nancov(data,0) is the same as nancov(data).

nancov(data,1) returns the m-by-m covariance matrix of the n-by-
m matrix data which contains the whole population; NaN values are
ignored.

Libraries — stat 431

See also

nanmean, nanstd, nancorrcoef, cov

nanmean

Mean after discarding NaNs.

Syntax

use stat
y = nanmean(A)
y = nanmean(A, dim)

Description

nanmean(v) returns the arithmetic mean of the elements of vector v.
nanmean(A) returns a row vector whose elements are the means of the
corresponding columns of array A. nanmean(A,dim) returns the mean
of array A along dimension dim; the result is a row vector if dim is 1,
or a column vector if dim is 2. In all cases, NaN values are ignored.

Examples

use stat
nanmean([1,2,nan;nan,6,7])
1 4 7

nanmean([1,2,nan;nan,6,7],2)
1.5
6.5

nanmean([nan,nan])
nan

See also

nanmedian, nanstd, mean

nanmedian

Median after discarding NaNs.

Syntax

use stat
y = nanmedian(A)
y = nanmedian(A, dim)

432 LyME User Manual ©1999-2008, Calerga Sàrl

Description

nanmedian(v) gives the median of vector v, i.e. the value x such
that half of the elements of v are smaller and half of the elements are
larger. NaN values are ignored.

nanmedian(A) gives a row vector which contains the median of the
columns of A. With a second argument, nanmedian(A,dim) operates
along dimension dim.

See also

nanmean, median

nanstd

Standard deviation after discarding NaNs.

Syntax

use stat
y = nanstd(A)
y = nanstd(A, p)
y = nanstd(A, p, dim)

Description

nanstd(v) returns the standard deviation of vector v with NaN values
ignored, normalized by one less than the number of non-NaN values.
With a second argument, nanstd(v,p) normalizes by one less than
the number of non-NaN values if p is true, or by the number of non-
NaN values if p is false.

nanstd(M) gives a row vector which contains the standard devi-
ation of the columns of M. With a third argument, nanstd(M,p,dim)
operates along dimension dim. In all cases, NaN values are ignored.

Example

use stat
nanstd([1,2,nan;nan,6,7;10,11,12])
6.3640 4.5092 3.5355

See also

nanmedian, nanstd, mean

Libraries — stat 433

nansum

Sum after discarding NaNs.

Syntax

use stat
y = nansum(A)
y = nansum(A, dim)

Description

nansum(v) returns the sum of the elements of vector v. NaN values
are ignored. nansum(A) returns a row vector whose elements are the
sums of the corresponding columns of array A. nansum(A,dim) returns
the sum of array A along dimension dim; the result is a row vector if
dim is 1, or a column vector if dim is 2.

See also

nanmean, sum

pdist

Pairwise distance between observations.

Syntax

use stat
d = pdist(M)
d = pdist(M, metric)
d = pdist(M, metric, p)

Description

pdist calculates the distance between pairs of rows of the observation
matrix M. The result is a column vector which contains the distances
between rows i and j with i<j. It can be resized to a square matrix
with squareform.

By default, the metric used to calculate the distance is the eu-
clidean distance; but it can be specified with a second argument:

434 LyME User Manual ©1999-2008, Calerga Sàrl

’euclid’ euclidean distance
’seuclid’ standardized euclidean distance
’mahal’ Mahalanobis distance
’cityblock’ sum of absolute values
’minkowski’ Minkowski metric with parameter p

The standardized euclidean distance is the euclidean distance after
each column of M has been divided by its standard deviation. The
Minkowski metric is based on the p-norm of vector differences.

Examples

use stat
pdist((1:3)’)
1 2 1

squareform(pdist((1:3)’))
0 1 2
1 0 1
2 1 0

squareform(pdist([1,2,6; 3,1,7;6,1,2]))
0 2.4495 6.4807
2.4495 0 5.831
6.4807 5.831 0

See also

squareform

prctile

Percentile.

Syntax

use stat
m = prctile(A, prc)
m = prctile(A, prc, dim)

Description

prctile(A,prc) gives the smallest values larger than prc percent
of the elements of each column of array A or of the row vector A.
The dimension along which prctile proceeds may be specified with a
third argument.

Libraries — stat 435

Example

prctile(rand(1,1000),90)
0.8966

See also

trimmean, iqr

range

Mean absolute deviation.

Syntax

use stat
m = range(A)
m = range(A, dim)

Description

range(A) gives the differences between the maximum and minimum
values of the columns of array A or of the row vector A. The dimension
along which range proceeds may be specified with a second argu-
ment.

Example

range(rand(1,100))
0.9602

See also

iqr

squareform

Resize the output of pdist to a square matrix.

Syntax

use stat
D = squareform(d)

436 LyME User Manual ©1999-2008, Calerga Sàrl

Description

squareform(d) resize d, which should be the output of pdist, into a
symmetric square matrix D, so that the distance between observations
i and j is D(i,j).

See also

pdist

trimmean

Trimmed mean of a set of values.

Syntax

use stat
m = trimmean(A, prc)
m = trimmean(A, prc, dim)

Description

trimmean(A,prc) gives the arithmetic mean of the columns of array A
or of the row vector A once prc/2 percent of the values have been re-
moved from each end. The dimension along which trimmean proceeds
may be specified with a third argument.

trimmean is less sensitive to outliers than the regular arithmetic
mean.

See also

prctile, geomean, median, mean

zscore

Z score (normalized deviation).

Syntax

use stat
Y = zscore(X)
Y = zscore(X, dim)

Libraries — classes 437

Description

zscore(X) normalizes the columns of array X or the row vector X by
subtracting their mean and dividing by their standard deviation. The
dimension along which zscore proceeds may be specified with a sec-
ond argument.

4.3 classes

Library classes implements the constructors and methods of two
classes: polynom for polynomials, and ratfun for rational functions.
Basic arithmetic operators and functions are overloaded to support
expressions with the same syntax as for numbers and matrices.

The following statement makes available functions defined in
classes:

use classes

polynom::polynom

Polynom object constructor.

Syntax

use classes
a = polynom
a = polynom(coef)

Description

polynom(coef) creates a polynom object initialized with the coeffi-
cients in vector coef, given in descending powers of the variable.
Without argument, polynom returns a polynom object initialized to 0.

The following operators and functions may be used with polynom
arguments, with results analog to the corresponding functions of LME.

- minus + plus
ˆ mpower rem
\ mldivide roots
/ mrdivide - uminus

mtimes + uplus

438 LyME User Manual ©1999-2008, Calerga Sàrl

Examples

use classes
p = polynom([3,0,1,-4,2])
p =
3x̂ 4+x̂ 2-4x+2

q = 3 * p̂ 2 + 8
q =
27x̂ 8+18x̂ 6-72x̂ 5+39x̂ 4-24x̂ 3+60x̂ 2-48x+20

See also

polynom::disp, polynom::double, polynom::subst,
polynom::diff, polynom::int, polynom::inline, polynom::feval,
ratfun::ratfun

polynom::disp

Display a polynom object.

Syntax

use classes
disp(a)

Description

disp(a) displays polynomial a. It is also executed implicitly when LME
displays the polynom result of an expression which does not end with
a semicolon.

Example

use classes
p = polynom([3,0,1,-4,2])
p =
3x̂ 4+x̂ 2-4x+2

See also

polynom::polynom, disp

polynom::double

Convert a polynom object to a vector of coefficients.

Libraries — classes 439

Syntax

use classes
coef = double(a)

Description

double(a) converts polynomial a to a row vector of descending-power
coefficients.

Example

use classes
p = polynom([3,0,1,-4,2]);
double(p)
3 0 1 -4 2

See also

polynom::polynom

polynom::subst

Substitute the variable of a polynom object with another polynomial.

Syntax

use classes
subst(a, b)

Description

subst(a,b) substitutes the variable of polynom a with polynom b.

Example

use classes
p = polynom([1,2,3])
p =
x̂ 2+3x+9

q = polynom([2,0])
q =
2x

r = subst(p, q)
r =
4x̂ 2+6x+9

440 LyME User Manual ©1999-2008, Calerga Sàrl

See also

polynom::polynom, polynom::feval

polynom::diff

Polynom derivative.

Syntax

use classes
diff(a)

Description

diff(a) differentiates polynomial a.

Example

use classes
p = polynom([3,0,1,-4,2]);
q = diff(p)
q =
12x̂ 3+2x-4

See also

polynom::polynom, polynom::int, polyder

polynom::int

Polynom integral.

Syntax

use classes
int(a)

Description

int(a) integrates polynomial a.

Libraries — classes 441

Example

use classes
p = polynom([3,0,1,-4,2]);
q = int(p)
q =
0.6x̂ 5+0.3333x̂ 3-2x̂ 2+2x

See also

polynom::polynom, polynom::diff, polyint

polynom::inline

Conversion from polynom object to inline function.

Syntax

use classes
fun = inline(a)

Description

inline(a) converts polynomial a to an inline function which can then
be used with functions such as feval and ode45.

Example

use classes
p = polynom([3,0,1,-4,2]);
fun = inline(p)
fun =
<inline function>

dumpvar(’fun’, fun);
fun = inline(’function y=f(x);y=polyval([3,0,1,-4,2],x);’);

See also

polynom::polynom, polynom::feval, ode45

polynom::feval

Evaluate a polynom object.

442 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use classes
y = feval(a, x)

Description

feval(a,x) evaluates polynomial a for the value of x. If x is a vector
or a matrix, the evaluation is performed separately on each element
and the result has the same size as x.

Example

use classes
p = polynom([3,0,1,-4,2]);
y = feval(p, 1:5)
y =
2 46 242 770 1882

See also

polynom::polynom, polynom::inline, feval

ratfun::ratfun

Ratfun object constructor.

Syntax

use classes
a = ratfun
a = ratfun(coefnum)
a = ratfun(coefnum, coefden)

Description

ratfun(coefnum,coefden) creates a ratfun object initialized with the
coefficients in vectors coefnum and coefden, given in descending pow-
ers of the variable. Without argument, ratfun returns a ratfun object
initialized to 0. If omitted, coefden defaults to 1.

The following operators and functions may be used with ratfun ar-
guments, with results analog to the corresponding functions of LME.

Libraries — classes 443

inv * mtimes
- minus + plus
\ mldivide - uminus
ˆ mpower + uplus
/ mrdivide

Example

use classes
r = ratfun([3,0,1,-4,2], [2,5,0,1])
r =
(3x̂ 4+x̂ 2-4x+2)/(2x̂ 3+5x̂ 2+1)

See also

ratfun::disp, ratfun::inline, ratfun::feval, polynom::polynom

ratfun::disp

Display a ratfun object.

Syntax

use classes
disp(a)

Description

disp(a) displays rational function a. It is also executed implicitly when
LME displays the ratfun result of an expression which does not end
with a semicolon.

See also

ratfun::ratfun, disp

ratfun::num

Get the numerator of a ratfun as a vector of coefficients.

Syntax

use classes
coef = num(a)

444 LyME User Manual ©1999-2008, Calerga Sàrl

Description

num(a) gets the numerator of a as a row vector of descending-power
coefficients.

See also

ratfun::den, ratfun::ratfun

ratfun::den

Get the denominator of a ratfun as a vector of coefficients.

Syntax

use classes
coef = den(a)

Description

den(a) gets the denominator of a as a row vector of descending-power
coefficients.

See also

ratfun::num, ratfun::ratfun

ratfun::diff

Ratfun derivative.

Syntax

use classes
diff(a)

Description

diff(a) differentiates ratfun a.

Libraries — classes 445

Example

use classes
r = ratfun([1,3,0,1],[2,5]);
q = diff(r)
q =
(4x̂ 3+21x̂ 2+30x-2)/(4x̂ 2+20x+25)

See also

ratfun::ratfun

ratfun::inline

Conversion from ratfun to inline function.

Syntax

use classes
fun = inline(a)

Description

inline(a) converts ratfun a to an inline function which can then be
used with functions such as feval and ode45.

See also

ratfun::ratfun, ratfun::feval, ode45

ratfun::feval

Evaluate a ratfun object.

Syntax

use classes
y = feval(a, x)

Description

feval(a,x) evaluates ratfun a for the value of x. If x is a vector or a
matrix, the evaluation is performed separately on each element and
the result has the same size as x.

446 LyME User Manual ©1999-2008, Calerga Sàrl

Example

use classes
r = ratfun([1,3,0,1],[2,5]);
y = feval(r, 1:5)
y =
0.7143 2.3333 5.0000 8.6923 13.4000

See also

ratfun::ratfun, ratfun::inline, feval

4.4 ratio

Library ratio implements the constructors and methods of class
ratio for rational numbers. It is based on long integers, so that the
precision is limited only by available memory. Basic arithmetic
operators and functions are overloaded to support expressions with
the same syntax as for numbers.

The following statement makes available functions defined in
ratio:

use ratio

ratio::ratio

Ratio object constructor.

Syntax

use ratio
r = ratio
r = ratio(n)
r = ratio(num, den)
r = ratio(r)

Description

ratio(num, den) creates a rational fraction object whose value is
num/den. Arguments num and den may be double integer numbers
or longint. Common factors are canceled out. With one numeric input
argument, ratio(n) creates a rational fraction whose denominator is
1. Without input argument, ratio creates a rational number whose
value is 0.

With one input argument which is already a ratio object, ratio
returns it without change.

Libraries — ratio 447

The following operators and functions may be used with ratio ob-
jects, with results analog to the corresponding functions of LME.

== eq \ mldivide
>= ge ˆ mpower
> gt / mrdivide

inv * mtimes
<= le =̃ ne
< lt + plus

max - uminus
min + uplus

- minus

Examples

use ratio
r = ratio(2, 3)
r =
2/3

q = 5 * r - 1
q =
7/3

See also

ratio::disp, ratio::double, ratio::char

ratio::char

Display a ratio object.

Syntax

use ratio
char(r)

Description

char(r) converts ratio r to a character string.

See also

ratio::ratio, ratio::disp, char

448 LyME User Manual ©1999-2008, Calerga Sàrl

ratio::disp

Display a ratio object.

Syntax

use ratio
disp(r)

Description

disp(r) displays ratio r with the same format as char. It is also ex-
ecuted implicitly when LME displays the ratio result of an expression
which does not end with a semicolon.

See also

ratio::ratio, ratio::char, disp

ratio::double

Convert a ratio object to a floating-point number.

Syntax

use ratio
x = double(r)

Description

double(r) converts ratio r to a floating-point number of class double.

Example

use ratio
r = ratio(2, 3);
double(r)
0.6666

See also

ratio::ratio

Libraries — bitfield 449

4.5 bitfield

Library bitfield implements the constructor and methods of class
bitfield for bit fields (binary numbers). Basic arithmetic operators
and functions are overloaded to support expressions with the same
syntax as for numbers and matrices. Contrary to integer numbers,
bitfield objects have a length (between 1 and 32) and are displayed in
binary.

The following statement makes available functions defined in
bitfield:

use bitfield

bitfield::beginning

First bit position in a bitfield.

Syntax

use bitfield
a(...beginning...)

Description

In the index expression of a bitfield, beginning is the position of the
least-significant bit, i.e. 0.

See also

bitfield::bitfield, bitfield::end

bitfield::bitfield

Bitfield object constructor.

Syntax

use bitfield
a = bitfield
a = bitfield(n)
a = bitfield(n, wordlength)

450 LyME User Manual ©1999-2008, Calerga Sàrl

Description

bitfield(n,wordlength) creates a bitfield object initialized with the
wordlength least significant bits of the nonnegative integer number
n. The default value of wordlength is 32 if n is a double, an int32 or
a uint32 number; 16 is n is an int16 or uint16 number; or 8 if n is an
int8 or uint8 number. Without argument, bitfield gives a bit field of
32 bits 0. Like any integer number in LME, n may be written in base 2,
8, 10, or 16: 0b1100, 014, 12, and 0xc all represent the same number.

The following operators and functions may be used with bitfield
arguments, with results analog to the corresponding functions of LME.
Logical functions operate bitwise.

& and ˜ not
== eq | or
- minus + plus
\ mldivide - uminus
/ mrdivide + uplus

mtimes xor
˜= ne

Indexes into bit fields are non-negative integers: 0 represents the
least-significant bit, and wordlength-1 the most-significant bit. Unlike
arrays, bits are not selected with logical arrays, but with other bit fields
where ones represent the bits to be selected; for example a(0b1011)
selects bits 0, 1 and 3. This is consistent with the way bitfield::find
is defined.

Examples

use bitfield
a = bitfield(123, 16)
a =
0b0000000001111011

b = ã
b =
0b1111111110000100

b = a * 5
b =
0b0000001001100111

See also

bitfield::disp, bitfield::double

bitfield::disp

Display a bitfield object.

Libraries — bitfield 451

Syntax

use bitfield
disp(a)

Description

disp(a) displays bitfield a. It is also executed implicitly when LME
displays the bitfield result of an expression which does not end with a
semicolon.

See also

bitfield::bitfield, disp

bitfield::double

Convert a bitfield object to a double number.

Syntax

use bitfield
n = double(a)

Description

double(a) converts bitfield a to double number.

Example

use bitfield
a = bitfield(123, 16);
double(a)
123

See also

bitfield::bitfield

bitfield::end

Last bit position in a bitfield.

452 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use bitfield
a(...end...)

Description

In the index expression of a bitfield, end is the position of the most-
significant bit, i.e. 1 less than the word length.

See also

bitfield::bitfield, bitfield::beginning

bitfield::find

Find the ones in a bitfield.

Syntax

use bitfield
ix = find(a)

Description

find(a) finds the bits equal to 1 in bitfield a. The result is a vector of
bit positions in ascending order; the least-significant bit is number 0.

Example

use bitfield
a = bitfield(123, 16)
a =
0b0000000001111011

ix = find(a)
ix =

0 1 3 4 5 6

See also

bitfield::bitfield, find

bitfield::int8 bitfield::int16 bitfield::int32

Convert a bitfield object to a signed integer number, with sign exten-
sion.

Libraries — bitfield 453

Syntax

use bitfield
n = int8(a)
n = int16(a)
n = int32(a)

Description

int8(a), int16(a), and int32(a) convert bitfield a to an int8, int16,
or int32 number respectively. If a has less bits than the target integer
and the most significant bit of a is 1, sign extension is performed;
i.e. the most significant bits of the result are set to 1, so that it is
negative. If a has more bits than the target integer, most significant
bits are ignored.

Example

use bitfield
a = bitfield(9, 4);
a =
0x1001

i = int8(a)
i =
210

b = bitfield(i)
b =
0b11111001

See also

uint8, uint16, uint32, bitfield::int8, bitfield::int16,
bitfield::int32, bitfield::double, bitfield::bitfield

bitfield::length

Word length of a bitfield.

Syntax

use bitfield
wordlength = length(a)

Description

length(a) gives the number of bits of bitfield a.

454 LyME User Manual ©1999-2008, Calerga Sàrl

Example

use bitfield
a = bitfield(123, 16);
length(a)
16

See also

bitfield::bitfield, length

bitfield::sign

Get the sign of a bitfield.

Syntax

use bitfield
s = sign(a)

Description

sign(a) gets the sign of bitfield a. The result is -1 if the
most-significant bit of a is 1, 0 if all bits of a are 0, or 1 otherwise.

Example

use bitfield
a = bitfield(5, 3)
a =
0b101

sign(a)
-1

See also

bitfield::bitfield, sign

bitfield::uint8 bitfield::uint16 bitfield::uint32

Convert a bitfield object to an unsigned integer number.

Libraries — filter 455

Syntax

use bitfield
n = uint8(a)
n = uint16(a)
n = uint32(a)

Description

uint8(a), uint16(a), and uint32(a) convert bitfield a to a uint8,
uint16, or uint32 number respectively. If a has more bits than the
target integer, most significant bits are ignored.

Example

use bitfield
a = bitfield(1234, 16);
uint8(a)
210

See also

uint8, uint16, uint32, bitfield::int8, bitfield::int16,
bitfield::int32, bitfield::double, bitfield::bitfield

4.6 filter

filter is a library which adds to LME functions for designing analog
(continuous-time) and digital (discrete-time) linear filters.

The following statement makes available functions defined in
filter:

use filter

This library provides three kinds of functions:

– besselap, buttap, cheb1ap, cheb2ap, and ellipap, which com-
pute the zeros, poles and gain of the prototype of analog low-pass
filter with a cutoff frequency of 1 rad/s. They correspond respec-
tively to Bessel, Butterworth, Chebyshev type 1, Chebyshev type
2, and elliptic filters.

– besself, butter, cheby1, cheby2, and ellip, which provide a
higher-level interface to design filters of these different types.
In addition to the filter parameters (degree, bandpass and band-
stop ripples), one can specify the kind of filter (lowpass, highpass,

456 LyME User Manual ©1999-2008, Calerga Sàrl

bandpass or bandstop) and the cutoff frequency or frequencies.
The result can be an analog or a digital filter, given as a rational
transfer function or as zeros, poles and gain.

– lp2lp, lp2hp, lp2bp, and lp2bs, which convert analog lowpass
filters respectively to lowpass, highpass, bandpass, and bandstop
with specified cutoff frequency or frequencies.

Transfer functions are expressed as the coefficient vectors of their nu-
merator num and denominator den in decreasing powers of s (Laplace
transform for analog filters) or z (z transform for digital filters); or as
the zeros z, poles p, and gain k.

besselap

Bessel analog filter prototype.

Syntax

use filter
(z, p, k) = besselap(n)

Description

besselap(n) calculates the zeros, the poles, and the gain of a Bessel
analog filter of degree n with a cutoff angular frequency of 1 rad/s.

See also

besself, buttap, cheb1ap, cheb2ap, ellipap

besself

Bessel filter.

Syntax

use filter
(z, p, k) = besself(n, w0)
(num, den) = besself(n, w0)
(...) = besself(n, [wl, wh])
(...) = besself(n, w0, ’high’)
(...) = besself(n, [wl, wh], ’stop’)
(...) = besself(..., ’s’)

Libraries — filter 457

Description

besself calculates a Bessel filter. The result is given as zeros, poles
and gain if there are three output arguments, or as numerator and
denominator coefficient vectors if there are two output arguments.

besself(n,w0), where w0 is a scalar, gives a nth-order digital low-
pass filter with a cutoff frequency of w0 relatively to half the sampling
frequency.

besself(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a 2nth-order digital bandpass filter with pass-
band between wl and wh relatively to half the sampling frequency.

besself(n,w0,’high’) gives a nth-order digital highpass filter
with a cutoff frequency of w0 relatively to half the sampling frequency.

besself(n,[wl,wh],’stop’), where the second input argument is
a vector of two numbers, gives a 2nth-order digital bandstop filter with
stopband between wl and wh relatively to half the sampling frequency.

With an additional input argument which is the string ’s’, besself
gives an analog Bessel filter. Frequencies are given in rad/s.

See also

besselap, butter, cheby1, cheby2, ellip

bilinear

Analog-to-digital conversion with bilinear transformation.

Syntax

use filter
(zd, pd, kd) = bilinear(zc, pc, kc, fs)
(numd, dend) = bilinear(numc, denc, fs)

Description

bilinear(zc,pc,kc,fs) converts the analog (continuous-time)
transfer function given by its zeros zc, poles pc, and gain kc
to a digital (discrete-time) transfer function given by its zeros,
poles, and gain in the domain of the forward-shift operator q. The
sampling frequency is fs. Conversion is performed with the bilinear
transormation zd = (1 + zc/2ƒs)/(1 − zc/2ƒs). If the analog transfer
function has less zeros than poles, additional digital zeros are added
at -1 to avoid a delay.

With three input arguments, bilinear(numc,denc,fs) uses the
coefficients of the numerators and denominators instead of their ze-
ros, poles and gain.

458 LyME User Manual ©1999-2008, Calerga Sàrl

buttap

Butterworth analog filter prototype.

Syntax

use filter
(z, p, k) = buttap(n)

Description

buttap(n) calculates the zeros, the poles, and the gain of a Butter-
worth analog filter of degree n with a cutoff angular frequency of 1
rad/s.

See also

butter, besselap, cheb1ap, cheb2ap, ellipap

butter

Butterworth filter.

Syntax

use filter
(z, p, k) = butter(n, w0)
(num, den) = butter(n, w0)
(...) = butter(n, [wl, wh])
(...) = butter(n, w0, ’high’)
(...) = butter(n, [wl, wh], ’stop’)
(...) = butter(..., ’s’)

Description

butter calculates a Butterworth filter. The result is given as zeros,
poles and gain if there are three output arguments, or as numera-
tor and denominator coefficient vectors if there are two output argu-
ments.

butter(n,w0), where w0 is a scalar, gives a nth-order digital low-
pass filter with a cutoff frequency of w0 relatively to half the sampling
frequency.

butter(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a 2nth-order digital bandpass filter with pass-
band between wl and wh relatively to half the sampling frequency.

Libraries — filter 459

butter(n,w0,’high’) gives a nth-order digital highpass filter with
a cutoff frequency of w0 relatively to half the sampling frequency.

butter(n,[wl,wh],’stop’), where the second input argument is
a vector of two numbers, gives a 2nth-order digital bandstop filter with
stopband between wl and wh relatively to half the sampling frequency.

With an additional input argument which is the string ’s’, butter
gives an analog Butterworth filter. Frequencies are given in rad/s.

See also

buttap, besself, cheby1, cheby2, ellip

cheb1ap

Chebyshev type 1 analog filter prototype.

Syntax

use filter
(z, p, k) = cheb1ap(n, rp)

Description

cheb1ap(n,rp) calculates the zeros, the poles, and the gain of a
Chebyshev type 1 analog filter of degree n with a cutoff angular fre-
quency of 1 rad/s. Ripples in the passband have a peak-to-peak mag-
nitude of rp dB.

See also

cheby1, cheb2ap, ellipap, besselap, buttap

cheb2ap

Chebyshev type 2 analog filter prototype.

Syntax

use filter
(z, p, k) = cheb2ap(n, rs)

460 LyME User Manual ©1999-2008, Calerga Sàrl

Description

cheb2ap(n,rs) calculates the zeros, the poles, and the gain of a
Chebyshev type 2 analog filter of degree n with a cutoff angular fre-
quency of 1 rad/s. Ripples in the stopband have a peak-to-peak mag-
nitude of rs dB.

See also

cheby1, cheb1ap, ellipap, besselap, buttap

cheby1

Chebyshev type 1 filter.

Syntax

use filter
(z, p, k) = cheby1(n, w0)
(num, den) = cheby1(n, w0)
(...) = cheby1(n, [wl, wh])
(...) = cheby1(n, w0, ’high’)
(...) = cheby1(n, [wl, wh], ’stop’)
(...) = cheby1(..., ’s’)

Description

cheby1 calculates a Chebyshev type 1 filter. The result is given as
zeros, poles and gain if there are three output arguments, or as nu-
merator and denominator coefficient vectors if there are two output
arguments.

cheby1(n,w0), where w0 is a scalar, gives a nth-order digital low-
pass filter with a cutoff frequency of w0 relatively to half the sampling
frequency.

cheby1(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a 2nth-order digital bandpass filter with pass-
band between wl and wh relatively to half the sampling frequency.

cheby1(n,w0,’high’) gives a nth-order digital highpass filter with
a cutoff frequency of w0 relatively to half the sampling frequency.

cheby1(n,[wl,wh],’stop’), where the second input argument is
a vector of two numbers, gives a 2nth-order digital bandstop filter with
stopband between wl and wh relatively to half the sampling frequency.

With an additional input argument which is the string ’s’, cheby1
gives an analog Chebyshev type 1 filter. Frequencies are given in
rad/s.

Libraries — filter 461

See also

cheb1ap, besself, butter, cheby2, ellip

cheby2

Chebyshev type 2 filter.

Syntax

use filter
(z, p, k) = cheby2(n, w0)
(num, den) = cheby2(n, w0)
(...) = cheby2(n, [wl, wh])
(...) = cheby2(n, w0, ’high’)
(...) = cheby2(n, [wl, wh], ’stop’)
(...) = cheby2(..., ’s’)

Description

cheby2 calculates a Chebyshev type 2 filter. The result is given as
zeros, poles and gain if there are three output arguments, or as nu-
merator and denominator coefficient vectors if there are two output
arguments.

cheby2(n,w0), where w0 is a scalar, gives a nth-order digital low-
pass filter with a cutoff frequency of w0 relatively to half the sampling
frequency.

cheby2(n,[wl,wh]), where the second input argument is a vector
of two numbers, gives a 2nth-order digital bandpass filter with pass-
band between wl and wh relatively to half the sampling frequency.

cheby2(n,w0,’high’) gives a nth-order digital highpass filter with
a cutoff frequency of w0 relatively to half the sampling frequency.

cheby2(n,[wl,wh],’stop’), where the second input argument is
a vector of two numbers, gives a 2nth-order digital bandstop filter with
stopband between wl and wh relatively to half the sampling frequency.

With an additional input argument which is the string ’s’, cheby2
gives an analog Chebyshev type 2 filter. Frequencies are given in
rad/s.

See also

cheb2ap, besself, butter, cheby1, ellip

ellip

Elliptic filter.

462 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use filter
(z, p, k) = ellip(n, w0)
(num, den) = ellip(n, w0)
(...) = ellip(n, [wl, wh])
(...) = ellip(n, w0, ’high’)
(...) = ellip(n, [wl, wh], ’stop’)
(...) = ellip(..., ’s’)

Description

ellip calculates a elliptic filter, or Cauer filter. The result is given
as zeros, poles and gain if there are three output arguments, or as
numerator and denominator coefficient vectors if there are two output
arguments.

ellip(n,w0), where w0 is a scalar, gives a nth-order digital low-
pass filter with a cutoff frequency of w0 relatively to half the sampling
frequency.

ellip(n,[wl,wh]), where the second input argument is a vector of
two numbers, gives a 2nth-order digital bandpass filter with passband
between wl and wh relatively to half the sampling frequency.

ellip(n,w0,’high’) gives a nth-order digital highpass filter with
a cutoff frequency of w0 relatively to half the sampling frequency.

ellip(n,[wl,wh],’stop’), where the second input argument is a
vector of two numbers, gives a 2nth-order digital bandstop filter with
stopband between wl and wh relatively to half the sampling frequency.

With an additional input argument which is the string ’s’, ellip
gives an analog elliptic filter. Frequencies are given in rad/s.

See also

ellipap, besself, butter, cheby1, cheby2

ellipap

Elliptic analog filter prototype.

Syntax

use filter
(z, p, k) = ellipap(n, rp, rs)

Libraries — filter 463

Description

ellipap(n,rp,rs) calculates the zeros, the poles, and the gain of
an elliptic analog filter of degree n with a cutoff angular frequency
of 1 rad/s. Ripples have a peak-to-peak magnitude of rp dB in the
passband and of rs dB in the stopband.

See also

ellip, cheb1ap, cheb1ap, besselap, buttap

lp2bp

Lowpass prototype to bandpass filter conversion.

Syntax

use filter
(z, p, k) = lp2bp(z0, p0, k0, wc, ww)
(num, den) = lp2bp(num0, den0, wc, ww)

Description

lp2bp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a bandpass analog filter with the specified center angular
frequency w0 and bandwidth ww. lp2bp(z0,p0,k0,wc,ww) converts
a filter given by its zeros, poles, and gain; lp2bp(num0,den0,wc,ww)
converts a filter given by its numerator and denominator coefficients
in decreasing powers of s.

The new filter F(s) is

F(s) = F0

s2 +ω2
c
−ω2


/4

ωs

!

where F0(s) is the filter prototype. The filter order is doubled.

See also

lp2lp, lp2hp, lp2bs

lp2bs

Lowpass prototype to bandstop filter conversion.

464 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use filter
(z, p, k) = lp2bs(z0, p0, k0, wc, ww)
(num, den) = lp2bs(num0, den0, wc, ww)

Description

lp2bs convert a lowpass analog filter prototype (with unit angular fre-
quency) to a bandstop analog filter with the specified center angular
frequency w0 and bandwidth ww. lp2bs(z0,p0,k0,wc,ww) converts
a filter given by its zeros, poles, and gain; lp2bs(num0,den0,wc,ww)
converts a filter given by its numerator and denominator coefficients
in decreasing powers of s.

The new filter F(s) is

F(s) = F0

ωs

s2 +ω2
c
−ω2


/4

!

where F0(s) is the filter prototype. The filter order is doubled.

See also

lp2lp, lp2hp, lp2bp

lp2hp

Lowpass prototype to highpass filter conversion.

Syntax

use filter
(z, p, k) = lp2hp(z0, p0, k0, w0)
(num, den) = lp2hp(num0, den0, w0)

Description

lp2hp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a highpass analog filter with the specified cutoff angular
frequency w0. lp2hp(z0,p0,k0,w0) converts a filter given by its ze-
ros, poles, and gain; lp2hp(num0,den0,w0) converts a filter given by
its numerator and denominator coefficients in decreasing powers of s.

The new filter F(s) is

F(s) = F0(
1

ω0s
)

where F0(s) is the filter prototype.

Libraries — lti 465

See also

lp2lp, lp2bp, lp2bs

lp2lp

Lowpass prototype to lowpass filter conversion.

Syntax

use filter
(z, p, k) = lp2lp(z0, p0, k0, w0)
(num, den) = lp2lp(num0, den0, w0)

Description

lp2lp convert a lowpass analog filter prototype (with unit angular fre-
quency) to a lowpass analog filter with the specified cutoff angular
frequency w0. lp2lp(z0,p0,k0,w0) converts a filter given by its ze-
ros, poles, and gain; lp2lp(num0,den0,w0) converts a filter given by
its numerator and denominator coefficients in decreasing powers of s.

The new filter F(s) is

F(s) = F0
� s

ω0

�

where F0(s) is the filter prototype.

See also

lp2hp, lp2bp, lp2bs

4.7 lti

Library lti defines methods related to objects which represent linear
time-invariant dynamical systems. LTI systems may be used to model
many different systems: electro-mechanical devices, robots, chemical
processes, filters, etc. LTI systems map one or more inputs u to one
or more outputs y. The mapping is defined as a state-space model
or as a matrix of transfer functions, either in continuous time or in
discrete time. Methods are provided to create, combine, and analyze
LTI objects.

Graphical methods are based on the corresponding graphical func-
tions; the numerator and denominator coefficient vectors or the state-
space matrices are replaced with an LTI object. They accept the same
optional arguments, such as a character string for the style.

466 LyME User Manual ©1999-2008, Calerga Sàrl

The following statement makes available functions defined in lti:

use lti

ss::ss

LTI state-space constructor.

Syntax

use lti
a = ss
a = ss(A, B, C, D)
a = ss(A, B, C, D, Ts)
a = ss(A, B, C, D, Ts, var)
a = ss(A, B, C, D, b)
a = ss(b)

Description

ss(A,B,C,D) creates an LTI object which represents the continuous-
time state-space model

x’(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t)

ss(A,B,C,D,Ts) creates an LTI object which represents the discrete-
time state-space model with sampling period Ts

x(k+1) = A x(k) + B u(k)
y(k) = C x(k) + D u(k)

In both cases, if D is 0, it is resized to match the size of B and C if neces-
sary. An additional argument var may be used to specify the variable
of the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or
’q’).

ss(A,B,C,D,b), where b is an LTI object, creates a state-space
model of the same kind (continuous/discrete time, sampling time and
variable) as b.

ss(b) converts the LTI object b to a state-space model.

Examples

use lti
sc = ss(-1, [1,2], [2;5], 0)
sc =
continuous-time LTI state-space system
A =

Libraries — lti 467

-1
B =

1 2
C =

2
5

D =
0 0
0 0

sd = ss(tf(1,[1,2,3,4],0.1))
sd =
discrete-time LTI state-space system, Ts=0.1
A =
-2 -3 -4
1 0 0
0 1 0

B =
1
0
0

C =
0 0 1

D =
0

See also

tf::tf

tf::tf

LTI transfer function constructor.

Syntax

use lti
a = tf
a = tf(num, den)
a = tf(numlist, denlist)
a = tf(..., Ts)
a = tf(..., Ts, var)
a = tf(..., b)
a = tf(gain)
a = tf(b)

468 LyME User Manual ©1999-2008, Calerga Sàrl

Description

tf(num,den) creates an LTI object which represents the continuous-
time transfer function specified by descending-power coefficient vec-
tors num and den. tf(num,den,Ts) creates an LTI object which repre-
sents a discrete-time transfer function with sampling period Ts.

In both cases, num and den may be replaced with cell arrays of coef-
ficients whose elements are the descending-power coefficient vectors.
The number of rows is the number of system outputs, and the number
of columns is the number of system inputs.

An additional argument var may be used to specify the variable of
the Laplace (’s’ (default) or ’p’) or z transform (’z’ (default) or ’q’).

tf(...,b), where b is an LTI object, creates a transfer function of
the same kind (continuous/discrete time, sampling time and variable)
as b.

tf(b) converts the LTI object b to a transfer function.
tf(gain), where gain is a matrix, creates a matrix of gains.

Examples

Simple continuous-time system with variable p (p is used only for dis-
play):

use lti
sc = tf(1,[1,2,3,4],’p’)
sc =
continuous-time transfer function
1/(p̂ 3+2p̂ 2+3p+4)

Matrix of discrete-time transfer functions for one input and two out-
puts, with a sampling period of 1ms:

sd = tf({0.1; 0.15}, {[1, -0.8]; [1; -0.78]}, 1e-3)
sd =
discrete-time transfer function, Ts=1e-3
y1/u1: 0.1/(s-0.8)
y2/u1: 0.15/(s-0.78)

See also

ss::ss

lti::append

Append the inputs and outputs of systems.

Libraries — lti 469

Syntax

use lti
b = append(a1, a2, ...)

Description

append(a1,a2) builds a system with inputs [u1;u2] and outputs
[y1;y2], where u1 and u2 are the inputs of a1 and y1 and y2
their outputs, respectively. append accepts any number of input
arguments.

See also

lti::connect, ss::augstate

ss::augstate

Extend the output of a system with its states.

Syntax

use lti
b = augstate(a)

Description

augstate(a) extends the ss object a by adding its states to its out-
puts. The new output is [y;x], where y is the output of a and x is its
states.

See also

lti::append

lti::beginning

First index.

Syntax

use lti
var(...beginning...)

470 LyME User Manual ©1999-2008, Calerga Sàrl

Description

In an expression used as an index between parenthesis, beginning(a)
gives the first valid value for an index. It is always 1.

See also

lti::end, lti::subsasgn, lti::subsref

lti::c2d

Conversion from continuous time to discrete time.

Syntax

use lti
b = c2d(a, Ts)
b = c2d(a, Ts, method)

Description

c2d(a,Ts) converts the continuous-time system a to a discrete-time
system with sampling period Ts.

c2d(a,Ts,method) uses the specified conversion method. method
is one of the methods supported by c2dm.

See also

lti::d2c, c2dm

lti::connect

Arbitrary feedback connections.

Syntax

use lti
b = connect(a, links, in, out)

Libraries — lti 471

Description

connect(a,links,in,out) modifies lti object a by connecting some
of the outputs to some of the inputs and by keeping some of the inputs
and some of the outputs. Connections are specified by the rows of
matrix link. In each row, the first element is the index of the system
input where the connection ends; other elements are indices to system
outputs which are summed. The sign of the indices to outputs gives
the sign of the unit weight in the sum. Zeros are ignored. Arguments
in and out specify which input and output to keep.

See also

lti::feedback

lti::d2c

Conversion from discrete time to continuous time.

Syntax

use lti
b = d2c(a)
b = d2c(a, method)

Description

d2c(a) converts the discrete-time system a to a continuous-time sys-
tem.

d2c(a,method) uses the specified conversion method. method is
one of the methods supported by d2cm.

See also

lti::c2d, d2cm

lti::end

Last index.

Syntax

use lti
var(...end...)

472 LyME User Manual ©1999-2008, Calerga Sàrl

Description

In an expression used as an index between parenthesis, end gives the
last valid value for that index. It is size(var,1) or size(var,2).

Example

Time response when the last input is a step:

use lti
P = ss([1,2;-3,-4],[1,0;0,1],[3,5]);
P1 = P(:, end)
continuous-time LTI state-space system
A =

1 2
-3 -4

B =
0
1

C =
3 5

D =
0

step(P1);

See also

lti::beginning, lti::subsasgn, lti::subsref

lti::evalfr

Frequency value.

Syntax

use lti
y = evalfr(a, x)

Description

evalfr(a,x) evaluates system a at complex value or values x. If x is
a vector of values, results are stacked along the third dimension.

Libraries — lti 473

Example

use lti
sys = [tf(1, [1,2,3]), tf(2, [1,2,3,4])];
evalfr(sys, 0:1j:3j)
ans =
1x2x4 array
(:,:,1) =
0.3333 0.5

(:,:,2) =
0.25 -0.25j 0.5 -0.5j

(:,:,3) =
-5.8824e-2-0.2353j -0.4 +0.2j
(:,:,4) =
-8.3333e-2-8.3333e-2j -5.3846e-2+6.9231e-2j

See also

polyval

ss::ctrb

Controllability matrix.

Syntax

use lti
C = crtb(a)

Description

ctrb(a) gives the controllability matrix of system a, which is full-rank
if and only if a is controllable.

See also

ss::obsv

lti::dcgain

Steady-state gain.

Syntax

use lti
g = dcgain(a)

474 LyME User Manual ©1999-2008, Calerga Sàrl

Description

dcgain(a) gives the steady-state gain of system a.

See also

lti::norm

lti::feedback

Feedback connection.

Syntax

use lti
c = feedback(a, b)
c = feedback(a, b, sign)
c = feedback(a, b, ina, outa)
c = feedback(a, b, ina, outa, sign)

Description

feedback(a,b) connects all the outputs of lti object a to all its inputs
via the negative feedback lti object b.

feedback(a,b,sign) applies positive feedback with weight sign;
the default value of sign is -1.

feedback(a,b,ina,outa) specifies which inputs and outputs of a
to use for feedback. The inputs and outputs of the result always cor-
respond to the ones of a.

See also

lti::connect

lti::inv

System inverse.

Syntax

use lti
b = inv(a)

Description

inv(a) gives the inverse of system a.

Libraries — lti 475

See also

lti::mldivide, lti::mrdivide

isct

Test for a continous-time LTI.

Syntax

use lti
b = isct(a)

Description

isct(a) is true if system a is continuous-time or static, and false oth-
erwise.

See also

isdt

isdt

Test for a discrete-time LTI.

Syntax

use lti
b = isdt(a)

Description

isdt(a) is true if system a is discrete-time or static, and false other-
wise.

See also

isct

lti::isempty

Test for an LTI without input/output.

476 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use lti
b = isempty(a)

Description

isempty(a) is true if system a has no input and/or no output, and false
otherwise.

See also

lti::size, lti::issiso

lti::isproper

Test for a proper (causal) LTI.

Syntax

use lti
b = isproper(a)

Description

isproper(a) is true if lti object a is causal, or false otherwise. An
ss object is always causal. A tf object is causal if all the transfer
functions are proper, i.e. if the degrees of the denominators are at
least as large as the degrees of the numerators.

lti::issiso

Test for a single-input single-output LTI.

Syntax

use lti
b = issiso(a)

Description

issiso(a) is true if lti object a has one input and one output (single-
input single-output system, or SISO), or false otherwise.

lti::size, lti::isempty

Libraries — lti 477

lti::minreal

Minimum realization.

Syntax

use lti
b = minreal(a)
b = minreal(a, tol)

Description

minreal(a) modifies lti object a in order to remove states which are
not controllable and/or not observable. For tf objects, identical zeros
and poles are canceled out.

minreal(a,tol) uses tolerance tol to decide whether to discard a
state or a pair of pole/zero.

lti::minus

System difference.

Syntax

use lti
c = a - b
c = minus(a, b)

Description

a-b computes the system whose inputs are fed to both a and b and
whose outputs are the difference between outputs of a and b. If a
and b are transfer functions or matrices of transfer functions, this is
equivalent to a difference of matrices.

See also

lti::parallel, lti::plus, lti::uminus

lti::mldivide

System left division.

478 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use lti
c = a \ b
c = mldivide(a, b)

Description

a/b is equivalent to inv(a)*b.

See also

lti::mrdivide, lti::times, lti::inv

lti::mrdivide

System right division.

Syntax

use lti
c = a / b
c = mrdivide(a, b)

Description

a/b is equivalent to a*inv(b).

See also

lti::mldivide, lti::times, lti::inv

lti::mtimes

System product.

Syntax

use lti
c = a * b
c = mtimes(a, b)

Libraries — lti 479

Description

a*b connects the outputs of lti object b to the inputs of lti object a.
If a and b are transfer functions or matrices of transfer functions, this
is equivalent to a product of matrices.

See also

lti::series

lti::norm

H2 norm.

Syntax

use lti
h2 = norm(a)

Description

norm(a) gives the H2 norm of the system a.

See also

lti::dcgain

ss::obsv

Observability matrix.

Syntax

use lti
O = obsv(a)

Description

obsv(a) gives the observability matrix of system a, which is full-rank
if and only if a is observable.

See also

ss::ctrb

480 LyME User Manual ©1999-2008, Calerga Sàrl

lti::parallel

Parallel connection.

Syntax

use lti
c = parallel(a, b)
c = parallel(a, b, ina, inb, outa, outb)

Description

parallel(a,b) connects lti objects a and b in such a way that the
inputs of the result is applied to both a and b, and the outputs of the
result is their sum.

parallel(a,b,ina,inb,outa,outb) specifies which inputs are
shared between a and b, and which outputs are summed. The inputs
of the result are partitioned as [ua,uab,ub] and the outputs as
[ya,yab,yb]. Inputs uab are fed to inputs ina of a and inb of b;
inputs ua are fed to the remaining inputs of a, and ub to the
remaining inputs of b. Similarly, outputs yab are the sum of outputs
outa of a and outputs outb of b, and ya and yb are the remaining
outputs of a and b, respectively.

See also

lti::series

lti::plus

System sum.

Syntax

use lti
c = a + b
c = plus(a, b)

Description

a+b computes the system whose inputs are fed to both a and b and
whose outputs are the sum of the outputs of a and b. If a and b are
transfer functions or matrices of transfer functions, this is equivalent
to a sum of matrices.

Libraries — lti 481

See also

lti::parallel, lti::minus

lti::series

Series connection.

Syntax

use lti
c = series(a, b)
c = series(a, b, outa, inb)

Description

series(a,b) connects the outputs of lti object a to the inputs of lti
object b.

series(a,b,outa,inb) connects outputs outa of a to inputs inb
of b. Unconnected outputs of a and inputs of b are discarded.

See also

lti::mtimes, lti::parallel

lti::repmat

Replicate a system.

Syntax

use lti
b = repmat(a, n)
b = repmat(a, [m,n])
b = repmat(a, m, n)

Description

repmat(a,n), when a is a transfer function or a matrix of transfer func-
tions, creates a new system described by a matrix of transfer functions
where a is repeated n times horizontally and vertically. If a is a state-
space system, matrices B, C, and D are replicated to obtain the same
effect.

repmat(a,[m,n]) or repmat(a,m,n) repeats matrix a m times ver-
tically and n times horizontally.

482 LyME User Manual ©1999-2008, Calerga Sàrl

See also

lti::append

lti::size

Number of outputs and inputs.

Syntax

use lti
s = size(a)
(nout, nin) = size(a)
n = size(a, dim)

Description

With one output argument, size(a) gives the row vector [nout,nin],
where nout is the number of outputs of system a and nin its number
of inputs. With two output arguments, size(a) returns these results
separately as scalars.

size(a,1) gives only the number of outputs, and size(a,2) only
the number of inputs.

See also

lti::isempty, lti::issiso

lti::ssdata

Get state-space matrices.

Syntax

use lti
(A, B, C, D) = ssdata(a)
(A, B, C, D, Ts) = ssdata(a)

Description

ssdata(a), where a is any kind of LTI object, gives the four matrices
of the state-space model, and optionally the sampling period or the
empty array [] for continuous-time systems.

Libraries — lti 483

See also

lti::tfdata

lti::subsasgn

Assignment to a part of an LTI system.

Syntax

use lti
var(i,j) = a
var(ix) = a
var(select) = a
var.field = value
a = subsasgn(a, s, b)

Description

The method subsasgn(a) permits the use of all kinds of assignments
to a part of an LTI system. If the variable is a matrix of transfer func-
tions, subsasgn produces the expected result, converting the right-
hand side of the assignment to a matrix of transfer function if required.
If the variable is a state-space model, the result is equivalent; the re-
sult remains a state-space model. For state-space models, changing
all the inputs or all the outputs with the syntax var(expr,:)=sys or
var(:,expr)=sys is much more efficient than specifying both sub-
scripts or a single index.

The syntax for field assignment, var.field=value, is defined for
the following fields: for state-space models, A, B, C, and D (matrices of
the state-space model); for transfer functions, num and den (cell arrays
of coefficients); for both, var (string) and Ts (scalar, or empty array for
continuous-time systems). Field assignment must preserve the size of
matrices and arrays.

The syntax with braces (var{i}=value) is not supported.

See also

lti::subsref, operator (), subsasgn

lti::subsref

Extraction of a part of an LTI system.

484 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use lti
var(i,j)
var(ix)
var(select)
var.field
b = subsref(a, s)

Description

The method subsref(a) permits the use of all kinds of extraction of
a part of an LTI system. If the variable is a matrix of transfer func-
tions, subsref produces the expected result. If the variable is a state-
space model, the result is equivalent; the result remains a state-space
model. For state-space models, extracting all the inputs or all the
outputs with the syntax var(expr,:) or var(:,expr) is much more
efficient than specifying both subscripts or a single index.

The syntax for field access, var.field, is defined for the following
fields: for state-space models, A, B, C, and D (matrices of the state-
space model); for transfer functions, num and den (cell arrays of co-
efficients); for both, var (string) and Ts (scalar, or empty array for
continuous-time systems).

The syntax with braces (var{i}) is not supported.

See also

lti::subsasgn, operator (), subsasgn

lti::tfdata

Get transfer functions.

Syntax

use lti
(num, den) = tfdata(a)
(num, den, Ts) = ssdata(a)

Description

tfdata(a), where a is any kind of LTI object, gives the numerator
and denominator of the transfer function model, and optionally the
sampling period or the empty array [] for continuous-time systems.

Libraries — lti 485

The numerators and denominators are given as a cell array of power-
descending coefficient vectors; the rows of the cell arrays correcpond
to the outputs, and their columns to the inputs.

See also

lti::ssdata

lti::uminus

Negative.

Syntax

use lti
b = -a
b = uminus(a)

Description

-a multiplies all the outputs (or all the inputs) of system a by -1. If a is
a transfer functions or a matrix of transfer functions, this is equivalent
to the unary minus.

See also

lti::minus, lti::uplus

lti::uplus

Negative.

Syntax

use lti
b = +a
b = uplus(a)

Description

+a gives a.

See also

lti::uminus, lti::plus

486 LyME User Manual ©1999-2008, Calerga Sàrl

zpk

LTI transfer function constructor using zeros and poles.

Syntax

use lti
a = zpk(z, p, k)
a = zpk(zeroslist, poleslist, gainlist)
a = zpk(..., Ts)
a = zpk(..., Ts, var)
a = zpk(..., b)
a = zpk(b)

Description

zpk creates transfer-function LTI systems like tf::tf. Instead of using
transfer function coefficients as input, it accepts a vector of zeros, a
vector of poles, and a gain for a simple-input simple-output (SISO)
system; or lists of sublists of zeros, poles and gains for multiple-input
multiple-output (MIMO) systems.

Examples

use lti
sd = zpk(0.3, [0.8+0.5j; 0.8-0.5j], 10, 0.1)
sd =
discrete-time transfer function, Ts=0.1
(10z-3)/(ẑ 2-1.6z+0.89)

See also

tf::tf

lti::bodemag

Magnitude of the Bode plot.

Syntax

use lti
bodemag(a, ...)
... = bodemag(a, ...)

Description

bodemag(a) plots the magnitude of the Bode diagram of system a.

Libraries — lti 487

See also

lti::bodephase, lti::nichols, lti::nyquist

lti::bodephase

Phase of the Bode plot.

Syntax

use lti
bodephase(a, ...)
... = bodephase(a, ...)

Description

bodephase(a) plots the magnitude of the Bode diagram of system a.

See also

lti::bodemag, lti::nichols, lti::nyquist

lti::impulse

Impulse response.

Syntax

use lti
impulse(a, ...)
... = impulse(a, ...)

Description

impulse(a) plots the impulse response of system a.

See also

lti::step, lti::lsim, lti::initial

lti::initial

Time response with initial conditions.

488 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use lti
initial(a, x0, ...)
... = initial(a, x0, ...)

Description

initial(a,x0) plots the time response of state-space system a with
initial state x0 and null input.

See also

lti::impulse, lti::step, lti::lsim

lti::lsim

Time response.

Syntax

use lti
lsim(a, u, t, ...)
... = lsim(a, u, t)

Description

lsim(a,u,t) plots the time response of system a. For continuous-
time systems, The input is piece-wise linear; it is defined by points in
real vectors t and u, which must have the same length. Input before
t(1) and after t(end) is 0. For discrete-time systems, u is sampled at
the rate given by the system, and t is ignored or can be omitted.

See also

lti::impulse, lti::step, lti::initial

lti::nichols

Nichols plot.

Syntax

use lti
nichols(a, ...)
... = nichols(a, ...)

Libraries — lti 489

Description

nichols(a) plots the Nichols diagram of system a.

See also

lti::nyquist, lti::bodemag, lti::bodephase

lti::nyquist

Nyquist plot.

Syntax

use lti
nyquist(a, ...)
... = nyquist(a, ...)

Description

nyquist(a) plots the Nyquist diagram of system a.

See also

lti::nichols, lti::bodemag, lti::bodephase

lti::step

Step response.

Syntax

use lti
step(a, ...)
... = step(a, ...)

Description

step(a) plots the step response of system a.

See also

lti::impulse, lti::lsim, lti::initial

490 LyME User Manual ©1999-2008, Calerga Sàrl

4.8 sigenc

sigenc is a library which adds to LME functions for encoding and de-
coding scalar signals. It implements quantization, DPCM (differential
pulse code modulation), and companders used in telephony.

The following statement makes available functions defined in
sigenc:

use sigenc

alawcompress

A-law compressor.

Syntax

use sigenc
output = alawcompress(input)
output = alawcompress(input, a)

Description

alawcompress(input,a) compresses signal input with A-law method
using parameter a. The signal is assumed to be in [-1,1]; values out-
side this range are clipped. input can be a real array of any size and
dimension. The default value of a is 87.6.

The compressor and its inverse, the expander, are static, nonlin-
ear filters used to improve the signal-noise ratio of quantized signals.
The compressor should be used before quantization (or on a signal
represented with a higher precision).

See also

alawexpand, ulawcompress

alawexpand

A-law expander.

Syntax

use sigenc
output = alawexpand(input)
output = alawexpand(input, a)

Libraries — sigenc 491

Description

alawexpand(input,a) expands signal input with A-law method using
parameter a. input can be a real array of any size and dimension.
The default value of a is 87.6.

See also

alawcompress, ulawexpand

dpcmdeco

Differential pulse code modulation decoding.

Syntax

use sigenc
output = dpcmdeco(i, codebook, predictor)

Description

dpcmdeco(i,codebook,predictor) reconstructs a signal encoded
with differential pulse code modulation. It performs the opposite of
dpcmenco.

See also

dpcmenco, dpcmopt

dpcmenco

Differential pulse code modulation encoding.

Syntax

use sigenc
i = dpcmenco(input, codebook, partition, predictor)

Description

dpcmenco(input,codebook,partition,predictor) quantizes the
signal in vector input with differential pulse code modulation. It
predicts the future response with the finite-impulse response filter
given by polynomial predictor, and it quantizes the residual error

492 LyME User Manual ©1999-2008, Calerga Sàrl

with codebook and partition like quantiz. The output i is an array
of codes with the same size and dimension as input.

The prediction y∗(k) for sample k s

y∗(k) =
degpredictor

∑

=1

predictor · yq(k − )

where yq(k) is the quantized (reconstructed) signal. The predictor
must be strictly causal: predictor(0) must be zero. To encode the
difference between in(k) and yq(k-1), predictor=[0,1]. Note that
there is no drift between the reconstructed signal and the input 1,
contrary to the case where the input is differentiated, quantized, and
integrated.

Example

use sigenc
t = 0:0.1:10;
x = sin(t);
codebook = -.1:.01:.1;
partition = -.0:.01:.09;
predictor = [0, 1];
i = dpcmenco(x, codebook, partition, predictor);
y = dpcmdeco(i, codebook, predictor);

See also

quantiz, dpcmdeco, dpcmopt

dpcmopt

Differential pulse code modulation decoding.

Syntax

use sigenc
(predictor, codebook, partition) = dpcmopt(in, order, n)
(predictor, codebook, partition) = dpcmopt(in, order, codebook0)
(predictor, codebook, partition) = dpcmopt(in, predictor, ...)
(predictor, codebook, partition) = dpcmopt(..., tol)
predictor = dpcmopt(in, order)

1Actually, there may be a drift if the arithmetic units used for encoding and decoding
do not produce exactly the same results.

Libraries — sigenc 493

Description

dpcmopt(in,order,n) gives the optimal predictor of order order,
codebook of size n and partition to encode the signal in vector in
with differential pulse code modulation. The result can be used with
dpcmenco to encode signals with similar properties. If the second
input argument is a vector, it is used as the predictor and not
optimized further; its first element must be zero. If the third input
argument is a vector, it is used as an initial guess for the codebook,
which has the same length. An optional fourth input argument
provides the tolerance (the default is 1e-7).

If only the predictor is required, only the input and the predictor
order must be supplied as input arguments.

See also

dpcmenco, dpcmdeco, lloyds

lloyds

Optimal quantization.

Syntax

use sigenc
(partition, codebook) = lloyds(input, n)
(partition, codebook) = lloyds(input, codebook0)
(partition, codebook) = lloyds(..., tol)

Description

lloyds(input,n) computes the optimal partition and codebook for
quantizing signal input with n codes, using the Lloyds algorithm.

If the second input argument is a vector,
lloyds(input,codebook0) uses codebook0 as an initial guess for
the codebook. The result has the same length.

A third argument can be used to specify the tolerance used as the
stopping criterion of the optimization loop. The default is 1e-7.

Example

We start from a suboptimal partition and compute the distortion:

use sigenc
partition = [-1, 0, 1];
codebook = [-2, -0.5, 0.5, 2];

494 LyME User Manual ©1999-2008, Calerga Sàrl

in = -5:0.6:3;
(i, out, dist) = quantiz(in, partition, codebook);
dist
2.1421

The partition is optimized with lloyds, and the same signal is quan-
tized again. The distortion is reduced.

(partition_opt, codebook_opt) = lloyds(in, codebook)
partition_opt =

-2.9 -0.5 1.3
codebook_opt =
-4.1 -1.7 0.4 2.2

(i, out, dist) = quantiz(in, partition_opt, codebook_opt);
dist
1.0543

See also

quantiz, dpcmopt

quantiz

Table-based signal quantization.

Syntax

use sigenc
i = quantiz(input, partition)
(i, output, distortion) = quantiz(input, partition, codebook)

Description

quantiz(input,partition) quantizes signal input using partition
as boundaries between different ranges. Range from −∞ to
partition(1) corresponds to code 0, range from partition(1) to
partition(2) corresponds to code 1, and so on. input may be a real
array of any size and dimension; partition must be a sorted vector.
The output i is an array of codes with the same size and dimension
as input.

quantiz(input,partition,codebook) uses codebook as a look-
up table to convert back from codes to signal. It should be a vector
with one more element than partition. With a second output argu-
ment, quantiz gives codebook(i).

With a third output argument, quantiz computes the distortion be-
tween input and codebook(i), i.e. the mean of the squared error.

Libraries — sigenc 495

Example

use sigenc
partition = [-1, 0, 1];
codebook = [-2, -0.5, 0.5, 2];
in = randn(1, 5)
in =
0.1799 -9.7676e-2 -1.1431 -0.4986 1.0445

(i, out, dist) = quantiz(in, partition, codebook)
i =
2 1 0 1 2

out =
0.5 -0.5 -2 -0.5 0.5

dist =
0.259

See also

lloyds, dpcmenco

ulawcompress

mu-law compressor.

Syntax

use sigenc
output = ulawcompress(input)
output = ulawcompress(input, mu)

Description

ulawcompress(input,a) compresses signal input with mu-law
method using parameter mu. input can be a real array of any size
and dimension. The default value of mu is 255.

The compressor and its inverse, the expander, are static, nonlin-
ear filters used to improve the signal-noise ratio of quantized signals.
The compressor should be used before quantization (or on a signal
represented with a higher precision).

See also

ulawexpand, alawcompress

ulawexpand

mu-law expander.

496 LyME User Manual ©1999-2008, Calerga Sàrl

Syntax

use sigenc
output = ulawexpand(input)
output = ulawexpand(input, mu)

Description

ulawexpand(input,a) expands signal input with mu-law method us-
ing parameter a. input can be a real array of any size and dimension.
The default value of mu is 255.

See also

ulawcompress, alawexpand

4.9 wav

wav is a library which adds to LME functions for encoding and decoding
WAV files. WAV files contain digital sound. The wav library supports un-
compressed, 8-bit and 16-bit, monophonic and polyphonic WAV files.
It can also encode and decode WAV data in memory without files.

The following statement makes available functions defined in wav:

use wav

wavread

WAV decoding.

Syntax

use wav
(samples, samplerate, nbits) = wavread(filename)
(samples, samplerate, nbits) = wavread(filename, n)
(samples, samplerate, nbits) = wavread(filename, [n1,n2])
(samples, samplerate, nbits) = wavread(data, ...)

Description

wavread(filename) reads the WAV file filename. The result is a 2-d
array, where each row corresponds to a sample and each column to a
channel. Its class is the same as the native type of the WAV file, i.e.
int8 or int16.

Libraries — wav 497

wavread(filename,n), where n is a scalar integer, reads the first n
samples of the file. wavread(filename,[n1,n2]), where the second
input argument is a vector of two integers, reads samples from n1 to
n2 (the first sample corresponds to 1).

Instead of a file name string, the first input argument can be a
vector of bytes, of class int8 or uint8, which represents directly the
contents of the WAV file.

In addition to the samples, wavread can return the sample rate in
Hz (such as 8000 for phone-quality speech or 44100 for CD-quality
music), and the number of bits per sample and channel.

See also

wavwrite

wavwrite

WAV encoding.

Syntax

use wav
wavwrite(samples, samplerate, nbits, filename)
data = wavwrite(samples, samplerate, nbits)
data = wavwrite(samples, samplerate)

Description

wavwrite(samples,samplerate,nbits,filename) writes a WAV file
filename with samples in array samples, sample rate samplerate (in
Hz), and nbits bits per sample and channel. Rows of samples corre-
sponds to samples and columns to channels. nbits can be 8 or 16.

With 2 or 3 input arguments, wavwrite returns the contents of the
WAV file as a vector of class uint8. The default word size is 16 bits
per sample and channel.

Example

use wav
sr = 44100;
t = (0:sr)’ / sr;
s = sin(2 * pi * 740 * t);
wavwrite(map2int(s, -1, 1, ’int16’), sr, 16, ’beep.wav’);

498 LyME User Manual ©1999-2008, Calerga Sàrl

See also

wavread

4.10 date

date is a library which adds to LME functions to convert date and time
between numbers and strings.

The following statement makes available functions defined in date:

use date

datestr

Date to string conversion.

Syntax

use date
str = datestr(datetime)
str = datestr(date, format)

Description

datestr(datetime) converts the date and time to a string. The input
argument can be a vector of 3 to 6 elements for the year, month, day,
hour, minute, and second; a julian date as a scalar number; or a string,
which is converted by datevec. The result has the following format:

jj-mmm-yyyy HH:MM:SS

where jj is the two-digit day, mmm the beginning of the month name,
yyyy the four-digit year, HH the two-digit hour, MM the two-digit minute,
and SS the two-digit second.

The format can be specified with a second input argument. When
datestr scans the format string, it replaces the following sequences
of characters and keeps the other ones unchanged:

Libraries — date 499

Sequence Replaced with
dd day (2 digits)
ddd day of week (3 char)
HH hour (2 digits, 01-12 or 00-23)
MM minute (2 digits)
mm month (2 digits)
mmm month (3 char)
PM AM or PM
QQ quarter (Q1 to Q4)
SS second (2 digits)
yy year (2 digits)
yyyy year (4 digits)

If the sequence PM is found, the hour is between 1 and 12; other-
wise, between 0 and 23.

Examples

use date
datestr(clock)
18-Apr-2005 16:21:55

datestr(clock, ’ddd mm/dd/yyyy HH:MM PM’)
Mon 04/18/2005 04:23 PM

See also

datevec, julian2cal, clock

datevec

String to date and time conversion.

Syntax

use date
datetime = datevec(str)

Description

datevec(str) converts the string str representing the date and/or
the time to a row vector of 6 elements for the year, month, day, hour,
minute, and second. The following formats are recognized:

500 LyME User Manual ©1999-2008, Calerga Sàrl

Example Value
20050418T162603 ISO 8601 date and time
2005-04-18 year, month and day
2005-Apr-18 year, month and day
18-Apr-2005 day, month and year
04/18/2005 month, day and year
04/18/00 month, day and year
18.04.2005 day, month and year
18.04.05 day, month and year
16:26:03 hour, minute and second
16:26 hour and minute
PM afternoon

Unrecognized characters are ignored. If the year is given as two
digits, it is assumed to be between 1951 and 2050.

Examples

use date
datevec(’Date and time: 20050418T162603’)
2005 4 18 16 26 3

datevec(’03:57 PM’)
0 0 0 15 57 0

datevec(’01-Aug-1291’)
1291 8 1 0 0 0

datevec(’At 16:30 on 11/04/07’)
2007 11 4 16 30 0

See also

datestr

weekday

Week day of a given date.

Syntax

use date
(num, str) = weekday(year, month, day)
(num, str) = weekday(datetime)
(num, str) = weekday(jd)

Description

weekday finds the week day of the date given as input. The date can
be given with three input arguments for the year, the month and the

Libraries — constants 501

day, or with one input argument for the date or date and time vector,
or julian date.

The first output argument is the number of the day, from 1 for
Sunday to 7 for Saturday; and the second output argument is its name
as a string of 3 characters, such as ’Mon’ for Monday.

Example

Day of week of today:

use date
(num, str) = weekday(clock)
num =
2

str =
Mon

See also

cal2julian

4.11 constants

constants is a library which defines physical constants in SI units (me-
ter, kilogram, second, ampere).

The following statement makes available constants defined in
constants:

use constants;

The following constants are defined:

502 LyME User Manual ©1999-2008, Calerga Sàrl

Name Value Unit
avogadro_number 6.0221367e23 1/mole
boltzmann_constant 1.380658e-23 J/K
earth_mass 5.97370e24 kg
earth_radius 6.378140e6 m
electron_charge 1.60217733e-19 C
electron_mass 9.1093897e-31 kg
faraday_constant 9.6485309e4 C/mole
gravitational_constant 6.672659e-11 N m 2̂/kĝ 2
gravity_acceleration 9.80655 m/ŝ 2
hubble_constant 3.2e-18 1/s
ice_point 273.15 K
induction_constant 1.256e-6 V s/A m
molar_gaz_constant 8.314510 J/K mole
molar_volume 22.41410e-3 m 3̂/mole
muon_mass 1.8835327e-28 kg
neutron_mass 1.6749286e-27 kg
plank_constant 6.6260755e-34 J s
plank_constant_reduced 1.0545727e-34 J s
plank_mass 2.17671e-8 kg
proton_mass 1.6726231e-27 kg
solar_radius 6.9599e8 m
speed_of_light 299792458 m/s
speed_of_sound 340.29205 m/s
stefan_boltzmann_constant 5.67051e-8 W/m 2̂ K̂ -4
vacuum_permittivity 8.854187817e-12 A s/V m

Index

abs, 135
acos, 136
acosh, 136
acot, 137
acoth, 137
acsc, 138
acsch, 138
addpol, 188
alawcompress, 490
alawexpand, 490
all, 321
and, 105
angle, 139
any, 322
apply, 308
asec, 139
asech, 139
asin, 140
asinh, 140
assert, 76
atan, 141
atan2, 141
atanh, 142
audioplay, 399
audioset, 400
axis, 387

balance, 189
bar, 387
barh, 388
base64decode, 294
base64encode, 295
beep, 389
beginning, 47
besselap, 456
besself, 456
beta, 142

betainc, 143
betaln, 144
bilinear, 457
binarydata, 402
bitall, 323
bitand, 323
bitany, 324
bitcmp, 324
bitget, 325
bitor, 326
bitset, 326
bitshift, 327
bitxor, 328
blkdiag, 412
bootstrp, 426
break, 54
builtin, 77
buttap, 458
butter, 458
bwrite, 340

c2dm, 333
cal2julian, 370
care, 189
cart2pol, 410
cart2sph, 411
case, 54
cast, 144
cat, 233
catch, 54
cdf, 145
ceil, 146
cell, 234
cell array, 36
cell2struct, 312
cellfun, 234
char, 296, 403

504 LyME User Manual ©1999-2008, Calerga Sàrl

cheb1ap, 459
cheb2ap, 459
cheby1, 460
cheby2, 461
chol, 191
circshift, 411
class, 319
class bitfield

int16, 452
int32, 452
int8, 452
uint16, 454
uint32, 454
uint8, 454

class bitfield
beginning, 449
bitfield, 449
disp, 450
double, 451
end, 451
find, 452
length, 453
sign, 454

class lti
append, 468
beginning, 469
bodemag, 486
bodephase, 487
c2d, 470
connect, 470
d2c, 471
dcgain, 473
end, 471
evalfr, 472
feedback, 474
impulse, 487
inv, 474
isct, 475
isdt, 475
isempty, 475
isproper, 476
issiso, 476
lsim, 488
minreal, 477
minus, 477
mldivide, 477

mrdivide, 478
mtimes, 478
nichols, 488
norm, 479
nyquist, 489
parallel, 480
plus, 480
repmat, 481
series, 481
size, 482
ssdata, 482
step, 489
subsasgn, 483
subsref, 483
tfdata, 484
uminus, 485
uplus, 485

class polynom
diff, 440
disp, 438
double, 438
feval, 441
inline, 441
int, 440
polynom, 437
subst, 439

class ratfun
den, 444
diff, 444
disp, 443
feval, 445
inline, 445
num, 443
ratfun, 442

class ratio
char, 447
disp, 448
double, 448
ratio, 446

class ss
augstate, 469
ctrb, 473
initial, 487
obsv, 479
ss, 466

class tf

Index 505

tf, 467, 486
clc, 341
clear, 78
clf, 390
clock, 368
close, 390
colon, 105
compan, 413
complex, 146
cond, 191
conj, 147
continue, 55
contour, 390
conv, 192
conv2, 193
corrcoef, 413
cos, 147
cosh, 148
cot, 148
coth, 148
cov, 194
cross, 194
csc, 149
csch, 149
ctranspose, 105
cumprod, 195
cumsum, 196
cumtrapz, 414

d2cm, 335
dare, 196
datestr, 498
datevec, 499
dbclear, 69
dbcont, 70
dbdeldb, 357
dbdelrec, 357
dbdir, 357
dbhalt, 70
dbinfo, 358
dbnewdb, 359
dbnewrec, 360
dbnumrec, 360
dbopenrec, 361
dbquit, 70
dbset, 362

dbstack, 71
dbstatus, 72
dbstep, 72
dbstop, 74
dbtype, 74
deal, 79
deblank, 296
deconv, 197
define, 55
delaunay, 267
delaunayn, 268
det, 198
diag, 235
diff, 199
diln, 150
disp, 341
dlyap, 199
dmargin, 336
dot, 200
double, 150, 403
dpcmdeco, 491
dpcmenco, 491
dpcmopt, 492
dumpvar, 80

echo, 75
eig, 201
ellip, 461
ellipam, 151
ellipap, 462
ellipe, 151
ellipf, 152
ellipj, 152
ellipke, 153
else, 59
elseif, 59
end, 47
endfunction, 57
eps, 154
eq, 105
erf, 155
erfc, 156
erfinv, 156
error, 81
eval, 82
exist, 82

506 LyME User Manual ©1999-2008, Calerga Sàrl

exp, 157
expm, 201
expm1, 157
eye, 236

factor, 158
factorial, 158
false, 328
fclose, 342
feof, 342
feval, 83, 404
fevalx, 84
fflush, 343
fft, 202
fft2, 203
fftn, 203
fftshift, 415
fgetl, 343
fgets, 344
fieldnames, 313
filestreamingopen, 363
filter, 204
filter2, 415
find, 237
findstr, 297
fix, 159
flipdim, 238
fliplr, 239
flipud, 239
floor, 159
fminbnd, 277
fminsearch, 279
fopen, 364
for, 56
format, 344
fplot, 391
fprintf, 346
fread, 346
fscanf, 348
fseek, 348
ftell, 349
fun2str, 84
function

inline, 38
reference, 38

function, 57

funm, 205
fwrite, 349
fzero, 280

gamma, 160
gammainc, 160
gammaln, 161
gcd, 162
ge, 105
geomean, 427
getfield, 313
global, 48
goldenratio, 162
graycode, 329
griddata, 269
griddatan, 270
gt, 105

hankel, 415
harmmean, 428
hess, 208
hist, 416
hold, 392
horzcat, 105
hypot, 163

i, 163
icdf, 164
if, 59
ifft, 206
ifft2, 207
ifftn, 207
ifftshift, 417
igraycode, 330
imag, 165
image, 393
include, 61
includeifexists, 61
ind2sub, 240
inf, 165
info, 85
inline, 87
inmem, 90
int16, 274, 405
int32, 274, 405
int64, 274
int8, 274, 405

Index 507

interp1, 241
interpn, 242
intersect, 244
intmax, 275
intmin, 275
inv, 209
ipermute, 245
iqr, 428
isa, 320
iscell, 246
ischar, 298
isdigit, 298
isempty, 245
isfield, 314
isfinite, 166
isfloat, 167
isglobal, 90
isinf, 167
isinteger, 168
iskeyword, 91
isletter, 299
islist, 309
islogical, 330
ismember, 246
isnan, 168
isnumeric, 169
isobject, 320
isprime, 169
isquaternion, 375
isreal, 417
isscalar, 170
isspace, 299
isstruct, 314
isvector, 171

join, 309
julian2cal, 371

kron, 209
kurtosis, 210

lasterr, 91
lasterror, 92
lcm, 171
ldivide, 105
le, 105
length, 247, 405

library
constants, 501
date, 498
filter, 455
lti, 465
ratio, 446
sigenc, 490
stat, 426
stdlib, 410
wav, 496

linprog, 210
linspace, 418
list, 36
list2num, 310
lloyds, 493
LME, 29

command syntax, 31
comments, 30
error messages, 41
file descriptor, 40
function call, 30
input/output, 40
libraries, 32
program format, 29
statements, 29
types, 32
variable assignment, 46

log, 172
log10, 172
log1p, 173
log2, 173
logical, 331
loglog, 394
logm, 212
logspace, 419
LongInt

longint, 386
lower, 300
lp2bp, 463
lp2bs, 463
lp2hp, 464
lp2lp, 465
lt, 105
lu, 212
lyap, 213

508 LyME User Manual ©1999-2008, Calerga Sàrl

mad, 429
magic, 248
map, 310
map2int, 276
margin, 337
matrixcol, 50
matrixrow, 51
max, 214
md5, 300
mean, 215
median, 419
meshgrid, 248
methods, 321
min, 216
minus, 105
mldivide, 105
mod, 174
moment, 217
mpower, 105
mrdivide, 105
mtimes, 105

nan, 174
nancorrcoef, 430
nancov, 430
nanmean, 431
nanmedian, 431
nanstd, 432
nansum, 433
nargin, 93
nargout, 94
nchoosek, 175
ndgrid, 249
ndims, 250
ne, 105
nnz, 250
norm, 218
not, 105
nthroot, 176
null, 218
num2cell, 251
num2list, 311
number, 34
numel, 252

object, 39

ode23, 282
ode45, 282
odeset, 284
ones, 252
operator

&, 128
&&, 128
@, 134
{}, 110
[], 109
:, 132
,, 131
’, 120
.’, 121
/, 116
./, 116
\, 117
.\, 118
., 111
==, 121
>=, 127
>, 125
<=, 126
<, 125
-, 113
=̃, 123
,̃ 127
|, 129
(), 105
+, 112
,̂ 119
.̂, 119
?, 130
===, 122
;, 132
*, 114
.*, 115
=̃=, 124

optimset, 292
or, 105
orderfields, 315
orth, 219
otherwise, 62

pause, 394
pcenativecall, 406

Index 509

pdf, 177
pdist, 433
peek, 406
perms, 420
permute, 253
persistent, 48
pi, 177
pinv, 220
plot, 394
plus, 105
poke, 407
pol2cart, 420
polar, 395
poly, 220
polyder, 221
polyfit, 421
polyint, 222
polyval, 223
polyvalm, 422
power, 105
prctile, 434
primes, 422
private, 62
processorname, 407
prod, 223
public, 63

q2mat, 375
q2rpy, 376
q2str, 377
qimag, 377
qinv, 378
qnorm, 378
qr, 224
qslerp, 379
quad, 293
quantiz, 494
quaternion, 380
Quaternions, 372

rand, 253
randn, 254
range, 435
rank, 225
rdivide, 105
real, 178

reallog, 178
realmax, 179
realmin, 179
realpow, 179
realsqrt, 180
redirect, 350
rem, 180
repeat, 63
replist, 312
repmat, 255
reshape, 256
rethrow, 95
return, 64
rmfield, 316
roots, 226
rot90, 257
round, 181
rpy2q, 381

sandbox, 101
sandboxtrust, 103
schur, 227
sec, 182
sech, 183
selectday, 397
selecttime, 398
semilogx, 396
semilogy, 396
serialdevname, 383
serialdevopen, 383
serialdevset, 384
set, 39
setdiff, 258
setfield, 317
setstr, 301
setxor, 258
sha1, 302
sign, 182
sin, 183
sinc, 183
single, 184
sinh, 185
size, 259
skewness, 228
sort, 260
sortrows, 423

510 LyME User Manual ©1999-2008, Calerga Sàrl

sph2cart, 423
sprintf, 351
sqrt, 185
sqrtm, 228
squareform, 435
squeeze, 262
sread, 353
ss2tf, 338
sscanf, 354
std, 229
str2fun, 96
str2obj, 96
strcmp, 302
strcmpi, 303
string, 35
strmatch, 304
strtok, 305
strtrim, 305
struct, 317
struct2cell, 318
structarray, 318
structure, 37
structure array, 37
sub2ind, 262
subsasgn, 51
subspace, 424
subsref, 52
sum, 230
svd, 231
swapbytes, 186
switch, 65
swrite, 355

tan, 186
tanh, 187
text, 397
tf2ss, 340
tic, 369
times, 105
toc, 369
toeplitz, 425
trace, 232
transpose, 105
trapz, 425
tril, 263
trimmean, 436

triu, 264
true, 332
try, 66
tsearch, 270
tsearchn, 271
typecast, 187

uint16, 274, 405
uint32, 274, 405
uint64, 274
uint8, 274, 405
ulawcompress, 495
ulawexpand, 495
uminus, 105
union, 265
unique, 266
until, 67
uplus, 105
upper, 306
use, 67
useifexists, 68
utf8decode, 307
utf8encode, 307

value sequences, 38
var, 232
varargin, 97
varargout, 98
variables, 99
vertcat, 105
vfsdelete, 365
vfsdir, 365
vfsgetvolumes, 366
vfsmkdir, 367
vfsopen, 367
vfsrename, 368
voronoi, 272
voronoin, 273

warning, 100
wavread, 496
wavwrite, 497
weekday, 500
which, 100
while, 68

xor, 332

Index 511

zeros, 266
zscore, 436

	Using LyME
	LyME Installation
	Using LyME
	User input
	Data exchange
	License
	What's more in Sysquake
	MathLib

	LME Tutorial
	Simple operations
	Complex Numbers
	Vectors and Matrices
	Polynomials
	Strings
	Variables
	Loops and Conditional Execution
	Functions
	Local and Global Variables

	LME Reference
	Program format
	Function Call
	Libraries
	Types
	Input and Output
	Error Messages
	Variable Assignment and Subscripting
	Programming Constructs
	Debugging Commands
	Miscellaneous Functions
	Sandbox Function
	Operators
	Mathematical Functions
	Linear Algebra
	Array Functions
	Triangulation Functions
	Integer Functions
	Non-Linear Numerical Functions
	String Functions
	List Functions
	Structure Functions
	Object Functions
	Logical Functions
	Dynamical System Functions
	Input/Output Functions
	Palm Database Functions
	Palm File Streaming Functions
	Palm VFS Functions
	Time Functions
	Date Conversion Functions
	Quaternions
	Serial Port Functions
	Long Integers
	LyME Functions
	Dialog Functions
	Audio output
	Machine Code Functions
	Introduction
	Functions

	Libraries
	stdlib
	stat
	classes
	ratio
	bitfield
	filter
	lti
	sigenc
	wav
	date
	constants

	Index

